- 无标题文档
查看论文信息

中文题名:

 

计及全寿命周期成本的电动船复合储能系统容量配置研究

    

姓名:

 张靖凯    

学号:

 1049722003866    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082402    

学科名称:

 工学 - 船舶与海洋工程 - 轮机工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 能源与动力工程学院    

专业:

 轮机工程    

研究方向:

 船舶新能源技术    

第一导师姓名:

 李昕    

第一导师院系:

 船海与能源动力工程学院    

完成日期:

 2023-03-20    

答辩日期:

 2023-05-18    

中文关键词:

 

电动船 ; 复合储能系统 ; 容量优化配置 ; 联合优化 ; 全寿命周期成本

    

中文摘要:

在发展绿色船舶的大背景下,电动船技术成为目前的研究热点。以柴油发电机组(Diesel Generator set,DGs)为主电源设备的电动船,难以迅速响应负载的突变,且DGs的不稳定输出还会增加污染气体的排放。由多种储能设备组成的复合储能系统(Hybrid Energy Storage System,HESS)能够在弥补DGs不足的基础上,充分利用储能系统的能量特性与功率特性,但配置成本限制了HESS在电动船上的广泛应用。因此,为合理配置储能容量,使船舶电源系统的设计具备长期的可靠性,本文基于“DGs/HESS”的电源系统形式,针对电动船的HESS容量优化配置问题展开研究,本文的主要研究内容如下:

首先,以“美维凯悦”号游轮为研究对象,分别分析该船从“宜昌—重庆”和“重庆—宜昌”路段各台DGs的输出功率变化情况,以确定用于本文研究的船舶负载数据。在此基础上,通过分析锂电池与超级电容的工作特性,建立HESS的数学模型。

其次,针对DGs与HESS的工作特性,采用一种基于工况分段与经验模态分解(Empirical Mode Decomposition,EMD)相结合的电源系统功率分配策略,作为电源系统设计阶段,各储能设备功率分配的依据。仿真结果验证了EMD算法对船舶负载的自适应能力,所求得的功率分配方案可以充分发挥锂电池和超级电容的优势,进而提升了电动船舶DGs/HESS电源系统的灵活性。

再次,建立了考虑锂电池使用寿命的全寿命周期成本模型,并基于所采用的功率分配策略,设计了一种考虑功率分配策略与容量配置联合优化的HESS容量优化方法。该方法以HESS全寿命周期成本为优化目标,旨在获取最优功率分配策略参数下的储能元件容量及DGs的输出功率。

最后,针对模型复杂度高、非线性强等问题,采用灰狼优化算法对联合优化模型进行求解,以确定全寿命周期成本最优时的DGs的输出功率、储能配置容量及储能设备各自的功率分量。为验证本文配置方法的优越性,设计多种HESS容量配置对比方案,通过分析不同配置方案下的全寿命周期成本与功率分配结果,验证了本文HESS容量配置方法的经济性和有效性。

参考文献:

[1] Jae E C, Joo H P, Gibbeum L, et al. 500 kW supercritical CO2 power generation system for waste heat recovery: system design and compressor performance test results[J]. Applied Thermal Engineering, 2021, 194: 117028.

[2] Skulstad R, Li G, Fossen T I, et al. A hybrid approach to motion prediction for ship docking—integration of a neural network model into the ship dynamic model[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70: 1-11.

[3] Lin Y F, Fu L J. A novel virtual admittance droop based inertial coordination control for medium-voltage direct current ship with hybrid energy storage[J]. Journal of Energy Storage, 2022, 56: 105962.

[4] Faddel S, Saad A A, Hariri M E, et al. Coordination of hybrid energy storage for ship power systems with pulsed loads[J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1136-1145.

[5] Kyaw H, Xu Y, Gary W. multi-objective optimal scheduling of a hybrid ferry with shore-to-ship power supply considering energy storage degradation[J]. Electronics, 2020, 9: 849.

[6] Ibrahim H, Ilinca A, Perron J. Energy storage systems —characteristics and comparisons[J]. Renewable and Sustainable Energy Review, 2008, 12(5): 1221-1250.

[7] International Electrotechnical Commission (IEC). Electrical energy storage: white paper[EB/OL]. [2023-03-20]. https://www.iec.ch/basecamp?populate_search=Electrical%20energy%20storage&resourc_type[3]=3.

[8] Argyrou M C, Christodoulides P, Kalogirou S A. Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications[J]. Renewable and Sustainable Energy Review, 2018, 94: 804-821.

[9] Han X B, Lu L G, Zheng Y J, et al. A review on the key issues of the lithium-ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005

[10] Chen H S, Cong T N, Yang W, et al. Progress in electrical energy storage system: a critical review[J]. Progress in Natural Science, 2009, 19(3): 291-312.

[11] Olabi, A G, Wilberforce, T, Abdelkareem, M A, et al. Critical review of flywheel energy storage system[J]. Energies, 2021, 14(8): 2159.

[12] Sebastián R, Peña Alzola R. Flywheel energy storage systems: Review and simulation for anisolated wind power system[J]. Renewable and Sustainable Energy Reviews, 2012, 16(9): 6803-6813.

[13] Lindau R, Energy and water balance of the Baltic Sea derived by merchant ship observations[J]. Boreal Environment Research, 2003, 7(4): 417-424.

[14] Fan A, Wang J, He Y, et al. Decarbonising inland ship power system: Alternative solution and assessment method[J]. Energy, 2021, 226(4): 120266.

[15] Vojkovic G, Milenkovic M. Autonomous ships and legal authorities of the ship master[J]. Case Studies on Transport Policy, 2020. 8(2): 333-340.

[16] Rafiei M, Boudjadar J, Khooban M H. Energy Management of a Zero-Emission Ferry Boat With a Fuel-Cell-Based Hybrid Energy System: Feasibility Assessment[J]. IEEE Transactions on Industrial Electronics, 2021, 68(2): 1739-1748.

[17] Tjandra R, Wen S, Zhou D, et al. Optimal Sizing of BESS for Hybrid Electric Ship Using Multi-Objective Particle Swarm Optimization[C]. Canada: University of Alberta, 2019.

[18] 庞水, 杨楚平, 刘如磊, 等. 船舶微电网锂电池储能系统容量配置多目标优化方法[J]. 中国舰船研究, 2020, 15(06): 22-28.

[19] Wen S, Lan H, Yu D C, et al. Optimal sizing of hybrid energy storage sub-systems in PV/Diesel ship power system using frequency analysis[J]. Energy, 2017, 140(1): 198-208.

[20] Barrera C R, Mo O, Guidi G. Optimal sizing of battery energy storage systems for hybrid marine power systems[C]. Electric Ship Technologies Symposium (ESTS). IEEE, 2019.

[21] Lai K, Illindala M S. Sizing and siting of distributed cloud energy storage systems for a shipboard power system[C]. Industry Applications Society Annual Meeting. IEEE, 2020.

[22] 杨祥国, 孙盼, 杨诚, 等.电力推进船舶复合储能装置容量多目标优化[J]. 中国航海, 2018,41(02):9-14+62.

[23] 李军徽, 张嘉辉, 李翠萍, 等. 参与调峰的储能系统配置方案及经济性分析[J]. 电工技术学报, 2021, 36(19): 4148-4160.

[24] 张子烨, 姜文刚. 新能源船舶混合电力系统容量优化策略[J]. 船舶工程, 2020, 42(10): 84-89.

[25] 廖卫强, 俞万能, 张认成. 基于能量实时协调控制的船舶微电网电源优化配置[J]. 中国造船, 2017, 58(04): 191-202.

[26] Elsayed A T, Elsayad N, Mohammed O A. Pareto based optimal sizing and energy storage mix in ship power systems[C]. Industry Applications Society Annual Meeting. IEEE, 2016.

[27] Yao C, Chen M, Hong Y Y. Novel adaptive multi-clustering algorithm-based optimal ESS sizing in ship power system considering uncertainty[J]. IEEE Transactions on Power Systems, 2017: 1-1.

[28] Bhujade R, Khambadkone A M, Maharjan S, et al. Optimal operation and sizing of energy storage system for a ship electrical power system[C]. International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). IEEE, 2018.

[29] 曾广淼, 王荣杰, 韩冉. 船用柴油机混合能源系统配置优化[J]. 船舶工程, 2019, 41(12): 1-7.

[30] 王凌宇. 船舶电力推进储能控制策略与容量配置研究[D]. 哈尔滨:哈尔滨工程大学,2018.

[31] Chen L, Tong Y, Dong Z. Li-Ion battery performance degradation modeling for the optimal design and energy management of electrified propulsion systems[J]. Energies, 2020, 13(7): 1629.

[32] Lan H, Wen S, Hong YY, et al. Optimal sizing of hybrid PV/diesel/battery in ship power system[J]. Applied Energy, 2015, 158: 26–34.

[33] 刘雨声, 鄂飞, 冯昊, 等. 破冰船电力推进系统储能容量的优化配置[J]. 上海船舶运输科学研究所学报, 2016, 39(03):47-51.

[34] 孙盼. 疏浚船舶复合储能系统设计及容量优化配置方法研究[D]. 武汉: 武汉理工大学, 2019.

[35] 王珺, 王甫, 袁金良, 等. 游船用氢燃料电池和储能电池的优化配置[J]. 电源技术,2021,45(03): 330-334+342.

[36] 邱实, 黄超, 张力, 等. 核动力破冰船混合储能电力推进系统应用研究[J]. 船电技术, 2020, 40(02): 8-11.

[37] 黄贵江, 何祖军, 徐犇, 等. 基于超级电容的车客渡船能量管理策略[J]. 船舶工程, 2021, 43(03): 34-39+60.

[38] 吴骏, 方世源, 吴国栋, 等. 含大功率脉冲性负荷的船舶供电系统设计[J]. 船舶工程, 2019, 41(06): 63-71+124.

[39] 鲍鹏, 王琬婷. 利用超级电容改善船舶电力推进系统暂态特性研究[J]. 船电技术, 2020, 40(10): 30-35.

[40] Kim K, An J, Park K, et al. Analysis of a supercapacitor/battery hybrid power system for a bulk carrier[J]. Applied Sciences, 2019, 9(8): 1547.

[41] 徐宏东, 高海波, 林治国, 等. 电动船复合储能系统的设计与优化[J]. 新能源进展, 2018, 6(06): 526-532.

[42] Tang J, Su G, Yuan C, et al. Optimal configuration of energy storage system based on frequency hierarchical control in ship power system with solar photovoltaic plant[J]. The Journal of Engineering, 2017, 13: 1511-1514.

[43] Fred, Glover. Future paths for integer programming and links to artificial intelligence[J]. Computers and Operations Research, 1986, 13: 533-549.

[44] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983, 220: 671–680.

[45] Burke EK, Kendall G. Search methodologies: Introductory tutorials in optimization and decision support techniques[M]. New York: Springer Verlag, 2005.

[46] 袁铁江, 蒋平, 孙谊媊, 等. 风储一体化电站容量双层优化规划研究[J]. 高电压技术, 2015, 41(10): 3204-3212.

[47] 郭玲娟, 魏斌, 韩肖清, 等. 基于集合经验模态分解的交直流混合微电网混合储能容量优化配置[J]. 高电压技术, 2020, 46(02): 527-537.

[48] Q. Xie, Y. Wang, Y. Kim, M. Pedram, et al. Charge allocation in hybrid electrical energy storage systems[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, 32(7): 1003-1016.

[49] 王斌. 基于灰狼优化算法的独立微电网最优容量配置及运行优化[D].福州: 福州大学, 2020.

[50] 程志江, 李永东, 谢永流, 等. 带超级电容的光伏发电微网系统混合储能控制策略[J]. 电网技术, 2015, 39(10): 2739-2745.

[51] Zhang Z H, Guan C, Liu Z. Real-time optimization energy management strategy for fuel cell hybrid ships considering power sources degradation[J]. IEEE Access, 2020, 99: 1-1.

[52] Zhou F, Beaulieu N C, Li Z, et al. Energy-efficient optimal power allocation for fading cognitive radio channels: ergodic capacity, outage capacity, and minimum-rate capacity[J]. IEEE Transactions on Wireless Communications, 2016, 15(4): 2741-2755.

[53] 陈裕, 张怡, 谢俊峰. 自适应滑动平均与小波包分解平抑风电波动[J]. 控制工程, 2021, 28(07):

[54] 张晴, 李欣然, 杨明, 等.净效益最大的平抑风电功率波动的混合储能容量配置方法[J]. 电工技术学报, 2016, 31(14): 40-48.

[55] 张泽辉, 高海波, 管聪, 等. 典型工况下的燃料电池船舶复合储能系统设计[J]. 船舶工程, 2018, 40(08): 100–105.

[56] 张泽辉. 混合动力船舶复合电源能量管理策略及容量配置研究[D]. 武汉: 武汉理工大学, 2019.

[57] 潘钊, 商蕾, 高海波, 等. 燃料电池混合动力船舶复合储能系统与能量管理策略优化[J]. 大连海事大学学报, 2021, 47(03): 79-85.

[58] Nunez F J, Farasat M. Energy flow control and sizing of a hybrid battery/supercapacitor storage in MVDC shipboard power systems[J]. IET Electrical Systems in Transportation, 2020, 10(3): 275–284.

[59] 王吉祥. 基于模型预测控制的柴电混合动力船舶能量管理策略研究[D]. 武汉: 武汉理工大学, 2020.

[60] 陈晨, 王锡淮, 冯昊, 等.锂电池/超级电容器在电力推进船舶中的应用[J]. 船舶工程, 2016, 38(2):186-190.

[61] Goriparti S, Miele E, Angelis F D, et al. Review on recent progress of nanostructured anode materials for li-ion batteries[J]. Journal of Power Sources, 2014, 257(3): 421-443.

[62] 孙玉伟, 胡克容, 严新平, 等. 新能源船舶混合储能系统关键技术问题综述[J]. 中国造船, 2018, 59(01):226-236.

[63] Alves E, Mota D, Tedeschi E. Sizing of hybrid energy storage systems for inertial and primary frequency control[J]. Frontiers in Energy Research, 2021.

[64] 刘继宗, 吴小平, 孔维华. 基于鱼群优化算法的有轨电车用燃料电池混合动力系统参数配置[J]. 吉林大学学报(工学版), 2022, 52(09):2004-2013.

[65] Mehrjerdi H, Saboori H, Jadid S. Power-to-gas utilization in optimal sizing of hybrid power, water, and hydrogen microgrids with energy and gas storage[J]. Journal of Energy Storage, 2022(01):45.

[66] 叶筱, 蒋克勇, 刘磊, 等. 风储系统容量配置优化目标及优化算法综述[J]. 节能, 2020, 39(06):167-176.

[67] Wang H, Wang Q, Hu B. A review of developments in energy storage systems for hybrid excavators[J]. Automation in Construction, 2017, 80: 1–10.

[68] Liu H, Wang Z, Cheng J, et.al. Improvement on the cold cranking capacity of commercial vehicle by using supercapacitor and lead-acid battery hybrid[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3): 1097–1105.

[69] Kuperman A, Aharon I. Battery–ultracapacitor hybrids for pulsed current loads: A review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(2): 981–992.

[70] Baek M K, Roh J H, Park J B, et.al. Optimal sizing of battery/supercapacitor hybrid energy storage systems for frequency regulation[J]. Journal of Electrical Engineering & Technology, 2022, 17(1): 111-120.

[71] 张泽辉, 高海波, 陈辉, 等. 基于复合电源的电动船能量管理策略[J]. 中国航海, 2018, 41(03):16-20.

[72] Lei Y, Lin J, He Z, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2):108-126.

[73] Huang N E, Wu Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008,46(2):G2006.

[74] Huang N E. Hilbert-Huang transform and its applications[M].World Scientific, 2014:

[75] Andoni S, Victor I, Aitor M, et al. Management strategy for market participation of photovoltaic power plants including storage systems[J]. IEEE Transactions on Industry Applications, 2016, 52(5): 4292-4303.

[76] Shen J Y, Dusmez S, Khaligh A. Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications[J]. Industrial Informatics IEEE Transactions on, 2014, 10(4): 2112-2121.

[77] Zhang L, Hu X S, Wang Zhenpo, et al. Multiobjective optimal sizing of hybrid energy storage system for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1027-1035.

[78] Singh K L, Ranganath V R. Cycle counting using rainflow algorithm for fatigue analysis[C]. 15th National Conference on Aerospace Structures, Coimbatore, Tamil Nadu, India, 2007.

[79] Marco A M, Jaime T P. An improved multiaxial rainflow algorithm for non-proportional stress or strain histories[J]. International Journal of Fatigue, 2011, 42: 194-206.

[80] 宾洋, 于静美, 朱英凯, 等. 实时雨流计数法及其在钴酸池健康状态建模中的应用[J]. 中国电机工程学报, 2017, 37(12): 3627-3635+3692.

[81] 孙凯胜. 风电-混合储能联合系统控制策略及其容量配置研究[D]. 北京:华北电力大学, 2021.

[82] 刘春阳, 王秀丽, 刘世民, 等. 计及蓄电池使用寿命的微电网经济调度模型[J]. 电力自动化设备, 2015, 35(10): 29-36.

[83] 黄际元, 李欣然, 常敏, 等. 考虑储能电池参与一次调频技术经济模型的容量配置方法[J]. 电工技术学报, 2017, 32(21): 112-121.

[84] Seyedali M, Seyed M M, Andrew lewis. grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.

[85] 许伟, 肖湘宁. 基于模式转换的独立微电网实时运行控制[J]. 电工技术学报, 2019, 34(S1): 282-291.

[86] 刘仲民, 齐国愿, 高敬更, 等. 基于自适应VMD的混合储能容量优化配置研究[J]. 太阳能学报, 2022, 43(04): 75-81.

[87] 刘鑫, 李欣然, 谭庄熙, 等. 基于不同种类储能电池参与一次调频的最优策略经济性对比[J]. 高电压技术, 2022,48(04): 1403-1410.

[88] 刘正杰, 朱云芳, 戴朝华, 等. 增程式燃料电池混合动力有轨电车电源系统优化配置[J]. 太阳能学报, 2022,43(03): 67-73.

[89] 李鑫, 王娟, 邱亚, 等. 基于VMD的混合储能容量优化配置[J]. 太阳能学报, 2022, 43(02): 88-96.

中图分类号:

 U674.92    

条码号:

 002000073904    

馆藏号:

 YD10001972    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式