- 无标题文档
查看论文信息

中文题名:

 

红花龙胆多组学及其环烯醚萜成分生物合成研究

    

姓名:

 邓港    

学号:

 1049722001974    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 100703    

学科名称:

 医学 - 药学(可授医学、理学学位) - 生药学    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 化学化工与生命科学学院    

专业:

 药学    

研究方向:

 生药学    

第一导师姓名:

 刘霞    

第一导师院系:

 化学化工与生命科学学院    

完成日期:

 2023-02-15    

答辩日期:

 2023-05-11    

中文关键词:

 

红花龙胆 ; 多组学 ; 短链还原酶 ; 环烯醚萜 ; 生物合成途径

    

中文摘要:

红花龙胆(Gentiana rhodantha)为中国西南地区特色药用植物,可全草入药,为2015版《中国药典》新增中药材品种,在治疗湿热黄疸、小便不利、肺热咳嗽等方面具有显著疗效,且已开发了多种与红花龙胆相关的复方配伍剂型。目前关于红花龙胆的研究主要集中于功效应用、化学成分、药理活性、质量评价等方面,分子生物学水平研究甚少。红花龙胆与其他龙胆属植物在民间药用中常相互混用、误用,红花龙胆与龙胆属的进化关系仍存在较大争议。龙胆属药用活性成分龙胆苦苷、獐牙菜苷等环烯醚萜类的生物合成途径也未被完全解析,临床应用和市场价值受到制约。深入探究红花龙胆与龙胆属的系统发育关系,解析龙胆苦苷、獐牙菜苷等重要药用活性成分的生物合成机制,提高红花龙胆的应用价值是目前亟待解决的问题。

本研究收集了贵州地区的红花龙胆资源,利用叶绿体基因组和比较叶绿体基因组学系统梳理红花龙胆及其所在龙胆属的进化关系;基于三代全长转录组、广靶代谢组等多组学技术,筛选红花龙胆中环烯醚萜类成分生物合成关键酶基因;通过体外异源表达系统鉴定关键酶的活性,并结合蛋白建模、分子对接和定点突变等手段,对关键酶的底物选择性进行初步的机制探讨。

主要研究结果如下:

(1)本研究通过测序获得了红花龙胆的叶绿体基因组,联合龙胆属其他已报道的叶绿体基因组进行比较分析、系统发育分析和基于分子钟的分化时间推测,结果显示,红花龙胆与其他传统龙胆属物种的亲缘关系较远,发生了显著的适应性进化事件,并支持了狭蕊组独立为狭蕊龙胆属的观点。基于红花龙胆全长转录组和其他植物基因组,计算物种内旁系同源基因对及物种间直系同源基因对的同义替换率Ks,发现红花龙胆与龙胆科共享一次WGD事件(47.57 Mya)。

(2)基于三代全长转录组、代谢组学联合分析筛选红花龙胆中环烯醚萜类成分生物合成途径中的CYP450、SDR等关键酶。通过大肠异源表达系统,鉴定到5个短链还原酶GrSDRs(GrSDR108E6、GrSDR108E12、GrSDR108E13、GrSDR114C5、GrSDR114C20),能够催化裂环马钱子苷或裂环马钱苷酸的C-8位醛基的还原,生成Secologanol或Demethylsecologanol,随后再通过自发的内酯环化作用转化成獐牙菜苷。5个GrSDRs酶显示出显著的活性差异和底物选择性,仅GrSDR108E6兼具还原裂环马钱子苷和裂环马钱苷酸的活性,其余仅能催化裂环马钱子苷。

(3)GrSDR108E6与来自同一亚家族的GrSDR108E12和GrSDR108E13的氨基酸序列相似度分别为91.3%和52.7%。本研究对双底物活性的GrSDR108E6进行蛋白建模和分子对接,结合一级序列比对预测12-Y、125-V和202-AAG是影响其底物选择性的关键氨基酸位点。随后构建定点突变体并进行催化效率比较,发现GrSDR108E6V125I突变体的催化活性降低了约60%,这可能是其发挥双底物活性的关键氨基酸位点。

综上,本研究从叶绿体基因组及比较基因组学角度获得了红花龙胆与龙胆属系统分类学证据。首次利用多组学技术揭示了红花龙胆中裂环环烯醚萜的生物合成途径“裂环马钱子苷/裂环马钱苷酸—獐牙菜苷”及参与该通路的关键酶GrSDRs,为完整解析獐牙菜苷、龙胆苦苷等重要药用活性成分的生物合成机制提供了理论和实验基础,将促进相关的新药开发和基因工程研究。

参考文献:

[1] 王飒, 谢国勇, 秦民坚. 红花龙胆的药学研究进展[J]. 中国野生植物资源, 2017, 36(4): 53-59.

[2] 吴立宏, 官海峰, 俞丽, 等. 红花龙胆的药用民族植物学及质量评价[J]. 中央民族大学学报:自然科学版, 2011, 20(02): 76-80.

[3] 国家药典委员会. 中华人民共和国药典:2015年版.一部 [M]. 北京:中国医药科技出版社, 2015.

[4] 国家药典委员会. 中华人民共和国药典:2020年版.一部 [M] . 北京:中国医药科技出版社, 2020.

[5] 何廷. 新型镇咳祛痰药—肺力咳合剂[J]. 中南药学, 2009, 7(7): 554-556.

[6] 杨昌贵, 张恩, 周涛, 等. 莲龙胶囊质量标准的研究[J]. 贵阳中医学院学报, 2016, 38(1): 21-25.

[7] 姜北. 白族药用植物—红花龙胆[J]. 大理学院学报, 2015, 14(08):74-75.

[8] Xu W, Sun A Q, Zhang Z, et al. Morphological traits and resource investigation of Gentiana rhodantha in Guizhou province[J]. Journal of Liupanshui Normal University, 2014, 26(06):1-6.

[9] 刘恩稳, 徐仕娟, 徐文芬, 等. 黔产红花龙胆药材HPLC指纹图谱及芒果苷含量分析[J]. 贵州科学, 2020, 38(1): 40-47.

[10] 陈云, 王国凯, 武璨, 等. 红花龙胆化学成分研究[J]. 中国中药杂志, 2013, 38(3): 362-365.

[11] 马丽娜, 田成旺, 张铁军, 等. 獐牙菜属植物中环烯醚萜类成分及其药理作用研究进展[J]. 中草药, 2008, 39(5): 790-795.

[12] 穆祯强, 于洋, 高昊, 等. 龙胆属秦艽组植物的化学成分和药理作用研究进展[J]. 中国中药杂志, 2009, 16): 2012-2017.

[13] Xu M, Wang D, Zhang Y J, et al. Iridoidal glucosides from Gentiana rhodantha[J]. Journal of Asian Natural Products Research, 2008, 10(5-6): 491-498.

[14] 姚海琼. 红花龙胆化学成分研究[D]. 上海中医药大学, 2013.

[15] 李维新, 董爱文. 超微粉碎-微波双水相萃取红花龙胆中环烯醚萜苷类[J]. 精细化工, 2019, 26(09): 1833-1839.

[16] Hua W, Zheng P, He Y, et al. An insight into the genes involved in secoiridoid biosynthesis in Gentiana macrophylla by RNA-seq[J]. Molecular Biology Reports, 2014, 41(7): 4817-4825.

[17] 刘玉雨, 方海兰, 李西文, 等. DNA条形码结合高分辨熔解曲线技术在红花龙胆鉴定中的应用[J]. 中国药学杂志, 2019, 54(09): 687-692.

[18] 沈涛, 张霁, 申仕康, 等. 西南地区红花龙胆分布格局模拟与气候变化影响评价[J]. 应用生态学报, 2017, 28(8): 2499-2508.

[19] 倪梁红, 赵志礼, 米玛. 药用植物叶绿体基因组研究进展[J]. 中药材, 2015, 38(9): 1990-1994.

[20] 董博然, 赵志礼, 倪梁红, 等. 龙胆科叶绿体基因组结构特征及其药用植物鉴定意义 [J]. 中草药, 2020, 51(6): 1641-1649.

[21] Wakasugi, Tsudzuki, Sugiura. The genomics of land plant chloroplasts: Gene content and alteration of genomic information by RNA editing[J]. Photosynthesis Research, 2001, 70(1): 107-118.

[22] Mariga P. Plastid transformation in higher plants[J]. Annual Review of Plant Biology, 2004, 55(55): 289-313.

[23] 王博, 高磊, 苏应娟, 等. 基于叶绿体基因组全序列分析真叶植物叶绿体基因的适应性进化[J]. 中山大学学报(自然科学版), 2012, 51(3): 108-113.

[24] Clegg M T, Gaut B S, Learn G H, et al. Rates and patterns of chloroplast DNA evolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(15): 6795-6801.

[25] Favre A, Michalak I, Chen C H, et al. Out-of-Tibet: the spatio-temporal evolution of Gentiana (Gentianaceae)[J]. Journal of Biogeography, 2016, 43(10): 1967-1978.

[26] 吴征镒, 孙航, 周浙昆, 等. 中国种子植物区系地理[J]. 生物多样性, 2011, 19(1): 1-124.

[27] 中国科学院中国植物志委员会. 中国植物志-第六十二卷[M]. 北京:科学出版社, 1988.

[28] Ho TN, Liu S W. A worldwide monograph of Gentiana[M]. Science Press, 2001.

[29] Ho TN, Liu S W. A worldwide monograph of Swertia and its allies[M]. Science Press, 2015.

[30] Struwe L, Kadereit J W, Klackenberg J, et al Gentianaceae: systematics and natural history[M]. Cambridge University Press, 2002.

[31] 何廷农, 陈世龙, 刘尚武. Metagentiana, a New Genus of Gentianaceae[J]. Botanical Bulletin of Academia Sinica, 2002, 43(1): 83-91.

[32] Favre A, Yuan Y M, Küpfer P, et al. Phylogeny of subtribe Gentianinae (Gentianaceae): Biogeographic inferences despite limitations in temporal calibration points[J]. Taxon, 2010, 59(6): 1701-1711.

[33] Favre A, Matuszak S, Sun H, et al. Two new genera of Gentianinae (Gentianaceae): Sinogentiana and Kuepferia supported by molecular phylogenetic evidence[J]. Taxon, 2014, 63(2): 342-354.

[34] Sun S S, Fu P C, Zhou X J, et al. The Complete Plastome Sequences of Seven Species in Gentiana sect. Kudoa (Gentianaceae): Insights Into Plastid Gene Loss and Molecular Evolution[J]. Frontiers in Plant Science, 2018, 9: 493-499.

[35] Mishiba K I, Yamane K, Nakatsuka T, et al. Genetic relationships in the genus Gentiana based on chloroplast DNA sequence data and nuclear DNA content[J]. Breeding Science, 2009, 59(2): 119-127.

[36] 郑斌. 龙胆属头花组和多枝组的分类学研究-兼论《湖北植物志》中两种龙胆的分类学地位[D]. 中国科学院大学, 2017.

[37] 郑斌. 龙胆属头花组和多枝组的分类学研究[D]. 中国科学院武汉植物园, 2017.

[38] 邓港, 吴田泽, 高冉冉, 等. 红花龙胆叶绿体基因组特征及适应性进化分析[J]. 药学学报, 2022, 57(10): 3240-3253.

[39] Ni L, Zhao Z, Xu H, et al. The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion[J]. Gene, 2016, 577(2): 281-288.

[40] 高娜娜, 倪梁红, 赵志礼, 等. 基于叶绿体全基因组序列的双峰法鉴定粗茎秦艽及其近缘物种[J]. 药学学报, 2022, 57(8): 2520-2527.

[41] Ni L, Zhao Z, Xu H, et al. Chloroplast genome structures in Gentiana (Gentianaceae), based on three medicinal alpine plants used in Tibetan herbal medicine[J]. Current Genetics, 2016, 63(2): 1-12.

[42] Wang X, Yang N, Su J, et al. The complete chloroplast genome of Gentiana macrophylla[J]. Mitochondrial DNA Part B, 2017, 2(2): 395-396.

[43] Zhang D J, Gao Q B, Fu A. Study on Chloroplast psbA-trnH Nucleotide Variation and Genetic Differentiation in Cultivated Plants of Gentiana officinalis from Qinghai[J]. Agricultural Science & Technology-Hunan, 2011, 12(10): 1417-1423.

[44] Tao Z, Jian W, Yun J, et al. Comparative Chloroplast Genome Analyses of Species in Gentiana section Cruciata (Gentianaceae) and the Development of Authentication Markers[J]. International Journal of Molecular Sciences, 2018, 19(7): 1962-1965.

[45] Fu P C, Zhang Y Z, Geng H M, et al. The complete chloroplast genome sequence of Gentiana lawrencei var. farreri (Gentianaceae) and comparative analysis with its congeneric species[J]. PeerJ, 2016, 4(9): 2540-2544.

[46] Deng G, Gao R R, Wang W T, et al. Comparative Genomic and Phylogenetic Analysis of Forty Gentiana Chloroplast Genomes[J]. Frontiers in Bioscience-Landmark, 2022, 27(8): 236.

[47] Sun S H, Fu P, Cheng Y, et al. Characterization and transferability of microsatellites for Gentiana lawrencei var. farreri (Gentianaceae) [J]. Applications in Plant Sciences, 2018, 6(1):

[48] 孙姗姗, 付鹏程. 龙胆族(龙胆科)分类与进化研究进展[J]. 西北植物学报, 2019, 39(2): 393-370.

[49] 吴昕怡, 刘小莉. 环烯醚萜类成分生物合成途径及关键酶基因研究进展[J]. 中国民族民间医药, 2017(8): 44-48.

[50] 崔长旭, 柳明洙, 李天洙, 等. 龙胆草水提取物对大鼠急性肝损伤的保护作用[J]. 延边大学医学学报, 2005, 28(1): 20-22.

[51] 孙晓莉, 孙文基, 王四旺, 等. 龙胆苦苷在制备抗病毒药物中的应用, CN100479825C[P]. 2009.

[52] 杨然, 方磊, 李佳, 等. 环烯醚萜苷类生物合成途径及相关酶的研究进展[J]. 中草药, 2018, 49(10): 2482-2488.

[53] Nagatoshi M, Terasaka K, Nagatsu A, et al. Iridoid-specific glucosyltransferase from Gardenia jasminoides[J]. Journal of Biological Chemistry, 2011, 286(37): 32866-32874.

[54] 叶鹏. 基于栀子转录组的环烯醚萜生物合成途径两类关键酶基因的挖掘与功能研究[D]. 广州中医药大学, 2019.

[55] 褚思娟, 李林, 张兰. 山茱萸环烯醚萜苷主要药理作用研究进展[J]. 中国医药, 2013, 8(4): 3-18.

[56] 徐吉银, 楚桐丽, 丁平. 巴戟天属植物环烯醚萜类化学成分和药理活性研究进展[J]. 广州中医药大学学报, 2006, 23(3): 268-271.

[57] Sang S, Liu G, Kan H, 等. New unusual iridoids from the leaves of noni (Morinda citrifolia L.) show inhibitory effect on ultraviolet B-induced transcriptional activator protein-1 (AP-1) activity[J]. Bioorganic & Medicinal Chemistry, 2003, 11(12): 2499-2502.

[58] 陈炜伟, 李鹏, 姚仲青, 等. 胡黄连苷-Ⅰ和胡黄连苷-Ⅱ研究进展[J]. 中药材, 2015(8): 1756-1760.

[59] 高鑫, 董婉茹, 陈平平, 等. 玄参中环烯醚萜苷不同构架的药理学研究[J]. 哈尔滨商业大学学报:自然科学版, 2016, 32(6): 655-658.

[60] 朱畇昊, 赵乐, 董诚明, 等. 地黄环烯醚萜合成后修饰相关基因的挖掘与分析[J]. 现代食品科技, 2016, (10): 84-89.

[61] 董丽萍, 倪梁红, 赵志礼, 等. 龙胆属环烯醚萜类化学成分研究进展[J]. 中草药, 2017, 48(10): 2116-2128.

[62] Jensen S R, Schripsema J. Chemotaxonomy and pharmacology of Gentianaceae[J]. Gentianaceae: systematics and natural history. Cambridge University Press, Cambridge, 2002: 573-631.

[63] Olennikov D N, Kashchenko N I, Chirikova N K, et al. Iridoids and flavonoids of four Siberian Gentians: Chemical profile and gastric stimulatory effect[J]. Molecules, 2015, 20(10): 19172-19188.

[64] Liu Q, Chou G X, Wang Z T. New iridoid and secoiridoid glucosides from the roots of Gentiana manshurica[J]. Helvetica Chimica Acta, 2012, 95(7): 1094-1101.

[65] Suyama Y, Kurimoto S, Kawazoe K, et al. Rigenolide A, a new secoiridoid glucoside with a cyclobutane skeleton, and three new acylated secoiridoid glucosides from Gentiana rigescens Franch[J]. Fitoterapia, 2013, 91: 166-172.

[66] 王乐, 杨宗斌, 王甜, 等. Secologanol 酰化产物的合成及其反应条件研究[J]. 大理大学学报, 2021, 6(4): 10-13.

[67] Yang M, Zhou K, Li F, et al. Effects of Gentiana delavayi flower extract on APP processing in APP/PS1 CHO cells[J]. Biological and Pharmaceutical Bulletin, 2020, 43(5): 767-773.

[68] Zhou D, Gao S, Wang H, et al. De novo sequencing transcriptome of endemic Gentiana straminea (Gentianaceae) to identify genes involved in the biosynthesis of active ingredients[J]. Gene, 2016, 575(1): 160-170.

[69] Miettinen K, Dong L, Navrot N, et al. The seco-iridoid pathway from Catharanthus roseus[J]. Nature communications, 2014, 5(1): 3606.

[70] Geuflores F, Sherden N H, Courdavault V, et al. An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis[J]. Nature, 2012, 492(7427): 138-142.

[71] Lindner S, Geuflores F, Bräse S, et al. Conversion of substrate analogs suggests a Michael cyclization in iridoid biosynthesis[J]. Chemistry & biology, 2014, 21(11): 1452-1456.

[72] Hu Y, Liu W, Malwal S R, et al. Structures of iridoid synthase from Cantharanthus roseus with bound NAD+, NADPH, or NAD+/10-Oxogeranial: reaction mechanisms[J]. Angewandte Chemie International Edition, 2015, 54(51): 15478-15482.

[73] Kries H, Caputi L, Stevenson C E M, et al. Structural determinants of reductive terpene cyclization in iridoid biosynthesis[J]. Nature chemical biology, 2016, 12(1): 6-8.

[74] Matekalo D, Skorić M, Nikolić T, et al. Organ-specific and genotype-dependent constitutive biosynthesis of secoiridoid glucosides in Centaurium erythraea Rafn, and its elicitation with methyl jasmonate[J]. Phytochemistry, 2018, 155: 69-82.

[75] Yang Y, Li W, Pang J, et al. Bifunctional cytochrome P450 enzymes involved in camptothecin biosynthesis[J]. ACS Chemical Biology, 2019, 14(6): 1091-1096.

[76] 张松涛, 陈红丽, 崔红, 等. 植物MEP途径的代谢调控机制[J]. 西北植物学报, 2012, 32(07): 1500-1504.

[77] 康恒, 赵志礼, 倪梁红, 等. 粗茎秦艽转录组及其环烯醚萜类生物合成相关基因分析与验证[J]. 药学学报, 2021, 56(7): 2005-2014.

[78] Lichman B R, Kamileen M O, Titchiner G R, et al. Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis[J]. Nature chemical biology, 2019, 15(1): 71-79.

[79] 王凌健, 方欣, 杨长青, 等. 植物萜类次生代谢及其调控[J]. 中国科学: 生命科学, 2013, 43(12): 1030-1046.

[80] Asada K, Salim V, Masada-Atsumi S, et al. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle[J]. The Plant Cell, 2013, 25(10): 4123-4134.

[81] Salim V, Wiens B, Masada-Atsumi S, et al. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis[J]. Phytochemistry, 2014, 101: 23-31.

[82] Marmont L S, Whitfield G B, Pfoh R, et al. PelX is a UDP-N-acetylglucosamine C4-epimerase involved in Pel polysaccharide–dependent biofilm formation[J]. Journal of Biological Chemistry, 2020, 295(34): 11949-11962.

[83] 张月婷, 秦政, 王建, 等. 短链脱氢酶超家族介导植物次级代谢研究进展[J]. 南方林业科学, 2020, 48(5): 62-67.

[84] Yu S, Sun Q, Wu J, et al. Genome-wide identification and characterization of short-chain dehydrogenase/reductase (SDR) gene family in Medicago truncatula[J]. International Journal of Molecular Sciences, 2021, 22(17): 9498.

[85] Kallberg Y, Persson B. Prediction of coenzyme specificity in dehydrogenases/reductases: a hidden Markov model‐based method and its application on complete genomes[J]. The FEBS journal, 2006, 273(6): 1177-1184.

[86] Persson B, Kallberg Y. Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs)[J]. Chemico-biological interactions, 2013, 202(1-3): 111-115.

[87] Persson B, Kallberg Y, Bray J E, et al. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative[J]. Chemico-biological interactions, 2009, 178(1-3): 94-98.

[88] Tonfack L B, Moummou H, Latché A, et al. The plant SDR superfamily: involvement in primary and secondary metabolism[J]. Current Topics in Plant Biology, 2011, 12: 41-53.

[89] Moummou H, Kallberg Y, Tonfack L B, et al. The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns[J]. BMC plant biology, 2012, 12(1): 1-17.

[90] Malcomber S T, Kellogg E A. Evolution of unisexual flowers in grasses (Poaceae) and the putative sex‐determination gene, TASSELSEED2 (TS2)[J]. New Phytologist, 2006, 170(4): 885-899.

[91] Stavrinides A K, Tatsis E C, Dang T T, et al. Discovery of a short‐chain dehydrogenase from Catharanthus roseus that produces a new monoterpene indole alkaloid[J]. ChemBioChem, 2018, 19(9): 940-948.

[92] Davis E M, Ringer K L, McConkey M E, et al. Monoterpene metabolism. Cloning, expression, and characterization of menthone reductases from peppermint[J]. Plant physiology, 2005, 137(3): 873-881.

[93] Choi H W, Lee B G, Kim N H, et al. A role for a menthone reductase in resistance against microbial pathogens in plants[J]. Plant Physiology, 2008, 148(1): 383-401.

[94] Ringer K L, Davis E M, Croteau R. Monoterpene metabolism. Cloning, expression, and characterization of (−)-isopiperitenol/(−)-carveol dehydrogenase of peppermint and spearmint[J]. Plant physiology, 2005, 137(3): 863-872.

[95] Lygidakis A, Karuppiah V, Hoeven R, et al. Pinpointing a Mechanistic Switch Between Ketoreduction and “Ene” Reduction in Short‐Chain Dehydrogenases/Reductases[J]. Angewandte Chemie, 2016, 128(33): 9748-9752.

[96] Dube S, Norby B J, Pattan V, et al. 11β-hydroxysteroid dehydrogenase types 1 and 2 activity in subcutaneous adipose tissue in humans: implications in obesity and diabetes[J]. The Journal of Clinical Endocrinology & Metabolism, 2015, 100(1): E70-E76.

[97] Ziegler J, Voigtländer S, Schmidt J, et al. Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis[J]. The Plant Journal, 2006, 48(2): 177-192.

[98] Shimura K, Okada A, Okada K, et al. Identification of a biosynthetic gene cluster in rice for momilactones[J]. Journal of Biological Chemistry, 2007, 282(47): 34013-34018.

[99] Kato-Noguchi H, Peters R J. The role of momilactones in rice allelopathy[J]. Journal of chemical ecology, 2013, 39: 175-185.

[100] Kitaoka N, Wu Y, Zi J, et al. Investigating inducible short‐chain alcohol dehydrogenases/reductases clarifies rice oryzalexin biosynthesis[J]. The plant journal, 2016, 88(2): 271-279.

[101] Hwang S G, Lin N C, Hsiao Y Y, et al. The Arabidopsis short-chain dehydrogenase/reductase 3, an ABSCISIC ACID DEFICIENT 2 homolog, is involved in plant defense responses but not in ABA biosynthesis[J]. Plant Physiology and Biochemistry, 2012, 51: 63-73.

[102] Munkert J, Pollier J, Miettinen K, et al. Iridoid synthase activity is common among the plant progesterone 5β-reductase family[J]. Molecular plant, 2015, 8(1): 136-152.

[103] Kim H J, Ruszczycky M W, Liu H. Current developments and challenges in the search for a naturally selected Diels-Alderase[J]. Current opinion in chemical biology, 2012, 16(1-2): 124-131.

[104] Qin L, Zhu Y, Ding Z, et al. Structure of iridoid synthase in complex with NADP+/8-oxogeranial reveals the structural basis of its substrate specificity[J]. Journal of Structural Biology, 2016, 194(2): 224-230.

[105] Sadre R, Magallanes-Lundback M, Pradhan S, et al. Metabolite diversity in alkaloid biosynthesis: a multilane (diastereomer) highway for camptothecin synthesis in Camptotheca acuminata[J]. The Plant Cell, 2016, 28(8): 1926-1944.

[106] 张成钰. 獐芽菜环烯醚萜合成酶基因的克隆及其再生体系的建立[D]. 南开大学, 2015.

[107] Raghavachari N, Garcia-Reyero N. Overview of gene expression analysis: transcriptomics[J]. Gene Expression Analysis: Methods and Protocols, 2018: 1-6.

[108] 马婷玉. 基于多组学解析黄花蒿核心种质及青蒿素生物合成调控机制[D]. 中国中医科学院, 2020.

[109] Shinde V, Stöber R, Nemade H, et al. Transcriptomics of hepatocytes treated with toxicants for investigating molecular mechanisms underlying hepatotoxicity[J]. Protocols in In Vitro Hepatocyte Research, 2015: 225-240.

[110] 李慧, 马德志, 姜明, 等. 传统药用植物转录组研究进展[J]. 中医药信息, 2018, 35(6): 114-120.

[111] Zhang X, Allan A C, Li C, et al. De novo assembly and characterization of the transcriptome of the Chinese medicinal herb, Gentiana rigescens[J]. International journal of molecular sciences, 2015, 16(5): 11550-11573.

[112] Cao X, Guo X, Yang X, et al. Transcriptional responses and gentiopicroside biosynthesis in methyl jasmonate-treated Gentiana macrophylla seedlings[J]. PLoS One, 2016, 11(11): e0166493.

[113] Niu X, Su H, Li B, et al. Comparative transcriptome analysis of Gentiana macrophylla seeds after ferrous-priming and hydro-priming[J]. Seed Science and Technology, 2019, 47(3): 260-278.

[114] 康恒, 赵志礼, 倪梁红, 等. 全萼秦艽转录组中环烯醚萜类相关基因挖掘及验证[J]. 中国中药杂志, 2021, 46(18): 4704-4711.

[115] 李宁, 范雪梅, 王义明, 等. 代谢组学及其分析技术的研究进展[J]. 中南药学, 2014 (7): 668-673.

[116] Fessenden M. Metabolomics: Small molecules, single cells[J]. Nature, 2016, 540(7631): 153-155.

[117] Drysdale R. Methods in Molecular Biology[J]. Methods in Molecular Biology, 2008, 420: 45-59.

[118] 仪莹, 孙莹璐, 王道平, 等.植物代谢组学中几种重要的次生代谢物液质分析技术研究进展 [J]. 生物工程学报, 2022, 38(10): 3674-3681.

[119] 原静静, 孙晓琛, 栗锦鹏, 等. 代谢组学在药用植物非生物胁迫中的应用[J]. 中国中医药信息杂志, 2023, 30(01): 176-180.

[120] 张高乐. 多基原龙胆环烯醚萜类成分的系统表征及质量评价研究[D]. 长春中医药大学,2021.

[121] Kim J, Woo H R, Nam H G. Toward systems understanding of leaf senescence: an integrated multi-omics perspective on leaf senescence research[J]. Molecular plant, 2016, 9(6): 813-825.

[122] 薛守宇, 朱涛, 李冰冰, 等. 转录组和代谢组联合分析在植物中的应用研究[J]. 山西农业大学学报:自然科学版, 2022, 42(3): 1-13.

[123] Jin J, Zhang H, Zhang J, et al. Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum[J]. Bmc Genomics, 2017, 18: 1-15.

[124] 高玉刚. 基于转录组和代谢组联合分析燕麦响应盐碱胁迫的机制研究[D]. 黑龙江八一农垦大学, 2022.

[125] 何懿菡. 柠檬酸铵和茉莉酸甲酯对秦艽代谢产物影响的研究[D]. 陕西师范大学, 2017.

[126] Yamakawa H, Hakata M. Atlas of rice grain filling-related metabolism under high temperature: joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation[J]. Plant and Cell Physiology, 2010, 51(5): 795-809.

[127] 吴迎梅, 廖庆刚, 尚轶, 等. 多组学助力紫杉醇合成生物学研究[J]. 植物科学学报, 2022, 40(6): 853-866.

[128] 王小淑, 许丽丽, 侯星, 等. 喜树碱功能化修饰及抗肿瘤活性研究进展[J]. 化学通报, 2022, 85(08): 943-950.

[129] 马彦. 长春碱类抗肿瘤药物的研究进展[J]. 中山大学研究生学刊(自然科学、医学版), 2004, 36(3): 59-62.

[130] 吴昕怡, 李智敏, 潘俊, 等. 基于转录组分析热刺激下滇龙胆根龙胆苦苷生物合成途径[J]. 分子植物育种, 2023, 3(9): 1-12.

[131] 刘杜霞, 高小敏, 仝敏, 等. 獐牙菜苷的药理作用及其机制研究进展[J]. 中华中医药学刊, 2022, 40(02): 115-119.

[132] 唐浩然. 青叶胆活性成分獐牙菜苦苷抗肝癌细胞增殖作用及机制研究[D]. 昆明医科大学, 2020.

[133] 李佳伟, 马钰聪, 杨鑫雷, 等. 花生种皮色素合成相关通路的转录组-代谢组学联合分析 [J]. 植物遗传资源学报, 2022, 23(01): 240-254.

[134] Kolmogorov M, Bickhart D M, Behsaz B, et al. metaFlye: scalable long-read metagenome assembly using repeat graphs[J]. Nature Methods, 2020, 17(11): 1103-1110.

[135] Shi L, Chen H, Jiang M, et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer[J]. Nucleic acids research, 2019, 47(1): 65-73.

[136] Kearse M, Moir R, Wilson A, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12): 1647-1649.

[137] Beier S, Thiel T, Münch T, et al. MISA-web: a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16): 2583-2585.

[138] Katoh K, Standley D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular biology and evolution, 2013, 30(4): 772-780.

[139] Nguyen L T, Schmidt H A, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular biology and evolution, 2015, 32(1): 268-274.

[140] Zhang H, Gao S, Lercher M J, et al. EvolView, an online tool for visualizing, annotating and managing phylogenetic trees[J]. Nucleic acids research, 2012, 40(W1): W569-W572.

[141] Amiryousefi A, Hyvönen J, Poczai P. IRscope: an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics, 2018, 34(17): 3030-3031.

[142] Darling A C E, Mau B, Blattner F R, et al. Mauve: multiple alignment of conserved genomic sequence with rearrangements[J]. Genome research, 2004, 14(7): 1394-1403.

[143] Frazer K A, Pachter L, Poliakov A, et al. VISTA: computational tools for comparative genomics[J]. Nucleic acids research, 2004, 32(suppl_2): W273-W279.

[144] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452.

[145] Drummond A J, Suchard M A, Xie D, et al. Bayesian phylogenetics with BEAUti and the BEAST 1.7[J]. Molecular biology and evolution, 2012, 29(8): 1969-1973.

[146] Bouckaert R, Heled J, Kühnert D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis[J]. PLoS computational biology, 2014, 10(4): e1003537.

[147] Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular biology and evolution, 2016, 33(7): 1870-1874.

[148] Hedges S B, Dudley J, Kumar S. TimeTree: a public knowledge-base of divergence times among organisms[J]. Bioinformatics, 2006, 22(23): 2971-2972.

[149] Makałowski W, Boguski M S. Evolutionary parameters of the transcribed mammalian genome: an analysis of 2,820 orthologous rodent and human sequences[J]. Proceedings of the National Academy of Sciences, 1998, 95(16): 9407-9412.

[150] Ho T N, Liu S W. A phylogenetic analysis of Gentiana (Gentianaceae)[J]. Journal of Systematics and Evolution, 1996, 34(5): 505-506.

[151] Shen T, Zhang J, Shen S K, et al. Distribution simulation of Gentiana rhodantha in Southwest China and assessment of climate change impact[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 50-68.

[152] Zhou T, Chen C, Wei Y, et al. Comparative transcriptome and chloroplast genome analyses of two related Dipteronia species[J]. Frontiers in plant science, 2016, 7: 1512-1520.

[153] Millen R S, Olmstead R G, Adams K L, et al. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus[J]. The Plant Cell, 2001, 13(3): 645-658

[154] 李巧丽, 延娜, 宋琼, 等. 鲁桑叶绿体基因组序列及特征分析[J]. 植物学报, 2018, 53(1): 94-96.

[155] Li W, Liu Y, Yang Y, et al. Interspecific chloroplast genome sequence diversity and genomic resources in Diospyros[J]. BMC Plant Biology, 2018, 18(1): 1-11.

[156] Yamamoto H, Peng L, Fukao Y, et al. An Src homology 3 domain-like fold protein forms a ferredoxin binding site for the chloroplast NADH dehydrogenase-like complex in Arabidopsis[J]. The Plant Cell, 2011, 23(4): 1480-1493.

[157] Martín M, Sabater B. Plastid ndh genes in plant evolution[J]. Plant Physiology and Biochemistry, 2010, 48(8): 636-645.

[158] Catal R, Sabater B, Guera A. Expression of the plastid ndhF gene product in photosynthetic and non-photosynthetic tissues of developing barley seedlings[J]. Plant and cell physiology, 1997, 38(12): 1382-1388.

[159] Guera A, de Nova P G, Sabater B. Identification of the Ndh (NAD (P) H-plastoquinone-oxidoreductase) complex in etioplast membranes of barley: changes during photomorphogenesis of chloroplasts[J]. Plant and Cell Physiology, 2000, 41(1): 49-59.

[160] Guéra A, Sabater B. Changes in the protein and activity levels of the plastid NADH–plastoquinone–oxidoreductase complex during fruit development[J]. Plant Physiology and Biochemistry, 2002, 40(5): 423-429.

[161] Yu X, Zuo L, Lu D, et al. Comparative analysis of chloroplast genomes of five Robinia species: Genome comparative and evolution analysis[J]. Gene, 2019, 689: 141-151.

[162] Wang R J, Cheng C L, Chang C C, et al. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots[J]. BMC evolutionary biology, 2008, 8(1): 1-14

[163] Matuszak S, Favre A, Schnitzler J, et al. Key innovations and climatic niche divergence as drivers of diversification in subtropical Gentianinae in southeastern and eastern Asia[J]. American Journal of Botany, 2016, 103(5): 899-911.

[164] Wagner G P, Kin K, Lynch V J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples[J]. Theory in biosciences, 2012, 131: 281-285.

[165] Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9): 1312-1313.

[166] Yang Z. PAML 4: phylogenetic analysis by maximum likelihood[J]. Molecular biology and evolution, 2007, 24(8): 1586-1591.

[167] 王蒙, 王婷, 夏增强, 等. 基于转录组数据揭示4种兜兰的全基因组复制历史[J]. 植物学报, 2021, 56(6): 699-714.

[168] Wu S, Han B, Jiao Y. Genetic contribution of paleopolyploidy to adaptive evolution in angiosperms[J]. Molecular Plant, 2020, 13(1): 59-71.

[169] Mandáková T, Lysak M A. Post-polyploid diploidization and diversification through dysploid changes[J]. Current opinion in plant biology, 2018, 42: 55-65.

[170] Ren R, Wang H, Guo C, et al. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms[J]. Molecular plant, 2018, 11(3): 414-428.

[171] Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular plant, 2020, 13(8): 1194-1202.

[172] Tonfack L B, Moummou H, Latché A, et al. The plant SDR superfamily: involvement in primary and secondary metabolism[J]. Current Topics in Plant Biology, 2011, 12: 41-53.

[173] Panahi B, Hejazi M A. Weighted gene co-expression network analysis of the salt-responsive transcriptomes reveals novel hub genes in green halophytic microalgae Dunaliella salina[J]. Scientific Reports, 2021, 11(1): 1607-1610.

[174] Kuang X J, Wang C X, Zou L Q, et al. Advance in biosynthesis of terpenoid indole alkaloids and its regulation in Catharanthus roseus [J]. China Journal of Chinese Materia Medica, 2016, 41(22): 4129-4137.

[175] Sadre R, Magallanes-Lundback M, Pradhan S, et al. Metabolite diversity in alkaloid biosynthesis: a multilane (diastereomer) highway for camptothecin synthesis in Camptotheca acuminata[J]. The Plant Cell, 2016, 28(8): 1926-1944.

[176] 雷雨. 转录组和代谢组联合分析鉴定花椒花青素生物合成关键基因[D]. 西北农林科技大学, 2022.

[177] 刘志强, 高崎, 李航, 等. 基于代谢组学和转录组学的不同生长年限下银杏萜类生物合成关键基因表达分析[J]. 中草药, 2022, 53(04): 1138-1147.

[178] 夏鸿东. 基于转录组和代谢组解析栀子主要有效成分生物合成途径[D]. 江西中医药大学, 2022.

[179] Kouda R, Yakushiji F. Recent advances in Iridoid chemistry: biosynthesis and chemical synthesis[J]. Chemistry–An Asian Journal, 2020, 15(22): 3771-3783.

[180] Miller J C, Hollatz A J, Schuler M A. P450 variations bifurcate the early terpene indole alkaloid pathway in Catharanthus roseus and Camptotheca acuminata[J]. Phytochemistry, 2021, 183: 112626.

[181] 刘欢, 于鑫淼, 王月, 等. 胆木浸膏糖浆的HPLC指纹图谱研究和9种成分的含量测定[J]. 中国药房, 2019, 30(14): 1940-1945.

[182] Pan Z, Xiong F, Chen Y L, et al. Traceability of geographical origin in Gentiana straminea by UPLC-Q exactive mass and multivariate analyses[J]. Molecules, 2019, 24(24): 4478-4481.

[183] Mpondo E M, Garcia J, Lestani J. New secoiridoid glucosides from Gentiana verna[J]. Journal of Natural Products, 1989, 52(5): 1146-1149.

[184] Chulia A J, Vercauteren J, Mariotte A M. Iridoids and flavones from Gentiana depressa[J]. Phytochemistry, 1996, 42(1): 139-143.

[185] Li T, Yu X, Ren Y, et al. The chromosome-level genome assembly of Gentiana dahurica (Gentianaceae) provides insights into gentiopicroside biosynthesis[J]. DNA Research, 2022, 29(2): dsac008.

[186] 武赛男, 刘喜泽, 甄玉国. 等. 支链氨基酸的特点及生物学作用研究进展[J]. 经济动物学报, 2023, 3(9): 1-6.

中图分类号:

 R284    

条码号:

 002000071785    

馆藏号:

 TD10059409    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式