- 无标题文档
查看论文信息

中文题名:

 

铰接式转向轮毂电机车辆转向稳定性研究

    

姓名:

 彭登志    

学号:

 104971190303    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080204    

学科名称:

 工学 - 机械工程 - 车辆工程    

学生类型:

 博士    

学校:

 武汉理工大学    

院系:

 汽车工程学院    

专业:

 车辆工程    

研究方向:

 汽车动力学分析    

第一导师姓名:

 谭罡风    

第一导师院系:

 汽车工程学院    

完成日期:

 2023-05-10    

答辩日期:

 2023-05-21    

中文关键词:

 

铰接式转向 ; 分布式驱动 ; 转向稳定性 ; 状态参数估算 ; 自适应模型预测控制

    

中文摘要:

采用铰接式转向系统的车辆具有能耗低、结构简单、机动性好的优势,在工程机械、矿道运输、农林作业等领域有广泛的应用。铰接式转向分布式驱动车辆结合轮毂电机扭矩精准独立可控的特点,能进一步提升车辆的机动性和稳定性,是未来铰接式转向车辆发展的趋势。

本文以搭载轮毂电机和铰接式转向系统的车辆为研究对象,系统分析铰接式转向和差动转向方案的特点,设计整车行驶状态估计器,以估算结果为输入,基于质心侧偏角-质心侧偏角速度相平面法,提出交点-椭圆法对车辆的稳定性进行判断,以车辆转向过程中的稳定性为目标,采用自适应模型预测控制方法设计控制策略,实现对整车转向过程中的稳定性、操纵性、轮胎滑移率和铰接角度与各轮扭矩的自适应控制。

通过分析铰接式转向系统的特征,首先搭建车辆的运动学模型,对转向过程中的铰接角度在前后车体的分配进行了分析;然后建立整车动力学模型为后文中车辆稳定性、转向系统的性能分析及控制算法的设计和验证奠定基础;参考现有研究中的建模方法搭建了双车体二自由度模型,以等效摇杆滑块模型对前后车体的铰接角进行分配,结合汽车动力学理论,建立了二自由度模型;最后以实车试验结果对上述模型的有效性进行了验证。通过与试验结果的对比,相对双车体二自由度模型,等效摇杆滑块二自由度模型有更好的精度和更简单的结构,因此,后续分析中采用该模型作为二自由度模型。

在等效摇杆滑块二自由度模型的基础上,对该类车辆的理想横摆角速度与质心侧偏角进行了推导。为对车辆的稳定性进行判定,以二自由度模型结合非线性轮胎模型,建立了质心侧偏角-质心侧偏角速度相平面图。通过对现有研究中稳定域划分方法的分析,提出了交点-椭圆法对稳定域进行划分,该方法确定的稳定域与理论稳定域更为接近、边界表达式复杂度低。分析了铰接角度、车速和道路附着系数对稳定域边界的影响因子,对稳定域边界的表达式进行了拟合,考虑道路附着系数的不确定性得到了相平面中稳定域和失稳域间的过渡域的范围。基于搭建的非线性整车动力学模型,从系统性能持续能力、适应性、最大修正能力、动力性和经济性等维度综合对比了铰接式转向和差动转向模式的系统性能。

针对车辆转向稳定性控制所需关键参数设计了状态估算器,以卡尔曼滤波系列算法和融合估算的思想对车辆和道路参数进行估算。以平均轮速法和基于非线性扩展卡尔曼算法的动力学模型分别对车速进行估算,并以车辆的纵向加速度确定的权重系数对两种估算结果进行融合。基于运动学和动力学方法,结合衰减记忆无迹卡尔曼滤波算法对车辆的质心侧偏角进行估算,根据两种估算方法在高、低频域的表现,引入特征提取技术,从频域的角度对两种方法的估算结果进行融合。通过最大相关熵准则和加权最小二乘法平方根容积卡尔曼滤波算法估算了各轮的道路附着系数,实现对对接路、对开路等复杂路面工况的识别。

以等效摇杆滑块二自由度模型和非线性轮胎模型为参考模型,结合模型预测控制理论,设计了自适应模型预测控制器。根据状态估计器输入的参数,通过轮胎逆模型对状态空间方程中的关键参数进行更新。以车辆稳定性指标对转向过程中的稳定性和操纵性进行自适应控制;根据轮胎滑移率对各轮期望扭矩的权重系数进行自适应控制;以各轮横向力的饱和程度对铰接式转向系统和差动转向系统的权重系数进行自适应控制。

通过硬件在环平台和实车试验对稳定性控制策略的有效性进行了验证。分别在高、低附着系数路面和对开路完成双移线和正弦迟滞工况,对转向过程中车车辆状态参数、整车行驶轨迹和正弦迟滞工况规定的横向稳定性指标和响应能力指标等结果进行对比。结果表明,无控制措施时,车辆在低附和对开路面不能通过双移线工况。采用控制策略后,车辆在双移线工况中能通过测试并保持与参考模型路径的横向误差在0.37 m之内,正弦迟滞工况中,三种路面上的横向稳定性指标平均优化率为97.75%。

通过开展轮毂电机驱动铰接式转向车辆的转向稳定性研究工作,本文在车辆模型搭建、稳定域划分和稳定性自适应控制方面取得了一定进展。提出了等效摇杆滑块二自由度动力学模型,相对双车体二自由度模型,其在典型工况下的计算精度显著提升,该模型作为参考模型用于控制策略的制定可有效提升控制效果。基于现有相平面稳定域的划分方法,提出了交点-椭圆法划定稳定域边界,并以道路附着系数的不确定性界定了稳定域和失稳域间过渡带的范围,为车辆稳定性的判断和控制奠定了基础。针对转向过程中的多目标、多执行器的协同控制问题,提出了基于稳定性指标、各轮轮胎滑移率和轮胎横向力的权重自适应控制方案,对车辆在各种条件下转向过程中的稳定性进行控制。

通过对铰接式转向轮毂电机驱动车辆转向过程中稳定性问题的分析和控制,为该类车辆在应用领域的拓展和智能化控制方向的发展奠定了基础。

参考文献:

[1] Dudziński P A. Design characteristics of steering systems for mobile wheeled earthmoving equipment[J]. Journal of Terramechanics, 1989, 26(1): 25-82.

[2] Rehnberg A, Drugge L, Trigell A S. Snaking stability of articulated frame steer vehicles with axle suspension[J]. International Journal of Heavy Vehicle Systems, 2010, 17(2): 119-138.

[3] Ning Y, Liu X H. Research on the resistance acting on the bucket during shovelling[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2013, 787: 778-781.

[4] 王其东,曹也,陈无畏,赵林峰,谭洪亮,谢有浩.轮毂电机驱动车辆线控差动转向的研究[J].汽车工程,2019,41(12):1384-1393+1409.

[5] 宋健,赵文宗,戴亚奇,程帅,李飞.基于轮胎侧偏的差动转向及控制[J].清华大学学报(自然科学版),2020,60(02):117-123.

[6] 赵寰宇. 电动铰接式履带车辆动力学分析及路径跟踪控制方法研究[D]. 长春:吉林大学,2018.

[7] 徐涛. 分布驱动铰接车辆差动辅助液压转向控制研究[D]. 北京:北京科技大学, 2019.

[8] Kolb J, Nitzsche G, Wagner S, et al. Path Tracking of Articulated Vehicles in Backward Motion[C]//2020 24th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2020: 489-494.

[9] Daher N, Ivantysynova M. A virtual yaw rate sensor for articulated vehicles featuring novel electro-hydraulic steer-by-wire technology[J]. Control Engineering Practice, 2014, 30: 45-54.

[10] Skurjat A, Kosiara A. Directional Stability Control of Body Steer Wheeled Articulated Vehicles[C]//Dynamical Systems Theory and Applications. Springer, Cham, 2017: 363-371.

[11] 董超. 全地形铰接式履带车辆转向与俯仰运动性能研究[D]. 长春:吉林大学, 2017.

[12] 姚宗伟. 铰接转向工程车辆侧倾稳定性研究[D]. 长春:吉林大学, 2013.

[13] 罗士军. 轮式铰接转向装载机线控转向控制系统研究[D]. 长春:吉林大学, 2008.

[14] Haggag S, Alstrom D, Cetinkunt S, et al. Modeling, control, and validation of an electro-hydraulic steer-by-wire system for articulated vehicle applications[J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(6): 688-692.

[15] Nishimura S, Matsunaga T. Analysis of response lag in hydraulic power steering system[J]. JSAE review, 2000, 21(1): 41-46.

[16] Gao Y, Shen Y, Yang Y, et al. Modelling, verification and analysis of articulated steer vehicles and a new way to eliminate jack-knife and snaking behavior[J]. International journal of heavy vehicle systems, 2019, 26(3-4): 375-404.

[17] Joy D, Sekaran K. Electronic Pump Control and Benchmarking of Simulation Tools: AMESim and GT Suite[D]. Linköpings: Linköpings universitet, 2011.

[18] Dudziński P A. Problems of turning process in articulated terrain vehicles[J]. Journal of Terramechanics, 1983, 19(4): 243-256.

[19] 王同建. 装载机线控转向技术研究[D]. 长春:吉林大学, 2006.

[20] 汪建春.铰接式装载机原地转向力学分析[J]. 煤矿机械,2009,30(03):85-87.

[21] Lashgarian Azad N, Khajepour A, Mcphee J. Robust state feedback stabilization of articulated steer vehicles[J]. Vehicle System Dynamics, 2007, 45(3): 249-275.

[22] Peng D, Fang K, Kuang J, et al. Conflict and Sensitivity Analysis of Articulated Vehicle Lateral Stability Based on Single-Track Model[J]. Shock and Vibration, 2021,2021:1-18.

[23] Yin Y, Rakheja S, Boileau P E. Multi-performance analyses and design optimisation of hydro-pneumatic suspension system for an articulated frame-steered vehicle[J]. Vehicle system dynamics, 2019, 57(1): 108-133.

[24] Enmei T, Fujimoto H, Hori Y, et al. Slip ratio control using load-side high-resolution encoder for in-wheel-motor with reduction gear[C]//2017 IEEE International Conference on Mechatronics (ICM). IEEE, 2017: 202-207.

[25] Sciarretta A, Guzzella L. Control of hybrid electric vehicles[J]. IEEE control systems magazine, 2007, 27(2): 60-70.

[26] 彭登志, 静大勇, 周振华, 等. 某轻型混合动力军用越野车动力系统匹配[J]. 汽车科技. 2017(1): 30-34.

[27] 付翔,刘会康,黄斌,唐科懿,彭登志.基于PRLS的坡度估计及轮毂电机车辆转矩分配研究[J].武汉理工大学学报,2018,40(10):89-97.

[28] 余卓平, 王竑博, 熊璐, 等. 汽车稳定性控制系统关键传感器故障诊断[J]. 同济大学学报(自然科学版), 2016, 44(3): 411-419.

[29] 罗剑, 罗禹贡, 张书玮, 等. 智能分布式电动车辆柔性化系统平台[J]. 中国机械工程, 2015, 26(8): 1035-1039.

[30] Kawashima K, Uchida T, Hori Y. Normal force stabilizing control using small EV powered only by electric double layer capacitor[J]. Electric vehicle sysmposium, 2006, 22: 1546-1555.

[31] Tur O, Ustun O, Tuncay R N. An introduction to regenerative braking of electric vehicles as anti-lock braking system[C]//2007 IEEE intelligent vehicles symposium. IEEE, 2007: 944-948.

[32] 靳立强, 王军年, 宋传学等. 电动轮驱动汽车驱动助力转向技术[J]. 机械工程学报, 2010, 46(14):101-108.

[33] 赵彬. 四轮驱动电动汽车操纵稳定性与节能集成优化控制[D]. 长春:吉林大学, 2019.

[34] Torinsson J, Jonasson M, Yang D, et al. Energy reduction by power loss minimisation through wheel torque allocation in electric vehicles: a simulation-based approach[J]. Vehicle System Dynamics, 2020: 1-24.

[35] Chen Y, Wang J. Design and experimental evaluations on energy efficient control allocation methods for overactuated electric vehicles: Longitudinal motion case[J]. IEEE/ASME Transactions on Mechatronics, 2013, 19(2): 538-548.

[36] 武冬梅,郑敏,李洋,杜常清. 智能四驱电动汽车预测节能控制研究[J].同济大学学报(自然科学版),2017,45(S1):63-68.

[37] Ando N, Fujimoto H. Yaw-rate control for electric vehicle with active front/rear steering and driving/braking force distribution of rear wheels[C]//2010 11th IEEE International Workshop on Advanced Motion Control (AMC). IEEE, 2010: 726-731.

[38] 李刚,宗长富,陈国迎,洪伟,何磊.线控四轮独立驱动轮毂电机电动车集成控制[J].吉林大学学报(工学版),2012,42(04):796-802.

[39] 袁希文,文桂林,周兵.分布式电驱动汽车AFS与电液复合制动集成控制[J].湖南大学学报(自然科学版),2016,43(02):28-35.

[40] Nagai M. Perspectives of research for enhancing active safety based on advanced control technology[J]. Journal of Automotive Safety and Energy, 2010, 1(1): 14.

[41] Kawashima K, Uchida T, Hori Y. Rolling stability control utilizing rollover index for in-wheel motor electric vehicle[J]. IEEJ Transactions on Industry Applications, 2010, 130(5): 655-662.

[42] 戴一凡. 分布式电驱动车辆纵横向运动综合控制[D]. 北京:清华大学, 2013.

[43] 明守政, 田浩. 电动轮独立驱动的汽车的R-v控制策略[J]. 系统仿真学报, 2009,21(24): 7883-7886.

[44] Van Zanten A T. Bosch ESP systems: 5 years of experience[J]. SAE transactions, 2000: 428-436.

[45] Chumsamutr R, Fujioka T, Abe M. Sensitivity analysis of side-slip angle observer based on a tire model[J]. Vehicle System Dynamics, 2006,44(7):513-527.

[46] Stephant J, Charara A, Meizel D. Evaluation of a sliding mode observer for vehicle sideslip angle[J]. Control Engineering Practice, 2007,15(7):803-812.

[47] Tuononen A. On-board estimation of dynamic tyre forces from optically measured tyre carcass deflections[J]. International Journal of Heavy Vehicle Systems, 2009,16(3):362-378.

[48] 赵健, 路妍晖, 朱冰, 等. 内嵌加速度计的智能轮胎纵/垂向力估计算法[J]. 汽车工程, 2018,40(02):137-142.

[49] 智晋宁,项昌乐,朱丽君,马越,徐彬,李明喜.轮边电机驱动汽车性能仿真与控制方法的研究[J].汽车工程,2012,34(05):389-393.

[50] 李小雨. 复合工况下分布式驱动电动汽车失稳机理及操纵稳定性控制研究[D]. 长春:吉林大学, 2020.

[51] Hsiao T, Lan J Y, Yang H. Integrated estimation of vehicle states, tire forces, and tire-road friction coefficients[C]//2014 14th International Conference on Control, Automation and Systems (ICCAS 2014). IEEE, 2014: 1227-1232.

[52] 余卓平, 高晓杰. 车辆行驶过程中的状态估计问题综述[J]. 机械工程学报, 2009,45(05):20-33.

[53] 王震坡, 薛雪, 王亚超. 基于自适应无迹卡尔曼滤波的分布式驱动电动汽车车辆状态参数估计[J]. 北京理工大学学报, 2018,38(07):698-702.

[54] 齐志权,刘昭度,马岳峰,崔海峰. 汽车制动防抱系统参考车速确定方法[J]. 农业机械学报, 2005(11):14-17.

[55] Jiang F, Gao Z. An adaptive nonlinear filter approach to the vehicle velocity estimation for ABS[C]//Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No. 00CH37162). IEEE, 2000: 490-495.

[56] Lee H. Reliability indexed sensor fusion and its application to vehicle velocity estimation[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2006,128(2):236-243.

[57] Kobayashi K, Cheok K C, Watanabe K. Estimation of absolute vehicle speed using fuzzy logic rule-based Kalman filter[C]//Proceedings of 1995 American Control Conference-ACC'95. IEEE, 1995, 5: 3086-3090.

[58] 赵治国, 杨杰, 吴枭威. 四驱混合动力轿车分布式卡尔曼车速估计[J]. 机械工程学报, 2015,51(16):50-56.

[59] 王志福, 刘明春, 周杨. 基于模糊扩展卡尔曼滤波的轮毂电机驱动车辆纵向速度估计算法[J]. 西南交通大学学报, 2015,50(06):1094-1099.

[60] El Tannoury C, Plestan F, Moussaoui S, et al. Tyre effective radius and vehicle velocity estimation: A variable structure observer solution[C]//Eighth International Multi-Conference on Systems, Signals & Devices. IEEE, 2011: 1-6.

[61] 赵林辉, 刘志远, 陈虹. 一种车辆状态滑模观测器的设计方法[J]. 电机与控制学报, 2009,13(04):565-570.

[62] Imsland L, Johansen T A, Fossen T I, et al. Vehicle velocity estimation using modular nonlinear observers[C]//Proceedings of the 44th IEEE Conference on Decision and Control. IEEE, 2005: 6728-6733.

[63] 郭洪艳, 陈虹, 赵海艳, 等. 汽车行驶状态参数估计研究进展与展望[J]. 控制理论与应用, 2013,30(06):661-672.

[64] 卓桂荣, 王冰雪. 自适应插值BP神经网络的ABS纵向车速估计[J]. 机电一体化, 2014,20(09):55-59.

[65] Cheng Z, Chow M Y, Jung D, et al. A big data based deep learning approach for vehicle speed prediction[C]//2017 IEEE 26th International Symposium on Industrial Electronics (ISIE). IEEE, 2017: 389-394.

[66] Chu L, Chao L B, Zhang Y S, et al. Design of longitudinal vehicle velocity observer using fuzzy logic and Kalman filter[C]//Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. IEEE, 2011, 6: 3225-3228.

[67] 吴明阳. 分布式驱动电动汽车状态估计与操稳性集成控制[D]. 重庆:西南大学, 2018.

[68] 褚文博, 李深, 江青云, 等. 基于多信息融合的全轮独立电驱动车辆车速估计[J]. 汽车工程, 2011,33(11):962-966.

[69] 张征, 马晓军, 张运银, 等. 一种基于多模型融合的电驱动车辆车速估计方法[J]. 火力与指挥控制, 2020,45(12):160-164.

[70] 陈慧, 高博麟, 徐帆. 车辆质心侧偏角估计综述[J]. 机械工程学报, 2013,49(24):76-94.

[71] Ding N, Chen W, Zhang Y, et al. An extended Luenberger observer for estimation of vehicle sideslip angle and road friction[J]. International Journal of Vehicle Design, 2014,66(4):385-414.

[72] Chen Y, Ji Y, Guo K. A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces[J]. Vehicle System Dynamics, 2014,52(12):1716-1728.

[73] Cheli F, Sabbioni E, Pesce M, et al. A methodology for vehicle sideslip angle identification: comparison with experimental data[J]. Vehicle System Dynamics, 2007, 45(6):549-563.

[74] Selmanaj D, Corno M, Panzani G, et al. Robust vehicle sideslip estimation based on kinematic considerations[J]. IFAC-PapersOnLine, 2017, 50(1): 14855-14860.

[75] Sen S, Chakraborty S, Sutradhar A. Estimation of tire slip-angles for vehicle stability control using Kalman filtering approach[C]//2015 International Conference on Energy, Power and Environment: Towards Sustainable Growth (ICEPE). IEEE, 2015: 1-6.

[76] 郑庄毅,熊璐,王阳.汽车质心侧偏角观测算法仿真与误差灵敏度分析[J].上海交通大学学报,2013,47(06):972-978.

[77] Yu R. Simulation Research on Vehicle Handling Inverse Dynamics Based on Radial Basis Function Neural Networks[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd, 2014, 484: 1093-1097.

[78] Geng C, Mostefai L, Denai M, et al. Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer[J]. IEEE Transactions on Industrial Electronics, 2009,56(5):1411-1419.

[79] Tin Leung K, Whidborne J F, Purdy D, et al. A review of ground vehicle dynamic state estimations utilising GPS/INS[J]. Vehicle System Dynamics, 2011,49(1-2):29-58.

[80] Travis W, Bevly D M. Compensation of vehicle dynamic induced navigation errors with dual antenna GPS attitude measurements[J]. International Journal of Modelling, Identification and Control, 2008,3(3):212-224.

[81] Piyabongkarn D, Rajamani R, Grogg J A, et al. Development and experimental evaluation of a slip angle estimator for vehicle stability control[J]. IEEE Transactions on Control Systems Technology, 2009,17(1):78-88.

[82] Jiang G, Liu L, Guo C, et al. A novel fusion algorithm for estimation of the side-slip angle and the roll angle of a vehicle with optimized key parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2017,231(2):161-174.

[83] Ren H, Chen S, Shim T, et al. Effective assessment of tyre-road friction coefficient using a hybrid estimator[J]. Vehicle System Dynamics, 2014,52(8):1047-1065.

[84] Hu J, Rakheja S, Zhang Y. Real-time estimation of tireroad friction coefficient based on lateral vehicle dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020,234(10-11):2444-2457.

[85] Zhang Z, Zheng L, Wu H, et al. An estimation scheme of road friction coefficient based on novel tyre model and improved SCKF[J]. Vehicle System Dynamics, 2022,60(8):2775-2804.

[86] 万文康. 分布式驱动电动汽车状态与路面附着系数估计研究[D]. 石河子:石河子大学, 2022.

[87] 林棻, 王少博, 赵又群, 等. 基于改进Keras模型的路面附着系数估计[J]. 机械工程学报: 2021: 1-13.

[88] Leng B, Jin D, Xiong L, et al. Estimation of tire-road peak adhesion coefficient for intelligent electric vehicles based on camera and tire dynamics information fusion[J]. Mechanical Systems and Signal Processing, 2021,150:107275.

[89] Shi S, Meng F, Bai M, et al. The stability analysis using Lyapunov exponents for high-DOF nonlinear vehicle plane motion[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2022, 236(7): 1390-1400.

[90] Zhu J, Zhang S, Wang G, et al. Research on vehicle stability region under critical driving situations with static bifurcation theory[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(8): 2072-2085.

[91] Hashemi E, Pirani M, Khajepour A, et al. A comprehensive study on the stability analysis of vehicle dynamics with pure/combined-slip tyre models[J]. Vehicle system dynamics, 2016, 54(12): 1736-1761.

[92] Chen W, Liang X, Wang Q, et al. Extension coordinated control of four wheel independent drive electric vehicles by AFS and DYC[J]. Control Engineering Practice, 2020, 101: 104504.

[93] Farroni F, Russo M, Russo R, et al. A combined use of phase plane and handling diagram method to study the influence of tyre and vehicle characteristics on stability[J]. Vehicle System Dynamics, 2013, 51(8): 1265-1285.

[94] Della Rossa F, Mastinu G. Straight ahead running of a nonlinear car and driver model–new nonlinear behaviours highlighted[J]. Vehicle system dynamics, 2018, 56(5): 753-768.

[95] He R, Jing Z, Shen X. Stability analysis of combined braking system of tractor-semitrailer based on phase-plane method[J]. SAE International Journal of Commercial Vehicles, 2018, 11(2): 151-161.

[96] Inagaki S, Kushiro I, Yamamoto M. Analysis on vehicle stability in critical cornering using phase-plane method[J]. Jsae Review, 1995, 2(16): 216.

[97] Bobier-Tiu C G, Beal C E, Kegelman J C, et al. Vehicle control syndissertation using phase portraits of planar dynamics[J]. Vehicle System Dynamics, 2019, 57(9): 1318-1337.

[98] Ono E, Hosoe S, Tuan H D, et al. Bifurcation in vehicle dynamics and robust front wheel steering control[J]. IEEE transactions on control systems technology, 1998, 6(3): 412-420.

[99] Bobier C G, Gerdes J C. Staying within the nullcline boundary for vehicle envelope control using a sliding surface[J]. Vehicle System Dynamics, 2013, 51(2): 199-217.

[100] Pacejka H. Tire and vehicle dynamics[M]. Elsevier, 2005.

[101] Rossa F D, Mastinu G, Piccardi C. Bifurcation analysis of an automobile model negotiating a curve[J]. Vehicle system dynamics, 2012, 50(10): 1539-1562.

[102] 郭孔辉.汽车操纵动力学原理[M].南京:江苏科学技术出版社,2011.

[103] Guo L, Ge P, Sun D. Torque distribution algorithm for stability control of electric vehicle driven by four in-wheel motors under emergency conditions[J]. Ieee Access, 2019, 7: 104737-104748.

[104] Hu X, Chen H, Li Z, et al. An Energy-Saving Torque Vectoring Control Strategy for Electric Vehicles Considering Handling Stability Under Extreme Conditions[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10787-10796.

[105] Wang Y, Fujimoto H, Hara S. Driving force distribution and control for EV with four in-wheel motors: A case study of acceleration on split-friction surfaces[J]. IEEE Transactions on Industrial Electronics, 2016, 64(4): 3380-3388.

[106] Shino M, Nagai M. Independent wheel torque control of small-scale electric vehicle for handling and stability improvement[J]. JSAE review, 2003, 24(4): 449-456.

[107] Manning W J, Crolla D A. A review of yaw rate and sideslip controllers for passenger vehicles [J]. Transactions of the Institute of Measurement and Control, 2007, 29(2): 117-135.

[108] 徐坤, 骆媛媛, 杨影, 等. 分布式电驱动车辆状态感知与控制研究综述[J]. 机械工程学报, 2019,55(22):60-79.

[109] 张志勇,唐磊,郝威,袁泉.轮毂驱动电动汽车差动助力转向变论域模糊PID控制[J].汽车安全与节能学报,2019,10(02):169-177.

[110] 刘秋杨. 分布式驱动电动汽车线控主动转向控制研究[D]. 重庆:重庆交通大学, 2019.

[111] 张琳. 分布式驱动电动汽车状态估计与力矩矢量控制研究[D]. 长春:吉林大学, 2019.

[112] Joa E, Yi K, Kim K. An integrated control of front/rear traction distribution and differential braking for limit handling[C]//24th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD). 2015.

[113] Jin X, Yin G, Bian C, et al. Gain-Scheduled Vehicle Handling Stability Control Via Integration of Active Front Steering and Suspension Systems[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2016,138(1).

[114] 王军年,郭德东,颜庭旭,Assadian Francis,罗正.电动汽车差动助力转向与主动前轮转向协调控制[J].吉林大学学报(工学版),2020,50(03):776-783.

[115] Maeda K, Fujimoto H, Hori Y. Four-wheel driving-force distribution method for instantaneous or split slippery roads for electric vehicle[J]. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 2013, 54(1): 103-113.

[116] Mutoh N, Nakano Y. Dynamics of front-and-rear-wheel-independent-drive-type electric vehicles at the time of failure[J]. IEEE Transactions on Industrial Electronics, 2011, 59(3): 1488-1499.

[117] Ma Y, Zhang P, Hu B. Active lane-changing model of vehicle in B-type weaving region based on potential energy field theory[J]. Physica A: Statistical Mechanics and its Applications, 2019, 535: 122291.

[118] 曼弗雷德 米奇克,亨宁 瓦伦托维兹. 汽车动力学(第五版) [M].北京:清华大学出版社,2019.11. 陈荫三,余强译.

[119] 张向文,王飞跃,高彦臣.轮胎稳态模型的分析综述[J].汽车技术,2012(06):1-7+15.

[120] Blundell M V. The modelling and simulation of vehicle handling Part 3: tyre modelling[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2000, 214(1): 1-32.

[121] Gim G, Choi Y, Kim S. A semiphysical tyre model for vehicle dynamics analysis of handling and braking[J]. Vehicle System Dynamics, 2005, 43(sup1): 267-280.

[122] Gim G, Nikravesh P E. An analytical model of pneumatic tyres for vehicle dynamic simulations. Part 1: pure slips[J]. International Journal of vehicle design, 1990, 11(6): 589-618.

[123] Qi Z, Taheri S, Wang B, et al. Estimation of the tyre–road maximum friction coefficient and slip slope based on a novel tyre model[J]. Vehicle System Dynamics, 2015, 53(4): 506-525.

[124] Zhang X, Xu Y, Pan M, et al. A vehicle ABS adaptive sliding-mode control algorithm based on the vehicle velocity estimation and tyre/road friction coefficient estimations[J]. Vehicle System Dynamics, 2014, 52(4): 475-503.

[125] Bruni S, Cheli F, Resta F. On the identification in time domain of the parameters of a tyre model for the study of in-plane dynamics[J]. Vehicle System Dynamics, 1997, 27(S1): 136-150.

[126] Tielking J T. HSRI digital computer programs for semi-empirical tire models[R]. Highway safety research institute, 1974.

[127] Guo K, Lu D, Chen S, et al. The UniTire model: a nonlinear and non-steady-state tyre model for vehicle dynamics simulation[J]. Vehicle system dynamics, 2005, 43(sup1): 341-358.

[128] Pacejka H B, Besselink I J M. Magic formula tyre model with transient properties[J]. Vehicle system dynamics, 1997, 27(S1): 234-249.

[129] 崔胜民.神经网络理论在轮胎力学建模中的应用[J].农业机械学报,1995(03):147-148.

[130] Olazagoitia J L, Perez J A, Badea F. Identification of tire model parameters with artificial neural networks[J]. Applied Sciences, 2020, 10(24): 9110.

[131] Long C, Chen H. Comparative study between the magic formula and the neural network tire model based on genetic algorithm[C]//2010 Third International Symposium on Intelligent Information Technology and Security Informatics. IEEE, 2010: 280-284.

[132] Dugoff H, Fancher P S, Segel L. An analysis of tire traction properties and their influence on vehicle dynamic performance[J]. SAE transactions, 1970: 1219-1243.

[133] Ahmadi J, Sedigh A K, Kabganian M. Adaptive vehicle lateral-plane motion control using optimal tire friction forces with saturation limits consideration[J]. IEEE Transactions on vehicular technology, 2009, 58(8): 4098-4107.

[134] Gao Y, Shen Y H, Cao S R, et al. An active stability controller design for E-drive articulated steer vehicles[C]//2016 35th Chinese Control Conference (CCC). IEEE, 2016: 8993-8998.

[135] Yin Y, Rakheja S, Yang J, et al. Analysis of a flow volume regulated frame steering system and experimental verifications[R]. SAE Technical Paper, 2015.

[136] Xu T, Ji X, Shen Y. A novel assist-steering method with direct yaw moment for distributed-drive articulated heavy vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2020, 234(1): 214-224.

[137] Xu T, Ji X, Fei C, et al. Research on assist-steering method for distributed-drive articulated heavy vehicle based on the co-simulation model[R]. SAE Technical Paper, 2020.

[138] 国家市场监督管理总局、国家标准化管理委员会.汽车操纵稳定性试验方法; GB/T 6323-2014[S].2014.

[139] 任秉韬. 四轮驱动电动汽车转矩协调优化控制研究[D]. 长春:吉林大学,2017.

[140] Wang P, Liu H, Guo L, et al. Design and experimental verification of real-time nonlinear predictive controller for improving the stability of production vehicles[J]. IEEE Transactions on Control Systems Technology, 2020, 29(5): 2206-2213.

[141] Shibahata Y, Shimada K, Tomari T. Improvement of vehicle maneuverability by direct yaw moment control[J]. Vehicle System Dynamics, 1993, 22(5-6): 465-481.

[142] 丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D]. 长春:吉林大学,2011.

[143] Chen B C, Kuo C C. Electronic stability control for electric vehicle with four in-wheel motors[J]. International Journal of Automotive Technology, 2014, 15(4): 573-580.

[144] 刘伟. 基于质心侧偏角相平面的车辆稳定性控制系统研究[D]. 长春:吉林大学,2013.

[145] Shixin S, Wanchen S, Feng X, et al. Vehicle stability criterion based on three-fold line method[J]. International Journal for Engineering Modelling, 2018, 31(3 Regular Issue): 107-119.

[146] 刘飞,熊璐,邓律华,冯源,邬肖鹏.基于相平面法的车辆行驶稳定性判定方法[J].华南理工大学学报(自然科学版),2014,42(11):63-70.

[147] 吴文娟. 基于相平面的车辆稳定性分析与协调控制研究[D]. 重庆:重庆大学,2021.

[148] 许家孟. 车辆稳定性随机过程相平面分析与控制[D]. 长春:吉林大学,2022.

[149] 胡志华. 分布式驱动电动汽车AFS/DYC协同控制策略研究[D]. 重庆:重庆大学,2018.

[150] 孙文. 四轮独立驱动电动汽车最小转弯能耗转矩优化控制研究[D]. 长春:吉林大学,2018.

[151] Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal of basic Engineering, 1960, 82 (1): 35-45.

[152] Sunahara Y, Yamashita K. An approximate method of state estimation for non-linear dynamical systems with state-dependent noise[J]. International Journal of Control, 1970, 11(6): 957-972.

[153] Julier S J, Uhlmann J K. New extension of the Kalman filter to nonlinear systems[C]//Signal processing, sensor fusion, and target recognition VI. Spie, 1997, 3068: 182-193.

[154] Arasaratnam I, Haykin S. Cubature kalman filters[J]. IEEE Transactions on automatic control, 2009, 54(6): 1254-1269.

[155] 付翔, 孙威, 黄斌, 等. 基于指数加权衰减记忆无迹卡尔曼滤波的路面附着系数估计[J]. 汽车技术, 2018(1): 31-37.

[156] 蔡佳, 黄长强, 井会锁, 等. 基于指数加权的改进衰减记忆自适应滤波算法[J]. 探测与控制学报, 2013, 35(4): 21-26.

[157] 王志贤. 最优状态估计与系统辨识[M]. 西安: 西北工业大学出版社, 2004.

[158] 王金鑫. 基于最大相关熵理论的分布式卡尔曼滤波器研究[D]. 成都:电子科技大学,2020.

[159] Liu X, Qu H, Zhao J, et al. Maximum correntropy square-root cubature Kalman filter with application to SINS/GPS integrated systems[J]. ISA transactions, 2018, 80: 195-202.

[160] He J, Sun C, Zhang B, et al. Maximum correntropy square-root cubature Kalman filter for non-Gaussian measurement noise[J]. IEEE access, 2020, 8: 70162-70170.

[161] Cho W, Yoon J, Yim S, et al. Estimation of tire forces for application to vehicle stability control[J]. IEEE Transactions on Vehicular Technology, 2009, 59(2): 638-649.

[162] Mirzaei M. A new strategy for minimum usage of external yaw moment in vehicle dynamic control system[J]. Transportation Research Part C: Emerging Technologies, 2010, 18(2): 213-224.

[163] Selmanaj D, Corno M, Panzani G, et al. Vehicle sideslip estimation: A kinematic based approach[J]. Control Engineering Practice, 2017, 67: 1-12.

[164] Office of Regulatory Analysis and Evaluation National Center for Statistics and Analysis. Proposed FMVSS No. 126 Electronic Stability Control Systems[R/OL]. Washington:NHTSA, 2007.

[165] 席裕庚. 预测控制(第二版) [M].北京:国防工业出版社, 2013.12.

[166] 石钧仁. 基于驾驶数据的轮式装载机行驶轨迹规划与轨迹跟踪控制研究[D]. 重庆:重庆大学, 2021.

[167] 王震坡,丁晓林,张雷.四轮轮毂电机驱动电动汽车驱动防滑控制关键技术综述[J].机械工程学报,2019,55(12):99-120.

[168] Li H Z, Li L, He L, et al. PID plus fuzzy logic method for torque control in traction control system[J]. International Journal of Automotive Technology, 2012, 13(3): 441-450.

[169] Chae M, Hyun Y, Yi K, et al. Dynamic handling characteristics control of an in-wheel-motor driven electric vehicle based on multiple sliding mode control approach[J]. IEEE Access, 2019, 7: 132448-132458.

[170] 田浩. 轮毂电机汽车驱动防滑控制研究[D]. 长春:吉林大学, 2020.

[171] Liu H, Liu C, Han L, et al. Handling and Stability Integrated Control of AFS and DYC for Distributed Drive Electric Vehicles Based on Risk Assessment and Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022.

[172] Wu J, Cheng S, Liu B, et al. A human-machine-cooperative-driving controller based on AFS and DYC for vehicle dynamic stability[J]. Energies, 2017, 10(11): 1737.

[173] Ahmadian N, Khosravi A, Sarhadi P. Integrated model reference adaptive control to coordinate active front steering and direct yaw moment control[J]. ISA transactions, 2020, 106: 85-96.

[174] Zhao J, Wong P K, Ma X, et al. Chassis integrated control for active suspension, active front steering and direct yaw moment systems using hierarchical strategy[J]. Vehicle System Dynamics, 2017, 55(1): 72-103.

[175] NHTSA. Laboratory Test Procedure for Dynamic Rollover the Fishhook Maneuver Test Procedure New Car Assessment Program(NCAP)[R]. Washington:NHTSA,2013.

[176] Passenger cars-Test track for a severe lane-change manoeuvre-Part 1:Double lane-change: KS R ISO 3888-1-2008 (R2018) [S]. 2008.

[177] 国家市场监督管理总局、国家标准化管理委员会. 乘用车紧急变线试验车道 第1部分:双移线: GB/T 40521.1-2021[S]. 2021.

中图分类号:

 U463.4    

条码号:

 002000073246    

馆藏号:

 TD10060507    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式