- 无标题文档
查看论文信息

中文题名:

 无电解电容单相变换器功率解耦技术研究     

姓名:

 王浩然    

学号:

 1049721203723    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081101    

学科名称:

 控制理论与控制工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

获奖论文:

 校优秀硕士学位论文    

院系:

 自动化学院    

专业:

 控制科学与工程    

研究方向:

 单相变换器功率解耦技术    

第一导师姓名:

 朱国荣    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-04-15    

答辩日期:

 2015-05-17    

中文关键词:

 

DC-Link电解电容 ; 单相变换器 ; 功率解耦 ; 低频纹波 ; 可靠性

    

中文摘要:

    单相电力变换器交流侧与直流侧之间的瞬时功率不平衡,均会将交流侧含有的二倍工频脉动功率和无功功率辐射到直流侧形成二倍工频纹波和高次谐波电流,对单相变换器的安全、稳定和可靠运行带来巨大的威胁。DC-Link电解电容常被用于单相变换器中消除直流侧谐波,实现功率解耦。然而,谐波电流流过电容等效串联电阻时会产生热,对系统效率及稳定可靠性造成严重影响,故DC-Link电容可靠性问题已经成为了制约单相电力变换器发展的一大因素。消除DC-Link电解电容提高单相变换器可靠性的功率解耦技术已成为学术界的研究热点和工业界的热门话题。

    本文通过建立单相变换器数学模型,揭示二倍脉动功率和无功功率的产生机理和传播途径。针对具有差分电路结构特征的单相变换器,提出一种无需添加任何额外元器件的基于差分电容波形控制的功率解耦技术,通过控制交流侧两支串联差分电容电压产生交流侧所需要的二倍脉动功率和无功功率。该方法能够将二倍脉动功率和无功功率在交流侧进行就地补偿,缩短了功率流通路径,具有效率高、成本低和可靠性高等优势。在此基础上,本文对电容参数进行了优化设计,从变换器成本和效率的角度优化交流侧两支电容的容值,确定了对称结构实现变换器元器件电流应力最小,效率较高的电容配置方式。

    其次,对于不具有差分结构特征的单相变换器,本文在基于差分电容波形控制方法的基础上,从拓扑结构的角度出发构造交流侧串联电容结构的有源功率解耦模块,并通过理论分析推导出能够产生脉动功率且不包含直流分量的电压波形控制函数,提出一种基于功率解耦模块的功率解耦技术。该方法能够在不改变原单相变换器结构和控制策略的基础上,以模块的形式并联在交直流侧端口上实现功率解耦,消除DC-Link电解电容。相比包含直流分量的解耦方法,波形函数中不包含直流分量的解耦方法能够减小环流,提高变换器的工作效率;充分利用交流电容的正负半周,提高变换器中元器件的利用率,降低成本。

    本文在Simulink中建立了差分变换器,基于功率解耦模块的H桥变换器的仿真模型并搭建实验平台,通过对比分析验证了所提出基于差分电容波形控制的功率解耦技术和基于功率解耦模块的功率解耦技术的正确性和可行性。

参考文献:

[1] 陈坚, 康勇. 电力电子变换和控制技术. 高等教育出版社. 2011.

[2] S. Yang, A. Bryant, and P. Mawby, “An Industry-Based Survey of Reliability in Power Electronic Converters,” IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1441-1451. Sep. 2011.

[3] M. Huang, S. C. Wong, C. K. Tse, and X. Ruan, “Catastrophic Bifurcation in Three-Phase Voltage-Source Converters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 4, pp. 1062-1071, Aug. 2013.

[4] L. M. Moore and H. N. Post, “Five Years of Operating Experience at a Large, Utility-Scale Photovoltaic Generating Plant,” Progress in Photovoltaics: Research and Applications, vol. 16, no. 3, pp. 249–259, May 2008.

[5] H. B. Hu, S. Harb, N. Kutkut, I. Batarseh, Z. J. Shen, “Power decoupling techniques for micro-invert-ers in PV systems-a review,” IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3235–3240, Sep. 2010.

[6] G. Fontes, C. Turpin , S. Astier, T. A. Meynard, “Interactions between fuel cells and power converters: influence of current harmonics on a fuel cell stack,” IEEE Transactions on Power Electronics, vol. 1, no. 22, pp. 670–678, 2007.

[7] D. D. Marquezini, D. B. Ramps, R. Q. Machado, F. A. Farret, “Interaction between proton exchange membrane fuel cells and power converters for AC integration,” IEEE Renewable Power Generation, vol.2, pp.151–161, 2008.

[8] W. Choi, P. N. Enjeti, J. W. Howze, “Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current, in Proc,” Applied Power Electronics Conference and Exposition (APEC), pp. 355–361, Feb. 2004.

[9] J. H. Kim, M. H. Jang, J. S. Choe, D. Y. Kim, Y. S. Tak, B. H. Cho, “An experimental analysis of the ripple current applied variable frequency characteristic in a polymer electrolyte membrane fuel cell,” Journal of Power Electronics, vol. 11, no. 1, pp. 82–89, Jan.2011.

[10] R. S. Gemmen, “Analysis for the effect of inverter ripple current on fuel cell operating condition,” Journal Fluids Engineers Transactions of the ASME, vol. 125, no. 3, pp. 576–585, 2003.

[11] S. Pradhan, S. K. Mazumder, J. Hartvigsen, and M. Hollist, “Effects of electrical feedbacks on planar solid-oxide fuel cell,” Journal Fuel Cell Science Technology Transactions of the ASME, vol. 4, no. 2, pp. 154–166, May 2007.

[12] S. Zhang, X. Yuan, H. Wang, W. Merida, H. Zhu, J. Shen, S. Wu, J. Zhang, “A review of accelerated stress tests of MEA durability in PEM fuel cells,” International Journal of Hydrogen Energy, vol. 34, pp. 388–404, 2009.

[13] W. Cai, B. Y. Liu, S. X. Duan, L. Jiang, “An Active Low-Frequency Ripple Control Method Based on the Virtual Capacitor Concept for BIPV Systems,” IEEE Transactions on Power Electronics, vol. 29, no. 4, pp.1733–1745, 2004.

[14] 刘邦银,段善旭,康勇,单相单级并网光伏发电系统中二次功率扰动的分析与抑制[J], 太阳能学报,第29卷,第4期,pp. 407–411页,2008.

[15] B. Wang, X. Ruan, K. Yao, and M. Xu, “A method of reducing the peak-to-average ratio of LED current for electrolytic capacitor-less AC–DC drivers,” IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 592–601, 2010.

[16] S. Wang, X. Ruan, K. Yao, S.-C. Tan, Y. Yang, and Z. Ye, “A Flicker-Free Electrolytic Capacitor-Less AC–DC LED Driver,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4540–4548, Nov. 2012.

[17] L. Gu, X. Ruan, M. Xu, and K. Yao, “Means of eliminating electrolytic capacitor in AC/DC power supplies for LED lightings,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1399–1408, 2009.

[18] C. J. Shin, J. Y. Lee, “An Electrolytic Capacitor-less Bi-directional EV On-Board Charger using Harmonic Modulation Technique,” IEEE Transactions on Power Electronics, vol. pp, no. 99, pp. 1, 2013.

[19] K. Billings, “The Design of Switching Power Supply. ” Publishing House of electronics industry, Beijing, China, 2012.

[20] H. Wang, M. Liserre, F. Blaabjerg, P. P. Rimmen, J. B. Jacobsen, T. Kvisgaard, and J. Landkildehus, “Transitioning to Physics-of-Failure as a Reliability Driver in Power Electronics,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 2, no. 1, pp. 97-114, Mar. 2014.

[21] A. Lahyani, P. Venet, G. Grellet, P. J. Viverge. “Failure Prediction of Electrolytic Capacitors During Operation of a Switch mode Power Supply,” IEEE Transactions on Power Electronics, vol.13, no.6, pp.1199–1207, 1998.

[22] A. Braham, A. Lahyani, P. Venet, N. Rejeb. “Recent Developments in Fault Detection and Power Loss Estimation of Electrolytic Capacitors.” IEEE Transactions on Power Electronics, vol.25, no.1, pp,33–43, 2010.

[23] 顾琳琳,阮新波,姚凯,徐明,采用谐波电流注入法减小储能电容容值[J],电工技术学报, 第25卷, 第5期,142–148页,2010.

[24] D. Winterborne, M. Mingyao, W. Haimeng, V. Pickert, J. Widmer, P. Barrass, and L. Shah, “Capacitors for High Temperature DC Link Applications in Automotive Traction Drives: Current Technology and Limitations,” 2013 15th European Conference on Power Electronics and Applications (EPE), pp.1-7, Sep. 2013.

[25] Z. Li, H. Li, and F. Lin, “Lifetime Prediction Models of Pulsed Capacitor Based on Capacitance Loss,” IEEE Transaction on Plasma Science, vol. 41, no. 5, pp. 1313-1318, May 2013.

[26] W. Grimn, “Reliability of film capacitors,” Presentation at the ECPE Workshop on Innovations in Passive Components for Power Electronics Applications, Germany, Oct. 2014.

[27] M. L. Gasperi, “Life Prediction Modeling of Bus Capacitors in AC Variable-Frequency Drives,” IEEE Transactions on Industry Applications, vol. 41, no. 6, pp.1430 - 1435, Nov. 2005.

[28] H. Wang, and F. Blaabjerg, “Reliability of Capacitors for DC-Link Applications in Power Electronic Converters—An Overview,” IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3569-3578, Feb. 2014.

[29] S. Y. Yang, A. Bryant, P. Mawby, X. Ran, and P. Tavner, “An Industry-Based Survey of Reliability in Power Electronic Converters,” IEEE Transactions on Industry Applications, vol.47, no.3, pp.1441-1451, Mar. 2011.

[30] Xinbo Ruan, Xiao jing Mao, Zhi hang Ye. Reducing storage capacitor of a DCM boost PFC converter[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 151-160.

[31] 倪建军, 张方华, 俞忆洁. 无电解电容的高功率因数AC-DC LED 驱动器[J]. 电工技术学报,2012,27(12): 79-88.

[32] K. W. Lee, Y. H. Hsieh, T. J. Liang, “A current ripple cancellation circuit for electrolytic capacitor-less AC-DC LED driver,” 2013 Applied Power Electronics Conference and Exposition (APEC), pp. 1058–1061, 2013.

[33] 陈武,王广江,一种高功率因数无电解电容 LED 恒流驱动电源,电工技术学报,第28 卷,第11 期,217–222页,2013.

[34] 马红波,郑聪,余文松,无电解电容的改进型SEPIC LED 照明驱动,电工技术学报,第27 卷,第6 期,139–146页,2012.

[35] 倪建军, 张方华, 俞忆洁,无电解电容的高功率因数AC-DC LED 驱动器,电工技术学报,第27 卷,第12 期,79–88 页,2012.

[36] 王楠,许建平,刘雪山,一种高功率因数低输出纹波 LED 驱动器,电力电子技术,第47 卷,第11 期,67–69页,2013.

[37] 贲洪奇,王大庆,孟 涛,朱良梅,基于辅助绕组的单级桥式PFC 变换器纹波抑制策略,电工技术学报,第28 卷,第4 期,58–64 页,2013.

[38] Peng Fang, Yan Fei Liu. An electrolytic capacitor-free single stage buck-boost LED driver and its integrated solution[J]. Applied Power Electronics Conference and Exposition(APEC). 2014: 1394-1401.

[39] Haibing Hu, Harb S, Kutkut N H, et al. A single-stage microinverter without using electrolytic capacitors[J]. IEEE Transactions on Power Electronics, 2013, 28(6): 2677-2687.

[40] T. Larsson, S. Ostlund. Active DC link filter for two frequency electric locomotives[C]. Electric Railways in a United Europe, 1995, pp. 97-100.

[41] T. Shimizu, Y Jin, G. Kimura. DC ripple current reduction on a single-phase PWM voltage-source rectifier [J]. IEEE Transactions on Industry applications, 2000,36(5): 1419-1429.

[42] S. Mei, P. Pan, L. Xi, S. Yao,Y Jian. An Active Power-Decoupling Method for Single-Phase AC-DC Converters [J]. IEEE Transactions on Industrial Informatics, 2014, 10(1):461-468.

[43] K. H. Chao, P. T. Cheng. Power Decoupling Methods for Single-Phase Three-Poles AC/DC Converters[C]. Energy Conversion Congress and Exposition, 2009: 3742-3747.

[44] R. X. Wang, F. Wang, D. Boroyevich, R. Burgos. R. X. Lai, etl. A High Power Density Single-Phase PWM Rectifier With Active Ripple Energy Storage[J]. IEEE Transactions on Power Electronics, 2011, 26(5): 1430-1443.

[45] C. Kuo-Hen, C_ Po-Tai, T. Shimizu. New control methods for single phase PWM regenerative rectifier with power decoupling function[C]. Power Electronics and Drive Systems, 2009, pp. 1091-1096.

[46] Tang Y, Blaabjerg F, Loh P C. Decoupling of Fluctuating Power in Single-Phase Systems Through a Symmetrical Half-Bridge Circuit[J]. IEEE Transactions on Power Electronics, 2014, 30(4):1855 - 1865.

[47] Fan S, Xue Y, Zhang K. A novel active power decoupling method for single-phase photovoltaic or energy storage applications[C]. Energy Conversion Congress and Exposition (ECCE), 2012 IEEE. IEEE, 2012:2439 - 2446.

[48] T. Shimizu, T. Fujita, G. Kimura, and J, Hirose. A unity power factor PWM rectifier with DC ripple compensation [J]. Industrial Electronics, IEEE Transactions on, 1997, 44(4): 447-455.

[49] Li D, Chen Q, Jia Z, et al. A novel active power filter with fundamental magnetic flux compensation[J]. Power Delivery, IEEE Transactions on, 2004, 19(2):799 - 805.

[50] Salam Z, Tan P C, Jusoh A. Harmonics mitigation using active power filter: a technological review[J]. Elektrika, 2006.

[51] 刘楠. 基于瞬时无功理论的并联混合有源电力滤波器的研究[D]. 哈尔滨理工大学, 2013.

[52] 张加庆. 有源滤波器控制策略及特性分析[D]. 山东大学, 2007.

[53] 孙佐, 王念春, 许卫兵. 一种高性价比并联混合有源电力滤波器[J]. 中国电机工程学报, 2007, 27(36):79-84.

[54] Ksiazek P F, Ordonez M. Swinging Bus Technique for Ripple Current Elimination in Fuel Cell Power Conversion[J]. IEEE Transactions on Power Electronics, 2014, 29(1): 170-178.

[55] 刘斌,贺建军,粟梅,等. 两级式单相逆变输入端纹波电流双反馈抑制[J]. 电工技术学报,2013,28(8): 187-193.

[56] Guorong Zhu, Siewchong Tan, Yu Chen, et al. Mitigation of low-frequency current ripple in fuel-cell inverter systems through waveform control[J]. IEEE Transactions on Power Electronics, 2013, 28(2): 779-792.

[57] Y. J. Song, P. N. Enjeti. “A High Frequency Link Direct DC-AC Converter for Residential Fuel Cell Power Systems” in Proc. IEEE PESC, pp. 4755–4761, 2004.

[58] M. Jang, V. G. Agelidis, “A Minimum Power-Processing Stage Fuel Cell Energy System Based on A Boost-Inverter with A Bi-Directional Back-Up Battery Storage,” IEEE Transactions on Power Electronics, vol. 26, no. 5, pp. 1568–1577, Dec. 2011.

[59] M. Jang, M. Ciobotaru, V. G. Agelidis, “A single-stage fuel cell energy system based on a buck–boost inverter with a backup energy storage unit,” IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2825–2834, Dec. 2012.

[60] M. Jang, M. Ciobotaru, V. G. Agelidis, “A Single-Phase Grid-Connected Fuel Cell System Based on a Boost-Inverter,” IEEE Transactions on Power Electronics, vol. 28, no 1, pp. 279–288, 2013.

[61] X. H. Liu, H. Li, Z. Wang, “A Fuel Cell Power Conditioning System With Low-Frequency Ripple-Free Input Current Using a Control-Oriented Power Pulsation Decoupling Strategy,” IEEE Transactions on Power Electronics, vol. 29, no. 1, pp.159–169, 2014.

[62] C. Liu, J. S. Lai, “Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1429–1436, Jul. 2007.

[63] 王勇,谢小高,燃料电池电力变换器的低频纹波电流抑制策略,电力系统自动化,第 32 卷,第23 期,86–87页,2008.

[64] 王旭东,张方华,肖旭,陈万华,带双 Buck 逆变器的DC/DC 变换器低频电流纹波抑制,电力电子技术,第47 卷,第5 期,35–37 页,2013.

[65] 嵇保健, 王建华, 赵剑锋,不隔离单相光伏并网逆变器系统输入电流低频纹波抑制,电工技术学报,第28 卷,第6 期, 139–146 页,2013.

中图分类号:

 TM464    

馆藏号:

 TM464/3723/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式