- 无标题文档
查看论文信息

中文题名:

 大规模光纤光栅阵列制备及其查询关键技术研究    

姓名:

 罗志会    

学号:

 10497111077    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0803    

学科名称:

 光学工程    

学生类型:

 博士    

学位:

 工学博士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 光电子及信息材料    

研究方向:

 光纤传感技术    

第一导师姓名:

 姜德生    

第一导师院系:

 武汉理工大学    

第二导师姓名:

 文泓桥    

完成日期:

 2014-12-01    

答辩日期:

 2014-12-10    

中文关键词:

 光纤光栅阵列 ; 光纤传感 ; 超弱光栅 ; 相敏查询 ; 时分复用 ; 波分复用    

中文摘要:

      准分布式光纤光栅传感网络具有灵敏度高、响应速度快、方便波长解调、耐腐蚀、抗电磁干扰等特点,已经在工程中获得广泛应用。但在诸如复杂结构监测、火灾报警、周界安全等重大工程领域,要求传感网络的监测点多达上千个,传统的组网方式面临技术和成本的双重挑战,开发大规模光纤光栅传感网络的需求尤为迫切。

      波分复用(WDM)和时分复用(TDM)技术是目前扩展网络容量的主要方法,但受带宽及噪声的限制,复用光栅的数量只有数十个。诸如频分复用(FDM)、码分多址(CDM)等技术相对复杂,且复用能力也十分有限。近年来,具有大规模复用潜力的弱光栅成为研究的热点。但采用常规串行熔接构建弱光栅阵列,接点累积损耗大,可靠性差,严重限制了传感阵列的规模。与此同时,弱光栅反射信号强度低,信号分离困难,如何实现对大规模弱光栅阵列快速查询也是业界公认的难题。国内外相关科研团队针对上述问题进行了多年的研究,但进展缓慢。

       本文针对大规模光纤光栅传感网络中光栅阵列构建及查询的技术难题,研究了光栅阵列复用和制备的相关理论,采用在线刻写技术制备超弱光栅,通过时分/波分混合复用构建大规模光纤光栅阵列;提出了光栅阵列相敏查询方法,研制了大规模光栅阵列相敏查询系统及超弱光栅阵列质量检测系统,解决了大规模光纤光栅传感系统构建的技术瓶颈,并获得初步应用。

       本文的主要研究内容及结果如下:

      1、分析了光纤光栅阵列的复用理论,重点研究了全同超弱光栅TDM阵列的特性,提出采用超弱光栅混合复用方法构建大规模传感阵列。研究表明:采用-35dB以下的超弱光栅构建大规模光栅阵列,可有效降低串扰,同波长光栅复用数量可达到1000个;采用TDM+WDM分段混合复用,单根光纤上串行复用光栅的数量有望达到数千个。

       2、分析了相位掩模法制备光栅的基本理论及关键技术,采用高掺锗光纤、硼锗共掺光纤、普通光纤在线制备弱光栅阵列;分析比较了三种光栅阵列的制备效果,遴选出适用于大规模光纤传感网络要求的最佳制备方案。实验结果表明:在普通光纤上刻写的超弱光栅阵列具有反射率低、传输损耗小、性价比高的特点,更符合大规模组网要求。对超弱光栅阵列进行高低温循环、老化和温度传感实验表明超弱光栅具备良好的传感特性。

      3、研究了周期性脉冲入射条件下大规模光栅阵列的相敏查询方法,构建了相敏查询的理论模型,解析了查询过程及高精度定位的机理。对相敏查询系统的功率预算、多脉冲串扰、消光比等进行了分析;研制了高性能的SOA电光调制模块;采用双SOA电光调制模块构建了1310nm波段相敏查询系统,并开展了实验研究。结果表明:相敏查询方法可有效分离大规模光栅阵列中的单光栅反射信号;基于双SOA的相敏查询系统可实现对平均反射率-43dB超弱光栅阵列的查询,实验测试结果与理论分析基本吻合。

      4、研制了1550nm波段大规模光纤光栅高速查询系统。通过引入高速CCD解调技术,配套开发光源、脉冲EDFA放大器和高性能脉冲信号发生器,采用Labview软件协调控制光栅的查找和解调,实现对大规模光栅阵列的高速查询。系统的查询速度达到100个/秒,空间分辨率达到2m,可检测到-53dB的超弱光栅和1000Hz以下的振动信号。将该系统应用于火灾模拟实验研究表明:系统的响应速度、分辨率、准确性基本达到火灾安全监测的要求,具有良好的工程应用前景。

      5、研究了光栅阵列制备质量的在线检测方法及其关键技术。该方法以端面或标准光栅的反射谱为参照,采用相敏查询技术分离光栅阵列中单体光栅的反射信号,通过对比分析,实现对超弱光栅反射率、峰值波长、谱形等参数的检测,反射率测量误差小于0.5dB,光栅定位精度小于0.1米。

参考文献:

[1] Wang Y M, Gong J M, Wang D Y, et al. A quasi-distributed sensing network with time- division -multiplexed fiber Bragg gratings [J]. IEEE Photon. Technol. Lett., 2011, 23: 70-72.

[2] Soto M A, Taki M, Bolognini G, et al. Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification [J]. Opt. Express, 2012, 20(7): 6860-6869.

[3] Bolognini G, Hartog A. Raman-based fibre sensors: Trends and applications. Opt. Fiber Technol., 2013, 19(6): 678-688.

[4] Bogue R W. World's first permanent in-well fibre Bragg grating sensors perform seismic surveys [J]. Sensor Rev., 2003, 23(3): 209-210.

[5] Perez-Herrera R A, Lopez-Amo M. Fiber optic sensor networks [J]. Opt. Fiber Technol., 2013, 19(6): 689-699.

[6] Farahani M A, Gogolla T. Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing [J]. J. Ligh. Technol., 1999, 17(8): 1379.

[7] Bao X, Webb D J, Jackson D A. Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber [J]. Opt. Lett., 1994, 19(2): 141-143.

[8] Maughan S M, Kee H H, Newson T P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter [J]. Meas. Sci. Tech., 2001, 12(834).

[9] Zou W, He Z, Hotate K. Demonstration of Brillouin distributed discrimination of strain and temperature using a polarization-maintaining optical fiber [J]. IEEE Photon. Technol. Lett., 2010, 22(8): 526-528.

[10] Orr P, Niewczas P. Polarization-Switching FBG Interrogator for Distributed Point Measure- ment of Magnetic Field Strength and Temperature [J]. IEEE Sens. J., 2011, 11(5): 1220-1226.

[11] Dong H, Wu J, Zhang G. A novel successive demultiplexing scheme based on optical-CDMA balanced demodulation for FBG sensor systems [J]. Chin. Opt. Lett., 2009, 7(1): 23-25.

[12] Orr P, Niewczas P. High-Speed, Solid State, Interferometric Interrogator and Multiplexer for Fiber Bragg Grating Sensors [J]. J. Ligh. Technol, 2011, 29(22): 3387-3392.

[13] “http://www.fbgs.com/news/be-en/0/detail/item/31/”.

[14] Zhang M L, Sun Q Z, Wang Z, et al. A Large Capacity Sensing Network with Identical Weak Fiber Bragg Gratings Multiplexing [J]. Opt. Commun., 2012, 285: 3082-3087.

[15] Chan C C, Jin W, Wang D J, et al. Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser [J]. Micro. Opt. Techn. Let., 2003, 36(1): 2-4.

[16] Wang Y M, Gong J M, Wang D Y, et al. A large Serial time-division multiplexed fiber Bragg grating sensor network [J]. J. Lightw. Technol., 2012, 30: 2751-2756.

[17] Mizuno Y, He Z, Hotate K. Distributed strain measurement using a tellurite glass fiber with Brillouin optical correlation-domain reflectometry [J]. Opt. Commun., 2010, 283(11): 2438 -2441.

[18] Mizuno Y, He Z, Hotate K. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme [J]. Opt. Express, 2010, 18(6): 5926-5933.

[19] Ou J and Zhou Z. Optic fiber Bragg-grating-based sensing technologies and their applica- tions in structural health monitoring [C]. Proc. SPIE, 2006, 6595: 01-08.

[20] 姜德生, 何伟. 光纤光栅传感器的应用概况 [J]. 光电子?激光, 2002, 13(4): 420-430.

[21] 张自嘉. 光纤光栅理论基础与传感技术 [M]. 北京: 科学技术出版社,2009.

[22] Zhang Y J, Xie X P, Xu H B. Distributed Temperature Sensor System Based on Weak Reflection Fiber Gratings Combined with WDM and OTDR [J]. Opto-Electron. Eng., 2012, 39(8): 69-74.

[23] Cheng H, Wu C, Yang C, et al. Wavelength Division Multiplexing/Spectral Amplitude Coding Applications in Fiber Vibration Sensor Systems [J]. IEEE Sens. J., 2011, 11: 2518 -2526.

[24] Morey W W, Meltz G, Glenn W H. Fibre optic Bragg grating sensors [C]. Proc. SPIE, 1989,1169: 98-107.

[25] Atkins R M, Mizrahi V, Erdogn T. 248 induced vacuum UV spectral changes in optical fiber perform cores: support for a color centre model of photosensitivity [J]. Electron. Lett., 1993, 29(4): 385-387.

[26] 李东升, 李宏男. 埋入式封装的光纤光栅传感器应变传递分析[J]. 力学学报, 2005, 37(4): 435-441.

[27] Moyo P, Brownjohn J M W, Surechc R, et al. Development of fiber Bragg grating sensors for monitoring civil infrastructure [J]. Eng. Struct., 2005, 27(120): 1828-1834.

[28] Chulchun S, Taesum T. Temperature sensing with different coated metals on fiber Bragg grating sensors [J]. Microw. Opt. Techn. Let., 2001, 21(30): 162-165.

[29] Canning J. Fibre grating and devices for sensors and laser [J]. Laser Photonics Rev., 2008, 2(4): 275-289.

[30] 姜德生, 郭明金, 袁宏才等. 光纤Bragg光栅低温特性研究 [J]. 光电子?激光, 2004, 15 (6): 660-662.

[31] Kersey A D, Berkoff T A, Morey W W. High-resolution fiber-grating based strain sensor with Interferometric wavelength- shift deteetion [J]. Electron. Lett., 1992, 28(3): 236-238.

[32] Todd M D, Johoson G A, Althouse B, et al. Flexural beam based fiber Bragg grating accelerometers [J]. IEEE Photonics Tech. L., 1998, 11(10): 1605-1607.

[33] Hu B, Liu T Y, Wang J, et al. Distributed fiber optic microseismic monitoring system for coal mines [C]. Proc. SPIE, 2013, 8924.

[34] 朱方东. 波分复用光纤光栅振动传感网络解调系统研究[D]. 武汉: 武汉理工大学,2010.

[35] 熊靖. 光纤光栅振动实时监测系统的研究 [D]. 武汉: 武汉理工大学,2010.

[36]“http://www.inphenix.com/pdfdoc/SLED_Device.pdf”.

[37]“http://www.exalos.com/sled-modules.html”.

[38] Wu Q, Semenova Y, Sun An, et al. High resolution temperature insensitive interrogation technique for FBG sensors [J]. Opt. Laser Technol., 2010, 42(4): 653-656.

[39] Peng B J, Zhao Y, Zhao Y, et al. Tilt sensor with FBG technology and matched FBG demodulating method [J]. IEEE Sen. J., 2006, 6(1): 63-66.

[40] Lu Q, Zhan Y, Xing S. Two-values question in signal detecting of strain sensor based on fiber Bragg gratings [J]. Chinese J. Lasers, 2004, 31(8): 988-992.

[41] 李岚, 董永新, 赵春柳等. 强度解调型光纤布喇格光栅传感器的研究及进展 [J]. 激光与光电子学进展, 2010, 090603: 1-9.

[42] 饶云江, 义平, 朱涛. 光纤光栅原理及应用 [M]. 北京: 科学出版社, 2006.

[43] 吴薇. 大容量光纤光栅解调系统的研究与应用 [D]. 武汉: 武汉理工大学, 2010.

[44] “http://www.bayspec.com/telecom-fiber-sensing/fbg-interrogation-analyzer/”.

[45] “http://www.ibsenphotonics.com/products/interrogation-monitors/i-mon-oem”.

[46] Jin W. Multiplexed FBG sensors and their applications[C]. Proc. SPIE, 1999, 3897: 468-479.

[47] Chan C C, Jin W, Demokan M S. Experimental investigation of a 4-FBG TDM sensor array with a tunable laser source [J]. Microw. Opt. Techn. Let., 2001, 33: 435-437.

[48] Leandro D, Ullan A, Lopez-Amo M, et al. Remote(155 km) fiber Bragg grating interrogation technique combining Raman, Brillouin and Erbium gain in a fiber laser [J]. IEEE Photonics Technol. L., 2011, 99: 1-5.

[49]“http://www.wutos.com/About/Default.aspx”.

[50] Hill K O, Fujii Y, Johnson D C. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication [J]. Appl. Phys. Lett., 1978, 32(10): 647-649.

[51] Me1tz G, Morey W W, Glenn W H. Polarimetric heterodyning Bragg-grating fiber-laser Sensor [J]. Opt. Lett., 1993, 18: 1976-197.

[52] Lema1re P J, Alkins R M. High Pressure H2 loadings as a technique for achieving ultra high UV Photosensitivity and thermal sensitivity in doped GeO2 optical fibres [J]. Electron. Lett., 1993, 29(13): 1191-1192.

[53] Vengsarkar M A, Letnaire P J, Judkins J B. Long-period fiber gratings as band filter [J]. J. Lightw. Technol., 1996, 14(1): 58-65.

[54] Hill K O, Malo B, Bilodeau F, et al. Bragg grating fabricated in monomode Photosensitive optical fiber by UV expose through a phase mask [J]. Appl. Phys. Lett., 1993, 62(10): 1035-1037.

[55] Mihailov S J, Smelser C W, Lu P, et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation [J]. Opt. Lett. 2003, 28: 995-957.

[56] Bernier M, Faucher D, Vallée R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm [J]. Opt. Lett., 2007, 32(5): 454-456.

[57] Dong L, Archambault J L, Reekie L, et al. Bragg gratings in Ce3+-doped fibers written by a single excimer pulse [J]. Opt. Lett., 1993, 19: 861-863.

[58] Zhang Po. High-resolution Photon Counting-OTDR Based Interrogation of Multiplexing Broadband FBG Sensors [D]. Virginia:Virginia Polytechnic Institute and State University, 2003.

[59] Askins C G, Putnam M A, and Williams G M. Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower [J]. Opt. Lett., 1994, 19(2 ): 147-149.

[60] Lloyd G D, Bennion L, Everall L A, et al. Novel resonant cavity TDM demodulation scheme for FBG sensing [C]. Proc. Lasers Electro-Optic., 2004, CWD4.

[61] Cooper D J F, Coroy T, Smith P W E. Time-division-multiplexing of large serial fiber-optic Bragg grating sensor arrays [J]. Appl. Opt., 2001, 40: 2643-2554.

[62] Chung W H, Tam H Y. Time- and wavelength-division multiplexing of FBG sensors using a semiconductor optical amplifier in ring cavity configuration [J]. IEEE Photonic Tech. L., 2005, 12: 2709-2711.

[63] Fu H F, Liu H L, Wai P K, et al. Long-distance and quasi-distributed FBG sensor system using a SOA based ring cavity scheme [C]. OFC, 2007, OMQ5.

[64] Glynn D Lloyd, Lorna A Everall, Kate Sugden, et al. Resonant Cavity Time-Division -Multiplexed Fiber Bragg Grating Sensor Interrogator [J]. IEEE Photon. Techn. L., 2004, 16(10): 2323-2325.

[65] Dai Y B, Liu Y, Leng J, et al. A novel time-division multiplexing fiber Bragg grating sensor interrogator for structural health monitoring [J]. Opt. Lasers Eng., 2009, 47: 1028-1033.

[66] Ecke W, da Silva Nunes L C, Guedes V, et al. OTDR Multiplexed High-Birefringent Fiber Grating Sensor Network for Transversal Strain and Optochemical Monitoring [C]. Proc. OFS-16, 2003, 548-551.

[67] Zhang Po, Cerecedo-Nu′n? ez H H, Qi B, et al. Optical time-domain reflectometry interro- gation of multiplexing low-reflectance Bragg grating-based sensor system [J]. Optic. Eng., 2003, 42(6): 1597-1603.

[68] Wang Z, Sun Q Z, Zhang M L. A Distributed Sensing System Based on Low-Reflective -Index Bragg Gratings [C]. Proc. SOPO, 2011, 1-3.

[69] Mark F, Brooks C, Jason M, et al. High density strain sensing using optical frequency domain reflectometry [C]. Proc. SPIE, 2000, 4185: 249-255.

[70] 姜德生, 梅家纯, 高雪清等. 大容量编码式光纤光栅传感监测系统. 中国,发明专利,200310111529.2[P]. 2003.12.8

[71] Koo K, Tveten A, Vohra S. Dense wavelength division multiplexing of fibre Bragg grating sensors using CDMA [J]. Electron. Lett., 1999, 35(2): 165-167.

[72] Lee H, Park J. Dynamic strain characteristics of multiple FBG sensor system using CDMA [C]. Proc. LEOS, 2001, 871-872.

[73] 饶云江. 超长距离光纤布喇格光栅传感系统[J]. 电子科技大学学报, 2011, 40(5):703-705.

[74] Zou F, Wang Y, Feng Y. Study on WDM/TDM distributed FBG sensor networks based on AWG [J]. Transducer Micros. Techn., 2010, 9: 019.

[75] Henderson P J, Webb D J, Jackson D A, et al. Highly-multiplexed grating-sensors for temperature-referenced quasi-static measurements of strain in concrete bridges [C]. Proc. OFS, 1999, 3746: 320-323.

[76] Liu J S, Jiang Z, Li X. Study on multiplexing ability of identical Fibre Bragg Grating in a single fiber [J]. Chinese J. Aeronaut., 2011, 24(5): 607-612.

[77] Nunes L C S, Olivieri B S, Kato C C, et al. FBG sensor multiplexing system based on the TDM and fixed filters approach [J]. Sensor Actuat. A-Phys., 2007, 138(2): 341-349.

[78] Weis R S, Kersey A D. A four-element fibre grating sensor array with phasesensitive Detection [J]. IEEE Photonic. Tech. L., 1994, 6: 1469-1472.

[79] Li L, He H, Lin Y C. Study on the Spatial Division Multiplexing Technique of Fiber Bragg Grating Sensors [J]. Photonics and Optoelectronics. 2009, 32(2): 1-3

[80] Rao Y J, Kalli K, Brady G. Spatially multiplexed fiber-optic Bragg grating strain and temperature sensor system based on interferometric wavelength-shift detection [J]. Electron. Lett. 1995, 31: 1099-1010.

[81] David J F Cooper. Time Division Multiplexing of a Serial Fibre Optic Bragg Grating Sensor Array [D]. Ottawa: University of Toronto, 1999.

[82] 代勇波. 光纤光栅传感特性与多点复用技术研究[D]. 哈尔滨:哈尔滨工业大学, 2012.

[83] 郭会勇. 光纤光栅在线制备技术研究[D]. 武汉: 武汉理工大学, 2012.

[84] Rao Y J, Ribeiro A B L, Jackson D A, et al. Simultaneous spatial, time and wavelength division multiplexed in-fiber grating sensing network [J]. Opt. Commun., 1996, 125(1-3): 53-58.

[85] Rao Y J, Ribeiro A B L, Jackson D A, et al. In-fiber grating sensing network with a combined SDM, TDM, and WDM topology [C]. CLEO., 1996, 244-248.

[86] Hideo Hosono, Yoshihiro Abe, Donald L Kinser, et al. Nature and origin of the 5eV band in SiO2: GeO2 glasses [J]. Phys. Rev. B, 1992, 46(18): 11445-11451.

[87] M Josephine Yuen. Ultraviolet absorption studies of germanium silicat e glasses [J]. Appl. Opt., 1982, 21(1): 136-140.

[88] Junji Nishii, Kohei Fukumi, Hiroshi Yamanaka, et al. Photochemical reactions in GeO2- SiO2 glasses induced by ultraviolet irradiation: Comparison between Hg lamp and excimer laser [ J ]. Phys. Rev. B, 1995, 52(3): 1661-1665.

[89] Niay P, Douay M, Bernage P, et al. Does photosensitivity pave the way towards the fabrica- tion of miniature coherent light sources in inorganic glass waveguides [J]. Opt. Materials, 1999, 11: 115-129.

[90] Xie W W, Niay P, Bernage P, et al. Experiment al evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings with in germanosilicate fibres [J]. Opt. Comm., 1993, 104: 185-195.

[91] 张永胜, 郁可, 姜德生等. 用相位掩模法制作光纤光栅的技术[J]. 光学技术,1999, 01: 24-27.

[92] 邹林森, 雷非, 唐仁杰等. 相位掩模法制造光纤光栅的理论分析[J]. 光通信研究, 1997, 82: 51-54.

[93] 王广祥, 朱月红, 文继华. 基于相位掩模技术的光纤布喇格光栅制作工艺研究[J]. 河北科技大学学报, 2011, 32(6): 563-566.

[94] Tu F, Luo J, Guo J, et al. Research on the optical fiber's photosensitivity influenced by the doping process [C]. Proc. SPIE, 2009: 749353.

[95] LEMAIRE P J. Reliability of optical fibers exposed to hydrogen prediction of long term loss [J]. Opt. Eng., 1991, 30: 780-781.

[96] 邵理阳. 光纤光栅器件及传感应用研究[D]. 杭州: 浙江大学, 2008.

[97] Park H, Lee S, Paek U, et al. Noncontact optical fiber coating removal technique with hot air stream [J]. J. Lightw. Technol., 2005, 23(2): 551-557.

[98] Chattopadhyay D K, Panda S S, Raju K V S N. Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings [J]. Prog. Org. Coat., 2005, 54: 10-19.

[99] Dong L, Archambault J L, Reekie L, et al. Single pulse Bragg gratings written during fibre drawing [J]. Electron. Lett., 1993, 29:1577-1578 .

[100] Hagemann V, Trutzel M N, Staudigel L, et al. Mechanical resistance of draw-tower-Bragg -grating sensors [J]. Electron. Lett., 1998, 34: 211-212.

[101] Guo H Y, Tang J G , Li X F, et al. On-line writing weak fiber Bragg gratings array [J]. Chin. Opt. Lett., 2013, 11: 030602.

[102] Luo Z H, Guo H Y, Wen H Q. Interrogation system for a sensor array with 1310 nm band ultra-weak fiber Bragg gratings [J]. Opt. Eng., 2013, 52 (10): 107101.

[103] Zhang S, Tu F, Huang W, et al. Research on the FBG's high-temperature sustainability influenced by the doping process [C]. Proc. SPIE, 2011: 789403.

[104] 孙琪真, 刘德明, 张满亮等. 基于非等间隔弱布拉格反射光纤光栅阵列的传感复用系统. 中国,发明专利,201010590361.8[P]. 2010.12.16.

[105] 徐庆扬, 陈少武. 可调谐半导体激光器研究及进展[J]. 物理, 2004, 33(7): 508-514.

[106] 周恩波. 半导体放大器超快动态特性的研究[D]. 武汉: 华中科技大学, 2009.

[107] 蒋中. 半导体光放大器动态特性的研究[D]. 武汉: 华中科技大学, 2009.

[108] Talli G, Adams M J. Gain Dynamics of Semiconductor Optical Amplifiers and Three- Wavelength Devives [J]. IEEE J. Quantum Elect., 2003, 39(10): 1305-1312.

[109] Terji D, Benny M, Kristian, et al. Detailed Dynamics Model for Semiconductor Optical Amplifier and Their Crosstalk and Intermodulation Distortion [J]. J. Lightw. Techn. 1992, 10(8): 1056-1065

[110] Connelly M J. Wideband dynamic numerical model of a tapered buried ridge stripe semiconductor optical amplifier gate [J]. IEEE P-Circ. Dev. Syst., 2002, 149(3): 173-178.

[111] Yann Boucher, Ammar Sharaiha. Spectral Properties of Amplified Spontaneous Emission in Semiconductor Optical Amplifiers [J]. IEEE J. Quantum Elect., 2000, 36(6): 708-720.

[112] 季江辉. 3ns SOA高速电控光开关的研制[D]. 北京: 北京交通大学, 2006.

[113] 覃喜庆, 曾祥鸿, 董静. 基于ADN8830的高性能TEC 控制电路[J]. 2004, 2910: 20-22.

[114] 胡杨, 张亚军, 于锦泉. 用于半导体激光器的温控电路设计[J]. 红外与激光工程, 2010, 39(5): 839-842.

[115] 郭经纬, 吴志明, 吕坚等. 基于ADN8831的高性能温度控制系统设计[J]. 传感器与微系统. 2008, 27(2): 103-105.

[116] 李军, 刘军, 余伟涛等. 基于ADN8831的高精度光源驱动控制设计[J]. 传感器与微系统. 2010, 29(5): 119-127.

[117] Luo Z H, Wen H Q, Guo H Y, et al. A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings[J]. Opt. Express, 2013, 21: 22799-22807.

[118] 罗志会, 陈小刚. 超长距波分复用系统中混合光放大器的研究[J]. 光通信技术,2008, 12:1-4.

[119] 李学金, 王衍勇. 高增益低噪声L波段掺铒光纤放大器实验研究[J]. 光通信技术,2005, 07: 8-10.

[120] “http://www.home.agilent.com/zh-CN/pc-1000000524%3Aepsg%3Apgr/signal-generator-

signal-source?nid=-536902260.0&cc=CN&lc=chi”.

[121] 张凯琳, 苏淑靖, 刘利生等. 基于FPGA 的DDS 多路信号源设计[J]. 电测与仪表,2011, 48(543): 63-65.

[122] 左伟华, 万莉莉, 王帅. 高精度DDFS信号源FPGA实现[J]. 电子设计工程, 2010, 18 (12): 156-158.

[123] 杜平. 红外CCD在光纤光栅解调系统中的应用 [D]. 武汉: 武汉理工大学, 2008.

[124] 杜平, 穆磊. 基于线阵CCD的光纤光栅传感解调技术[J]. 光电技术应用, 2008, 23(2):58-61.

[125] 何彦璋, 隋广慧, 常欢. 基于FPGA的FBG光纤光栅解调系统[J]. 计测技术, 2013, 33 (3): 33-36.

[126] 冯忠伟, 张力, 何彦璋.基于衍射光栅的光纤光栅传感器解调系统研究[J]. 计测技术,2011, 31(4): 16-18.

[127] Gong J M, Ch C C, Jin W, et al. Enhancement of wavelength detection accuracy in fiber Bragg grating sensors by using a spectrum correlation technique [J]. Opt. Commun., 2002, 212: 155-158.

[128] Gao H, Yuan S, Bo L, et al.InGaAs Spectrometer and F-P Filter Combined FBG Sensing Multiplexing Technique [J].J. Lightw. Techn., 2008, 26(14): 2282 -2285.

[129] 柴伟. 光纤布喇格光栅温度传感技术研究[D]. 武汉: 武汉理工大学,2004.

[130] 南秋明. 光纤光栅应变传感器的研制与应用[D]. 武汉: 武汉理工大学,2003.

[131] 陈涛. 光纤传感技术在隧道火灾监测中的应用[D]. 武汉: 武汉理工大学, 2009.

[132] 魏海洋. 光纤光棚火灾监测系统在地铁区间火灾监测的可行性研究[J]. 城市轨道交通研究, 2011(1): 73-75.

[133] 张俊. 光纤感温火灾探测系统研究[J]. 现代建筑电气, 2011, 03: 42-44.

[134] 王江峰. 光纤光栅感温火灾探测报警系统在原油罐区的应用[J]. 自动化应用, 2013, 11(1): 1-2.

[135] 何汶静, 赵毅. 电气光纤光栅测温火灾预警技术[J]. 消防设备研究, 2011, 30(8): 711-714.

[136] Guo H Y, Zheng Y, Tang J G, et al. Reflectivity measurement of weak fiber Bragg grating (FBG) [J]. J. Wuhan Univ. Technol., 2012, 27: 1177-1179.

[137] Luo Z H, Wen H Q, Li X F. Online reflectivity measurement of an ultra-weak fiber Bragg grating array[J]. Meas. Sci. Tech., 2013, 24: 105102-105107.

中图分类号:

 TN253    

馆藏号:

 TN253/B077/2014    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式