- 无标题文档
查看论文信息

中文题名:

 

太阳辐射下舰船热特性研究及数字孪生技术开发

    

姓名:

 申绍楠    

学号:

 1049732003922    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080702    

学科名称:

 工学 - 动力工程及工程热物理 - 热能工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 船海与能源动力工程学院    

专业:

 能源动力    

研究方向:

 船舶热能工程 数字孪生    

第一导师姓名:

 周懿    

第一导师院系:

 船海与能源动力工程学院    

完成日期:

 2023-03-20    

答辩日期:

 2023-05-18    

中文关键词:

 

大型舰船 ; 热特性 ; 数字孪生 ; 太阳辐射

    

中文摘要:

大型舰船作为海洋防务的主要力量,其温度场研究一直是军事领域的重要课题,并且舰船是一个复杂的结构体,所处的热环境是多区域、多层次耦合作用的结果,太阳辐射是最主要的热源传输。本文以太阳辐射下舰船热特性为对象,基于多物理场耦合应用数字孪生技术,实现了对舰船物理模型、相关参数数据、研究方法等的集成化处理,探究了外部环境及舰船自身物理性质改变对舰船表面温度场的影响,得出了不同工况下舰船结构的温度分布及日照时间内的温度变化,所得结论为大型舰船的结构设计提供了理论基础和科学依据。本文具体的研究内容和结果如下:

(1)分析了太阳辐射下舰船热量传输的主要过程,给出了数值计算模型,建立了舰船多物理场仿真模型。明确了舰船模型与外界环境进行热交换的边界条件,基于多物理场进行了相关参数的设置,重点考虑了不同波段下太阳辐射的吸收率、发射率,流体流经舰船边界的对流换热系数、太阳高度角与方位角以及环境温度。将舰船多物理场仿真模型的仿真结果与其他学者的仿真计算结果进行了对比,验证了模型的可靠性,并对舰船模型的网格进行了无关性验证,确定了满足计算效率和模型准确性的舰船各结构的网格数。

(2)应用数字孪生技术进行仿真服务APP的开发。从数字孪生技术的内涵出发,探讨了建立数字孪生舰船服务APP所需的关键技术,并结合仿真需要选取了开发工具。基于有限元的分析计算通过图形化的集成开发环境做出了对物理模型的二次开发。针对需求做出了功能分析并最终开发了APP主界面下的主要功能模块,可以进行数据参数的输入、几何模型的导入与修改以及结果云图和数据的导出。

(3)基于所开发的数字孪生服务APP,分析了时刻、季节、纬度、航速、朝向、模型厚度等工况的改变对舰船热特性的影响。研究发现:舰船表面的温度主要变化来源于太阳直接辐射,舰船温度场会随着外部环境温度的变化而发生改变;太阳方位角和太阳高度角是影响一天内舰船温度变化的主要原因,太阳方位角会影响到一天内不同时刻舰船接受太阳辐射的区域,太阳高度角的变化会直接影响到环境温度的变化,进而影响外界与舰船表面的热交换;航速会直接影响到船体外部的对流换热,并且航速越高,外界对流会对船体起到冷却的作用;对于不同模型厚度来讲,厚度增加会降低舰船结构之间的导热。

参考文献:

[1] 柳正华, 张旭, 吴依帆. 2020年国外海军装备技术发展综述[J].国防科技工业, 2020, 12(2): 78-82.

[2] 马艳, 田宇. 红外仿真中舰船辐射模型建模方法[J].战术导弹技术, 2013, 34(3): 67-70

[3] Doerffer S. The influence of rolling on the heat transfer in ship tanks [J]. International Shipbuilding Progress, 1985, 32(371): 158-168.

[4] 梁家宝. 激光照射下钢板表面温度场的计算[J].武汉大学学报(理学版), 1980, 12(3): 54-60.

[5] 陈伯真, 胡毓仁. 船体温度分布及温度应力计算[J].上海交通大学学报, 1995, 29(3): 90-95

[6] Zhang J, Lu S, Li C, et al. Performance of overall heat transfer coefficient and exploring heat transfer through the ceiling vent of compartment fire in ship structures with A60 constructions[J].Ships & Offshore Structures, 2015, 10(3): 328-341.

[7] Heder M, Josefson B L, Ulfvarson A. Thermal deformations and stresses in an Oil-Built-Ore (OBO) vessel carrying a heated cargo[J].Marine Structures, 1991, 4(3): 185-202.

[8] 章伟星, 莫鉴辉, 金立明. 138000m3薄膜式LNG运输船温度场及其热应力分析[J].船舶力学, 2008, 12(5): 770-776.

[9] 王嫣然, 刘俊, 唐建鹏. 薄膜型LNG船交变温度载荷下疲劳分析[J].船舶工程, 2012, 34(3): 27-30.

[10] 王伟, 谢永和. 大气温度对沥青船温度应力场分布的影响研究[C]// 第七届长三角地区船舶工业发展论坛论文集. 2011: 56-60.

[11] 滕晓青, 顾永宁. 双壳型船体结构稳态温度场和温度应力[J].中国造船, 2000, 41(2): 80-84.

[12] 唐文勇, 丁仕风, 张圣坤. 大型液化天然气船温度场及温度应力研究 [J]. 船舶工程, 2008, 45(5): 30-37.

[13] 马晨增, 唐文勇. 独立B型液化天然气运输船绝热层局部失效对结构安全的影响[J].上海交通大学学报, 2017, 51(03): 300-304.

[14] 朱荣成. 整体式液货舱沥青船温度场及温度应力分析[J].船舶与海洋工程, 2013, 72(1): 60-66.

[15] 仲琦, 黄锦涛. 独立货舱沥青船温度场分析[J].船舶设计通讯, 2018, 56(1): 86-94.

[16] 寇蔚, 杨立, 孙丰瑞. 一种舰船红外特征的动态模拟方法研究[J].红外与毫米波学报, 2004, 23(2): 67-75

[17] 范晋祥, 岳艳军. 目标与场景的红外特性建模与仿真软件的发展[J].红外与激光工程, 2008, 87(2): 80-89.

[18] Morin J, Reid F, et al. SHIPIR: a model for simulating infrared images of ships at sea [J]. International Society for Optics and Photonics, 1994, 2223(3): 367-378.

[19] David A, Vaitekunas. Validation of ShipIR (v3.2): methodology and results[J].Proceeding of the SPIE Symposium,2006, 6239(6): 1-12.

[20] Lapierre F D, Acheroy M. Performance enhancement and validation of the open-source software for modeling of ship infrared signatures (OSMOSIS) [J]. Journal of Computational & Applied Mathematics, 2010, 234(7): 2342-2349.

[21] Lapierre F, Marcel J P, Marc A. Design of an infrared ship signature simulation software for general emissivity profiles [J]. 2006, 467(5): 3543-3556

[22] Lapierre F D, Archer C, Acheroy M. New research results and validation on real data of the osmosis opensource infrared ship signature modeling software [J]. accepted in international irtarget background modelling & simulation workshop, 2009, 435(6): 323-329.

[23] 王福恒, 李仲初. 海天背景红外辐射模型的初步建立-晴空背景情况[J].红外与激光工程, 1989, 34(2): 16-25.

[24] 刘燕, 沈国土, 蔡继光. 改进的海面辐射模型 [J]. 红外与激光工程, 2009, 38(1): 4-12.

[25] 施加宝. 海天背景的红外辐射散射特性研究 [D]; 西安电子科技大学, 2009.

[26] 李大钊. 海面红外辐射与散射特性研究 [D]; 西安电子科技大学, 2012.

[27] 杨宝成, 沈国土, 洪镇青. 海面目标热像理论模拟中的几何构型问题[J].华东师范大学学报(自然科学版), 2001, 34(1): 6-14.

[28] 杨宝成, 沈国土, 洪镇青等. 舰船热像理论模拟中的物理模型和数学模型[J].华东师范大学学报(自然科学版),2001, 49(2): 58-64.

[29] 高兰香, 沈国土, 杨宝成. 热像理论建模中的厚壳船体效应研究[J]. 华东师范大学学报(自然科学版), 2003, 23(1): 70-81.

[30] 沈国土, 杨宝成, 蔡继光等. 具有厚壳结构的海面目标红外热像模拟[J].红外与毫米波学报,2003, 45(2): 91-95.

[31] 杜翠兰, 赵军, 张建. 海面背景对舰船温度测量的影响与分析[J].电子对抗, 2005, 89(3): 30-43.

[32] 梁英, 肖卫国, 王力,等. 舰船目标红外辐射特性建模与仿真技术研究[C]// 中国指挥控制大会. 2014: 76-87.

[33] 朱文勇, 高景, 周刚慧. 舰船红外成像模拟[J].红外与毫米波学报, 1998, 17(2): 129-133.

[34] Zhuang C, Liu J, Xiong H, et al. Connotation,architecture and trends of product digital twin [J]. Computer Integrated Manufacturing Systems, 2017, 23(4): 753-768.

[35] Fei T, He Z, Liu A, et al. Digital Twin in Industry: State-of-the-Art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405-2415.

[36] Cureton P, Dunn N. Digital Twins of Cities and Evasive Futures [M]. Shaping Smart for Better Cities: Rethinking and Shaping Relationships between Urban Space and Digital Technologies, 2020.

[37] Negri E, Fumagalli L, Macchi M. A Review of the Roles of Digital Twin in CPS-based Production Systems [J]. Procedia Manufacturing, 2017, 467(11): 939-948.

[38] J Ríos, JC Hernández, Oliva M , et al. Product Avatar as Digital Counterpart of a Physical Individual Product: Literature Review and Implications in an Aircraft[C]// 22nd ISPE Inc. International Conference on Concurrent Engineering. 2015.

[39] Cerrone A, Hochhalter J, Heber G, et al. On the Effects of Modeling As-Manufactured Geometry: Toward Digital Twin [J].International Journal of Aerospace Engineering, 2014, 2014(4): 546-558.

[40] Tuegel E J, Ingraffea A R, Eason T G, et al. Reengineering Aircraft Structural Life Prediction Using a Digital Twin [J]. International Journal of Aerospace Engineering, 2011, 2011(1): 687-696.

[41] 李凯, 钱浩, 龚梦瑶. 基于数字孪生技术的数字化舰船及其应用探索[J].船舶, 2018, 29(6): 80-88.

[42] 庄存波, 刘检华, 熊辉. 产品数字孪生体的内涵,体系结构及其发展趋势[J].计算机集成制造系统, 2017, 23(4): 16-26.

[43] Tao F, Cheng J, Qi Q, et al. Digital twin-driven product design, manufacturing and service with big data [J]. The International Journal of Advanced Manufacturing Technology, 2018, 16(5): 170-183.

[44] Rosen R, Wichert G V, Lo G, et al. About The Importance of Autonomy and Digital Twins for the Future of Manufacturing [J]. IFAC-PapersOnLine, 2015, 48(3): 567-572.

[45] Schroeder G N, Steinmetz C, Pereira C E, et al. Digital Twin Data Modeling with AutomationML and a Communication Methodology for Data Exchange [J].IFAC-PapersOnLine, 2016, 49(30): 12-27.

[46] 孟松鹤, 叶雨玫, 杨强等. 数字孪生及其在航空航天中的应用[J].航空学报,2020, 41(09): 6-17.

[47] Cai Y, Starly B, Cohen P, et al. Sensor Data and Information Fusion to Construct Digital-twins Virtual Machine Tools for Cyber-physical Manufacturing [J]. Procedia Manufacturing, 2017, 10(1): 31-42.

[48] Zheng Y, Yang S, Cheng H. An application framework of digital twin and its case study[J]. Journal of ambient intelligence and humanized computing, 2019, 10(3): 1141-1153.

[49] Sderberg R, Wrmefjord K, Carlson J S, et al. Toward a Digital Twin for real-time geometry assurance in individualized production[J]. CIRP Annals - Manufacturing Technology, 2017. 1596(4): 38-42.

[50] Wang Q, Jiao W, Zhang Y M. Deep learning-empowered digital twin for visualized weld joint growth monitoring and penetration control[J]. Journal of Manufacturing Systems, 2020, 57(5):429-439.

[51] Wang Q, Jiao W, Wang P, et al. Digital Twin for Human-Robot Interactive Welding and Welder Behavior Analysis[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 99(4): 1-10.

[52] Knapp G L, Mukherjee T, Zuback J S, et al. Building blocks for a digital twin of additive manufacturing [J].Acta Materialia, 2017, 135(3): 90-99.

[53] Chen G, Zhang S, Zhu Y, et al. Thermo-mechanical Analysis of Friction Stir Welding:A Review on Recent Advances[J]. Acta Metallurgica Sinica(English Letters), 2020.

[54] Schmi数字孪生体 H, Hattel J, Wert J. An analytical model for the heat generation in friction stir welding[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 356(1): 46-57.

[55] Hang, Choo, Zhen, et al. Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool [J]. Metallurgical & Materials Transactions A Physical Metallurgy & Materials Science, 2012, 765(5): 366-378.

[56] Yang, Ching-Yu. Inverse determination of heat input during the friction stir welding process [J]. International Journal of Heat & Mass Transfer, 2014, 76(3): 411-418.

[57] Lambiase F, Ilio A D, Paoletti A. Hybrid numerical modeling of Friction Assisted Joining [J]. Journal of Manufacturing Processes, 2020, 57(2): 33-43.

[58] Cooper, P.I. The absorption of radiation in solar stills [J]. Solar Energy, 1969, 12(3): 333-46.

[59] Li X, Fang X, Dai Q. Research on Thermal Characteristics of Photovoltaic Array of Stratospheric Airship [J]. Journal of Aircraft, 2011, 48(4): 1380-1386.

[60] Kalogiros S A. Solar Energy Engineering [J]. Refocus, 2009, 125(2): 235-245.

[61] Thube S G, Nikale V M, Patil M A. Measurement of Solar Constant using Simple Route [J]. JETIR(wwwjetirorg), 2021, 8(3): 2349-2362.

[62] Liu B, Jordan R C. The Interrelationship and Characteristic Distribution of Direct, Diffuse and Total Solar Radiation [J]. Solar Energy, 1960, 4(3): 1-19.

[63] Kreith F, Kreider J F. Principles of solar engineering [M]. Principles of Solar Engineering, 2000.

[64] Hoyt, C., Hottel. A simple model for estimating the transmittance of direct solar radiation through clear atmospheres [J]. Solar Energy, 1976, 18(2): 129-134.

[65] Shi H A, Geng S A, Qian X B. Thermodynamics analysis of a stratospheric airship with hovering capability [J]. Applied Thermal Engineering, 2019, 146(6): 600-607.

[66] 任海刚, 邢强, 陈汉平. 红外仿真中的海面辐射模型[J].红外与激光工程, 2006, 35(5): 5-16.

[67] Fu, Jian-Jian. Changes in Daily Climate Extremes of Observed Temperature and Precipitation in China[J]. Atmospheric & Oceanic Science Letters, 2013, 463(2): 345-356.

[68] Raithby G D, Hollands K. A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems [J]. Advances in heat transfer, 1975, 11(1):4353-4567.

[69] Brucker K, Ressler K, Majdalani J. Effective Thermal Conductivity for Compact Heat Sink Models Based on the Churchill and Chu Correlation[C]// 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2002.

[70] Liu C, Jiang P, Jiang W. Web-based digital twin modeling and remote control of cyber-physical production systems [J]. Robotics and Computer-Integrated Manufacturing, 2020, 64(1): 19-56.

[71] Zhuang C, Gong J, Liu J. Digital twin-based assembly data management and process traceability for complex products [J]. Journal of Manufacturing Systems, 2020, 58(3): 463-8.

[72] 杜金纬, 陈震, 周洪元. 基于HOTTEL日照辐射模型的船体温度变形预报方法 [J]. 造船技术, 2020, 6(1): 60-67.

[73] Sadiq H, Wong M B, Tashen J, et al. Determination of Steel Emissivity for the Temperature Prediction of Structural Steel Members in Fire [J]. Journal of Materials in Civil Engineering, 2013, 25(2): 167-173.

[74] Is A, Tjs B, Mgd B, et al. Emissivity of solar cell cover glass calculated from infrared reflectance measurements-ScienceDirect[J]. Solar Energy Materials and Solar Cells, 2019, 190(4): 98-102.

[75] Edwards D K, Balakrishen A. Thermal Radiation by Combustion Gases [J]. International Journal of Heat & Mass Transfer, 1973, 16(1): 25-40.

[76] Kawahata H, Ohshima H. Vegetation and environmental record in the northern East China Sea during the late Pleistocene [J]. Global & Planetary Change, 2004, 41(3/4): 251-273.

[77] 郭伟其, 沙伟, 沈红梅. 东海沿岸海水表层温度的变化特征及变化趋势 [J].海洋学报(中文版), 2005, 27(5): 1-8.

中图分类号:

 U661.39    

条码号:

 002000073749    

馆藏号:

 YD10001868    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式