- 无标题文档
查看论文信息

中文题名:

 

浮态对船舶操纵性影响的数值研究

    

姓名:

 杨三兴    

学号:

 1049732002914    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080200    

学科名称:

 工学 - 机械工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 船海与能源动力工程学院    

专业:

 机械    

研究方向:

 船舶操纵性    

第一导师姓名:

 姚建喜    

第一导师院系:

 船海与能源动力工程学院    

完成日期:

 2023-05-25    

答辩日期:

 2023-05-16    

中文关键词:

 

浮态 ; 船舶操纵性 ; MMG ; 计算流体动力学(CFD) ; 斜航与圆周耦合运动

    

中文摘要:

操纵性是船舶重要的水动力性能之一,与航行安全性与经济性密切相关。长期以来,研究人员将船舶性能的研究主要集中在船舶快速性和耐波性上,并未将船舶操纵性作为主要研究方向,这与船舶行业对经济效益过于追求和其自身研究的复杂性有关。近些年,船舶行业快速发展,船舶数量急剧增加,船舶也正朝着大型化的趋势发展。这种变化趋势给航行安全带来严重隐患,导致海难事故频发。国际海事组织(IMO)颁布了相关规定和标准,确立了船舶操纵性研究在船舶设计阶段的重要地位。在船舶营运过程中,装货、卸货、压载水注入与排出等导致的船舶浮态变化会对操纵性产生影响。部分浮态下船舶的操纵性能可能会严重恶化,危及航行安全。因此,开展浮态对船舶操纵性的影响研究,掌握浮态对船舶操纵性的影响规律,对保证船舶的航行安全具有重要意义。传统的船舶操纵性研究主要依赖操纵性试验,而试验方法成本高,研究周期长,试验方法有一定的应用局限。近些年,随着计算流体动力学(CFD)技术的快速发展,CFD方法逐渐成为船舶操纵运动仿真预报的重要研究手段和可靠工具。

本文为研究浮态变化对船舶操纵性的影响,首先建立船舶水平面三自由度MMG分离型操纵运动数学模型,描述船舶的操纵运动。然后采用基于开源CFD软件OpenFOAM二次开发的RANS求解器,对KVLCC2裸船体船模在6个浮态(考虑2个吃水、3个纵倾角)下的斜航与圆周耦合运动进行数值模拟,计算得到船体水动力和水动力导数,并展示了船体周围流场分布结果。通过网格不确定度分析,验证了计算方法的可信度与正确性。最后,基于MMG船舶操纵运动模型,利用计算得到的水动力导数,经验公式得到的加速度导数以及模型试验给出的干扰系数,模拟了6个浮态的KVLCC2船模回转和Z形操纵运动。将各个浮态的操纵运动特征参数进行比较,得到了不同浮态时纵距、横距、超越角等特征参数的变化情况,分析了浮态对船舶操纵性的影响。水动力计算结果和水动力导数与模型试验数据进行比较,结果比较一致,验证了计算方法的准确性。操纵运动仿真结果与已有的自航模试验数据进行比较,仿真结果与试验值吻合良好,验证了本文所采用研究方法和预报流程的正确性,可以为船舶操纵性能预报提供一定的借鉴意义。

参考文献:

[1] 邹早建. 船舶操纵性数值船池开发与应用[C]. 中国船舶工业发展论坛. 2005.

[2] 邹早建. 船舶操纵性研究进展[C]. 中国造船工程学会第六届船舶力学学术委员会全体

会议论文集. 2006.

[3] 朱建华. 水运安全"黑天鹅""灰犀牛"事件及典型案例[J]. 水上安全, 2022(04):20-25.

[4] International Maritime Organization (IMO). Interim Standards for Ship Manoeuvrability. Resolution A.751(18), 1993.

[5] International Maritime Organization (IMO). Standards for ship manoeuvrability. Resolution MSC.137(76), 2002.

[6] Abkowitz M A. Lectures on ship hydrodynamics-Steering and manoeuvrability[J]. Report Hy-5, Hydro-and Aerodynamic Laboratory, 1964.

[7] Norrbin N H. Theory and Observation on the Use of a Mathematical Model for Ship Maneuvering in Deep and Confined Water[C]. Proc. 8th Symposium on naval Hydrodynamics. 1977.

[8] Yasukawa H, Yoshimura Y. Introduction of MMG standard method for ship maneuvering predictions[J]. Journal of marine science and technology, 2015, 20:37-52.

[9] 贾欣乐, 杨盐生. 船舶运动数学模型——机理建模与辨识建模[M]. 船舶运动数学模型——机理建模与辨识建模, 1999.

[10] 张欢. 考虑浅水效应的船舶操纵运动数值模拟[D]. 重庆交通大学, 2015.

[11] Yasukawa H, Sakuno R, Yoshimura Y. Practical maneuvering simulation method of ships considering the roll-coupling effect[J]. Journal of Marine Science and Technology, 2019, 24(2).

[12] Dai S, Wang C, Luo F. Identification and learning control of ocean surface ship using neural networks[J]. IEEE Transactions on Industrial Informatics, 2012, 8(4):801-810.

[13] Hu Y, Song L, Liu Z, et al. Identification of ship hydrodynamic derivatives based on LS-SVM with wavelet threshold denoising[J]. Journal of Marine Science and Engineering, 2021, 9(12):1356.

[14] 卢冠宇, 姚建喜. 基于SVR的船舶操纵运动黑箱建模[J]. 中国航海, 2021(004):44.

[15] Hochbaum A C. Computation of the turbulent flow around a ship model in steady turn and in steady oblique motion[C]. Proceedings of 22nd Symposium on Naval Hydrodynamics. 1998.

[16] Hochbaum A C. Virtual PMM Tests for Manoeuvring Prediction[C]. 26th ONR Symposium on Naval Hydrodynamics. 2006.

[17] Alessandrini B, Delhommeau G. Viscous free surface flow past a ship in drift and in rotating motion[J]. 1998.

[18] Gao Q, Vassalos D. Computational hydrodynamic derivatives by numerical PMM[J]. 2008.

[19] Toxopeus S L. Using CFD Calculations To Improve Predictions Of Ship Manoeuvres[C]. Developments in Marine CFD. 2011.

[20] He S, Kellett P, Yuan Z, et al. Manoeuvring prediction based on CFD generated derivatives[J]. Journal of hydrodynamics, 2016, 28(2):284-292.

[21] Islam H, Soares C G. Estimation of hydrodynamic derivatives of a container ship using PMM simulation in OpenFOAM[J]. Ocean Engineering, 2018, 164:414-425.

[22] Li S, Liu C, Chu X, et al. Ship maneuverability modeling and numerical prediction using CFD with body force propeller[J]. Ocean Engineering, 2022, 264:112454.

[23] Carrica P M. DES simulations of KVLCC1 in turn and zigzag maneuvers with moving propeller and rudder[C]. Simman Workshop on Verification & Validation of Ship Maneuvering Simulation Methods. 2008.

[24] Shen Z, Wan D, Carrica P M. RANS Simulations of Free Maneuvers with Moving Rudders and Propellers Using Overset Grids in OpenFOAM[C]. SIMMAN workshop on Verification and Validation of Ship Maneuvering Simulation Methods. 2014.

[25] Sukas O F, Kinaci O K, Bal S. Asymmetric ship maneuvering due to twisted rudder using system-based and direct CFD approaches[J]. Applied Ocean Research, 2021, 108:102529.

[26] Kim D, Song S, Tezdogan T. Free running CFD simulations to investigate ship manoeuvrability in waves[J]. Ocean Engineering, 2021, 236: 109567.

[27] 王小龙, 邹早建, 夏立, 等. 浅水中低速小半径回转船舶水动力数值研究[J]. 武汉理工大学学报:交通科学与工程版, 2019, 43(6):6.

[28] 李冬荔. 粘性流场中船舶操纵水动力导数计算[J]. 哈尔滨工程大学学报, 2010, 31(4):7.

[29] 柯枭冰, 罗薇, 赵小仨, 等. 基于CFD方法求取供应船位置水动力导数回归公式[J]. 中国舰船研究, 2014, 9(4):5.

[30] Zhang C, Liu X, Wan D, et al. Experimental and numerical investigations of advancing speed effects on hydrodynamic derivatives in MMG model, part I: Xvv, Yv, Nv[J]. Ocean Engineering, 2019, 179:67-75.

[31] Pan Y, Zhang H, Zhou Q. Numerical prediction of submarine hydrodynamic coefficients using CFD simulation[J]. Journal of Hydrodynamics, 2012, 24(6):840-847.

[32] Liu Y, Zou L, Zou Z, et al. Predictions of ship maneuverability based on virtual captive model tests[J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1):334-353.

[33] 刘义, 李彪, 邹璐, 等. 集装箱船在深浅水中的操纵性能预报(英文)[J]. 船舶力学, 2019, 23(3):16.

[34] Yao J, Liu Z, Song X, et al. Ship manoeuvring prediction with hydrodynamic derivatives from RANS: Development and application[J]. Ocean Engineering, 2021, 231:109036.

[35] Zhang S, Wu Q, Liu J, et al. Twin-screw ASD tug maneuvering prediction based on integrated CFD and empirical methods[J]. Ocean Engineering, 2023, 269:113489.

[36] 祝启波. 基于船-桨-舵全耦合求解的船舶自航性能数值预报方法研究[D]. 江苏科技大学, 2016.

[37] 冀楠, 钱志鹏, 李浩然,等. 实尺度船舶Z形操纵运动及流场特性模拟[J]. 中国舰船研究, 2022, 17(3):9.

[38] Jin Y, Yiew L J, Zheng Y, et al. Dynamic manoeuvres of KCS with CFD free-running computation and system-based modelling[J]. Ocean Engineering, 2021, 241:110043.

[39] 周广礼, 杜度, 高霄鹏, 等. 潜艇六自由度空间操纵运动直接数值预报[J]. 船舶力学, 2021.

[40] Yu J, Feng D, Liu L, et al. Assessments of propulsion models for free running surface ship turning circle simulations[J]. Ocean Engineering, 2022, 250:110967.

[41] Starke, R A, Ploeg, et al. Trim wedge optimization using RANS/FS[J]. 2011.

[42] Sherbaz S, Duan W. Ship trim optimization: assessment of influence of trim on resistance of MOERI container ship.[J]. The Scientific World Journal, 2014, 2014(8):603695.

[43] Islam H, Soares C G. Effect of trim on container ship resistance at different ship speeds and drafts[J]. Ocean Engineering, 2019, 183:106-115.

[44] Gao X, Sun K, Shi S, et al. Research on Influence of Trim on a Container Ship's Resistance performance[J]. Journal of Physics: Conference Series, 2019, 1300:12105.

[45] Le T H, Vu M T, Bich V N, et al. Numerical investigation on the effect of trim on ship resistance by RANSE method[J]. Applied Ocean Research, 2021, 111:102642.

[46] 宋磊, 涂海文, 谢文雄, 等. 散货船纵倾阻力研究[J]. 舰船科学技术, 2016,38(12):5.

[47] 王伟, 孙守超, 郭春雨, 等. 船舶最佳纵倾及节能[J]. 应用科技, 2017, 44(5):4.

[48] Kijima K, Katsuno T, Nakiri Y, et al. On the manoeuvring performance of a ship with the parameter of loading condition[J]. Journal of the society of naval architects of Japan, 1990, 1990(168):141-148.

[49] Yasukawa H, Sano M, Hirata N, et al. Maneuverability of Cb-series full hull ships (1st report: tank tests)[J]. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2015, 21.

[50] Zaky M, Yasukawa H. Effect of Load Condition on Turning Performance of a VLCC in Adverse Weather Conditions[J]. Journal of Advanced Research in Ocean Engineering, 2018, 4(2):53-65.

[51] Himaya A N, Sano M, Suzuki T, et al. Effect of the loading conditions on the maneuverability of a container ship[J]. Ocean engineering, 2022:247.

[52] Yasukawa H, Himaya A N, Hirata N, et al. Simulation study of the effect of loading condition changes on the maneuverability of a container ship[J]. Journal of Marine Science and Technology, 2022, 28(1):98-116.

[53] 吴明, 庄毅, 代亮, 等. 试论纵倾对舰船操纵性能的影响[C]. 中国航海学会海洋船舶驾驶专业委员会船舶航泊安全的新经验新技术研讨会. 2007.

[54] 徐海军, 李学东, 吕巍巍. 船舶纵倾、舵角及水深对操纵性指数影响的理论研究[J]. 2009.

[55] 刘小健, 张晨亮, 王志南, 等. 考虑吃水和航速的大型集装箱船航向稳定性分析[J]. 2018.

[56] Fujii H, Tsuda T. Experimental researches on rudder performance (3)[J]. Journal of Zosen Kiokai, 1962, 1962(111):51-58.

[57] 张国庆, 张显库. 船舶运动数学模型与MATLAB仿真[M]. 中国矿业大学出版社, 2020.

[58] Menter F R, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model[J]. Heat and Mass Transfer, 2003, 4.

[59] Jiang L, Yao J, Liu Z. Comparison between the RANS Simulations of Double-Body Flow and Water-Air Flow around a Ship in Static Drift and Circle Motions[J]. Journal of Marine Science and Engineering, 2022, 10(7):970.

[60] Roache P J. Perspective: a method for uniform reporting of grid refinement studies[J]. Journal of Fluids Engineering-Transactions of the ASME, 1994,116(3): 405-413.

[61] 姚建喜, 苏焱, 宋学敏. 船舶操纵性理论基础[M]. 武汉: 武汉理工大学出版社, 2018.

[62] Yasukawa H, Zaky M, Yamazaki Y, et al. Maneuverability of Cb-series full hull ships (2nd report: Maneuvering simulations)[J]. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2017, 26.

中图分类号:

 U661.33    

条码号:

 002000074322    

馆藏号:

 YD10002456    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式