- 无标题文档
查看论文信息

中文题名:

 

考虑环境熟悉度与引导的人员疏散仿真研究

    

姓名:

 涂文豪    

学号:

 1049721800619    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 安全科学与应急管理学院    

专业:

 安全科学与工程    

研究方向:

 人员疏散    

第一导师姓名:

 宋英华    

第一导师院系:

 武汉理工大学    

完成日期:

 2021-05-10    

答辩日期:

 2021-06-02    

中文关键词:

 

行人疏散 ; 元胞自动机模型 ; 环境熟悉度 ; 引导作用 ; 引导有效性

    

中文摘要:

随着经济的发展,城市化进程的加快,人员高度聚集于某个场所已成为生活的常态,这也为人员应急疏散提高了难度。一旦发生紧急事件,若不能及时疏散,无疑会造成重大的人员伤亡及财产损失,因此开展人员疏散动力学方面的研究十分有必要。近些年来,许多学者在此方面做了大量的研究,并取得了许多重要的研究成果,但由于行人疏散过程的复杂性,依旧有许多问题未做进一步的研究。环境熟悉度以及引导作用是影响人员疏散的关键因素,本文在前人研究的基础上,建立了考虑环境熟悉度与引导的人员疏散元胞自动机模型。主要工作如下:

(1)构建了考虑环境熟悉度与引导的人员疏散元胞自动机模型。模型引入环境熟悉度的概念,将人员划分为熟悉环境行人与不熟悉环境行人两类,不同的行人能采取不同的疏散策略;基于引导标志有向性构建了引导场,并将引导场与静态场及动态场相结合,使行人能够跟随引导移动。

(2)构建了不同的仿真场景,研究了场景中有无障碍物存在情况下环境熟悉度变化以及引导作用存在对人员疏散的影响。仿真结果表明:相同条件下,行人环境熟悉度越高,场景汇行人疏散越快;引导作用存在使得不熟悉环境行人跟随引导移动,提高了场景中的人员疏散效率;相比于无障碍物存在场景,环境熟悉度变化以及引导作用存在对于障碍物存在场景影响更大。

(3)对不熟悉环境行人疏散策略进行了研究。不熟悉环境行人分别采取四种不同疏散策略:自主移动疏散策略、跟随行人移动疏散策略、寻墙沿墙移动疏散策略以及跟随引导疏散策略,在不同仿真条件下对四种不同疏散策略进行对比分析。仿真结果表明,四种疏散策略中不熟悉环境行人采取跟随引导疏散效率最高。

(4)将引导标志布局、引导标志数量、引导标志作用范围、引导标志可识别性归纳为引导有效性,基于控制变量思想进行仿真实验,研究了引导有效性对人员疏散影响。仿真结果表明:选取的3种引导标志布局中布局3人员疏散效率最高;相同引导标志布局下,人员疏散效率随引导标志数量增加,引导标志作用范围的增大而提高;相同工况下,引导标志可识别性越高,人员疏散效率越高。

参考文献:

[1] 宋英华著. 国家应急管理战略工程[M]. 北京:人民出版社, 2017.

[2] 徐海红. 信息诱导下的行人疏散行为研究[D]. 内蒙古大学, 2019.

[3] LAM T N. Pedestrian planning and design (Book review)[J]. Transportation Science, 1972.

[4] HELBING D, JOHANSSON A, AL-ABIDEEN H Z. Dynamics of crowd disasters: An empirical study[J]. Physical Review E, 2007,75(04610942).

[5] YANG L, RAO P, ZHU K, et al. Observation study of pedestrian flow on staircases with different dimensions under normal and emergency conditions[J]. Safety Science, 2012,50(5): 1173-1179.

[6] CHEN S, FU L, FANG J, et al. The effect of obstacle layouts on pedestrian flow in corridors: An experimental study[J]. Physica A: Statistical Mechanics and its Applications, 2019,534: 122333.

[7] AGHABAYK K, PARISHAD N, SHIWAKOTI N. Investigation on the impact of walkways slope and pedestrians physical characteristics on pedestrians normal walking and jogging speeds[J]. Safety Science, 2021,133(105012).

[8] HUANG S, WEI R, LO S, et al. Experimental study on one-dimensional movement of luggage-laden pedestrian[J]. Physica a: Statistical Mechanics and its Applications, 2019,516: 520-528.

[9] PASTOR J M, GARCIMARTIN A, GAGO P A, et al. Experimental proof of faster-is-slower in systems of frictional particles flowing through constrictions[J]. Physical Review E, 2015,92(0628176).

[10] REN X, ZHANG J, SONG W. Flows of walking and running pedestrians in a corridor through exits of different widths[J]. Safety Science, 2021,133: 105040.

[11] ZHAO Y, LU T, LI M, et al. The microscopic characteristics of escape behaviours from a three-dimensional lecture theatre under conditions of good and zero visibility[J]. Safety Science, 2019,118: 641-653.

[12] HELBING D, FARKAS I, VICSEK T. Simulating dynamical features of escape panic[J]. Nature, 2000,407(6803): 487-490.

[13] 陈长坤, 童蕴贺. 基于元胞自动机恐慌状态下人群疏散模型研究[J]. 中国安全生产科学技术, 2019,15(06): 12-17.

[14] JING-HONG W, SIU-MING L, JIN-HUA S, et al. Qualitative simulation of the panic spread in large-scale evacuation[J]. Simulation, 2012,88(12).

[15] ANTHONY R M. Understanding mass panic and other collective responses to threat and disaster[J]. Psychiatry, 2005,68(2).

[16] 陈海涛, 刘占, 张立红, 等. 低可见度情况下从众行为对疏散的影响分析[J]. 中国安全生产科学技术, 2016,12(08): 165-170.

[17] YUAN W, TAN K H. An evacuation model using cellular automata[J]. Physica a: Statistical Mechanics and its Applications, 2007,384(2): 549-566.

[18] CHENG Y, ZHENG X. Effect of uncertainty on cooperative behaviors during an emergency evacuation[J]. Communications in Nonlinear Science and Numerical Simulation, 2019,66: 216-225.

[19] 李芳, 狄月, 陈绍宽, 等. 考虑客流引导和小群体行为的地铁车站疏散模型[J]. 西南交通大学学报, 2019,54(03): 587-594.

[20] 高国平, 管昌生. 考虑帮助行为的人员疏散元胞自动机模型[J]. 中国安全科学学报, 2018,28(01): 56-61.

[21] 宋英华, 张宇, 霍非舟, 等. 考虑避让行为的人员疏散元胞自动机模型研究[J]. 系统仿真学报, 2020,32(06): 975-981.

[22] HELBING, MOLNAR. Social force model for pedestrian dynamics.[J]. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995,51(5): 4282-4286.

[23] LI J, CHEN M, WU W, et al. Height map-based social force model for stairway evacuation[J]. Safety Science, 2021,133(105027).

[24] 李天贝, 肖梅玲, 徐子祺, 等. 基于社会力模型的教室内地震疏散仿真[J]. 科学技术与工程, 2019,19(03): 281-286.

[25] ZENG W, CHEN P, NAKAMURA H, et al. Application of social force model to pedestrian behavior analysis at signalized crosswalk[J]. Transportation Research Part C: Emerging Technologies, 2014,40: 143-159.

[26] 曹宁博, 赵利英, 曲昭伟, 等. 考虑双向行人跟随行为的社会力模型[J]. 吉林大学学报(工学版), 2019,49(03): 688-694.

[27] STICCO I M, FRANK G A, DORSO C O. Social Force Model parameter testing and optimization using a high stress real-life situation[J]. Physica A-Statistical Mechanics and its Applications, 2021,561(125299).

[28] CAO N, ZHAO L, CHEN M, et al. Fuzzy Social Force Model for Pedestrian Evacuation under View-Limited Condition[J]. Mathematical Problems in Engineering, 2020,2020(2879802).

[29] ZHAO Y, LIU H, GAO K. An evacuation simulation method based on an improved artificial bee colony algorithm and a social force model[J]. Applied Intelligence, 2021,51(1): 100-123.

[30] BURSTEDDE C, KLAUCK K, SCHADSCHNEIDER A, et al. Simulation of pedestrian dynamics using a two-dimensional cellular automaton[J]. Physica a: Statistical Mechanics and its Applications, 2001,295(3): 507-525.

[31] KIRCHNER A, SCHADSCHNEIDER A. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics[J]. Physica a: Statistical Mechanics and its Applications, 2002,312(1): 260-276.

[32] TIAN H, WEI Y, DONG L, et al. Resolution of conflicts in cellular automaton evacuation model with the game-theory[J]. Physica a: Statistical Mechanics and its Applications, 2018,503: 991-1006.

[33] BOUZAT S, KUPERMAN M N. Game theory in models of pedestrian room evacuation[J]. Physical Review E, 2014,89(0328063).

[34] LO S M, HUANG H C, WANG P, et al. A game theory based exit selection model for evacuation[J]. Fire Safety Journal, 2006,41(5): 364-369.

[35] TANG T, SHAO Y, CHEN L, et al. Modeling passengers' boarding behavior at the platform of high speed railway station[J]. Journal of Advanced Transportation, 2017(UNSP 4073583).

[36] GUAN J, WANG K, CHEN F. A cellular automaton model for evacuation flow using game theory[J]. Physica A-Statistical Mechanics and its Applications, 2016,461: 655-661.

[37] ZHOU X, HU J, JI X, et al. Cellular automaton simulation of pedestrian flow considering vision and multi-velocity[J]. Physica a: Statistical Mechanics and its Applications, 2019,514: 982-992.

[38] LI X, GUO F, KUANG H, et al. An extended cost potential field cellular automaton model for pedestrian evacuation considering the restriction of visual field[J]. Physica a: Statistical Mechanics and its Applications, 2019,515: 47-56.

[39] YI J, PAN S, CHEN Q. Simulation of pedestrian evacuation in stampedes based on a cellular automaton model[J]. Simulation Modelling Practice and Theory, 2020,104(102147).

[40] YANG L Z, ZHAO D L, LI J, et al. Simulation of the kin behavior in building occupant evacuation based on Cellular Automaton[J]. Building and Environment, 2005,40(3): 411-415.

[41] 宋卫国, 于彦飞, 范维澄, 等. 一种考虑摩擦与排斥的人员疏散元胞自动机模型[J]. 中国科学E辑:工程科学 材料科学, 2005(07): 725-736.

[42] 李蒙, 李悦, 林从谋. 基于元胞自动机的地下建筑异质个体疏散仿真[J]. 武汉理工大学学报(信息与管理工程版), 2013,35(02): 183-186.

[43] TAO Y Z, DONG L Y. A floor field real-coded lattice gas model for crowd evacuation[J]. Epl, 2017,119(100031).

[44] MURAMATSU M, IRIE T, NAGATANI T. Jamming transition in pedestrian counter flow[J]. Physica A: Statistical Mechanics and its Applications, 1999,267(3): 487-498.

[45] MURAMATSU M, NAGATANI T. Jamming transition in two-dimensional pedestrian traffic[J]. Physica A: Statistical Mechanics and its Applications, 2000,275(1): 281-291.

[46] MURAMATSU M, NAGATANI T. Jamming transition of pedestrian traffic at a crossing with open boundaries[J]. Physica A: Statistical Mechanics and its Applications, 2000,286(1): 377-390.

[47] HUO F, SONG W, LV W, et al. Analyzing pedestrian merging flow on a floor-stair interface using an extended lattice gas model[J]. Simulation-Transactions of the Society for Modeling and Simulation International, 2014,90(5): 501-510.

[48] CHEN T, WANG W, TU Y, et al. Modelling unidirectional crowd motion in a corridor with statistical characteristics of pedestrian movements[J]. Mathematical Problems in Engineering, 2020,2020(7483210).

[49] CIRILLO E N M, COLANGELI M, MUNTEAN A, et al. A lattice model for active-passive pedestrian dynamics: A quest for drafting effects[J]. Mathematical Biosciences and Engineering, 2020,17(1): 460-477.

[50] ZHU K, YANG Y, NIU Y, et al. Modeling pedestrian flow on multi-storey stairs considering turning behavior[J]. International Journal of Modern Physics C, 2017,28(3).

[51] SHANG H, HUANG H, ZHANG Y. An extended mobile lattice gas model allowing pedestrian step size variable[J]. Physica A:Statistical Mechanics and its Applications, 2015,424: 283-293.

[52] HUGHES R L. A continuum theory for the flow of pedestrians[J]. Transportation Research Part B-Methodological, 2002,36(PII S0191-2615(01)00015-76): 507-535.

[53] HUGHES R L. The flow of human crowds[J]. Annual Review of Fluid Mechanics, 2003,35: 169-182.

[54] HUGHES R L. The flow of large crowds of pedestrians[J]. Mathematics and Computers in Simulation, 2000,53(4-6): 367-370.

[55] OKAZAKI S, MATSUSHITA S. A study of simulation model for pedestrian movement with evacuation and queuing[J]. Journal of Architecture Planning and Environmental Engineering (Transactions of AIJ), 1993,432.

[56] 崔喜红, 李强, 陈晋, 等. 基于多智能体技术的公共场所人员疏散模型研究[J]. 系统仿真学报, 2008(04): 1006-1010.

[57] 方正, 卢兆明. 建筑物避难疏散的网格模型[J]. 中国安全科学学报, 2001(04): 10.

[58] WANG P, CAO S. Simulation of pedestrian evacuation strategies under limited visibility[J]. Physics Letters a, 2019,383(9): 825-832.

[59] 金泽人, 阮欣, 李越. 基于元胞自动机的火灾场景行人流疏散仿真研究[J]. 同济大学学报(自然科学版), 2018,46(08): 1026-1034.

[60] ZHU Y, CHEN T, DING N, et al. Follow the evacuation signs or surrounding people during building evacuation, an experimental study[J]. Physica A: Statistical Mechanics and its Applications, 2020,560: 125156.

[61] ZHENG Y, JIA B, LI X, et al. Evacuation dynamics considering pedestrians’ movement behavior change with fire and smoke spreading[J]. Safety Science, 2017,92: 180-189.

[62] 陈一洲, 房志明. 突发灾害对疏散人群动态伤害的量化方法[J]. 武汉理工大学学报(信息与管理工程版), 2019,41(01): 7-11.

[63] 江奎东, 毛占利, 陈浩楠, 等. 基于蚁群算法的烟气中人员疏散路径选择优化[J]. 中国安全生产科学技术, 2018,14(11): 133-137.

[64] SHI X, XUE S, FELICIANI C, et al. Verifying the applicability of a pedestrian simulation model to reproduce the effect of exit design on egress flow under normal and emergency conditions[J]. Physica A-Statistical Mechanics and its Applications, 2021,562(125347).

[65] FU L, CAO S, SONG W, et al. The influence of emergency signage on building evacuation behavior: An experimental study[J]. Fire and Materials, 2019,43(1): 22-33.

[66] 李阳, 陈建忠, 张倩, 等. 考虑环境熟悉度的行人疏散模型研究[J]. 中国安全科学学报, 2016,26(04): 168-174.

[67] SONG X, MA L, MA Y, et al. Selfishness- and Selflessness-based models of pedestrian room evacuation[J]. Physica A: Statistical Mechanics and its Applications, 2016,447: 455-466.

[68] 何民, 韩智泉, 于海宁, 等. 考虑同伴群动态交流分组的行人仿真模型研究[J]. 交通运输系统工程与信息, 2017,17(02): 136-141.

[69] 宋英华, 涂文豪, 霍非舟, 等. 考虑跨越障碍物行为的元胞自动机模型[J]. 中国安全科学学报, 2020(4).

[70] SHANG H, SUN S, HUANG H, et al. An extended dynamic model for pedestrian traffic considering individual preference[J]. Simulation Modelling Practice and Theory, 2021,106(102204).

[71] QIN X, LIU H, ZHANG H, et al. A collective motion model based on two-layer relationship mechanism for bi-direction pedestrian flow simulation[J]. Simulation Modelling Practice and Theory, 2018,84: 268-285.

[72] 李辉鹏, 柳善耀, 刘丹, 等. 考虑恐慌影响的高校食堂应急疏散仿真研究[J]. 武汉理工大学学报(信息与管理工程版), 2020,42(04): 373-377.

[73] SONG X, MA L, MA Y, et al. Selfishness- and Selflessness-based models of pedestrian room evacuation[J]. Physica A: Statistical Mechanics and its Applications, 2016,447: 455-466.

[74] 陈海涛, 刘占, 张立红, 等. 低可见度情况下从众行为对疏散的影响分析[J]. 中国安全生产科学技术, 2016,12(08): 165-170.

[75] ZHENG Y, JIA B, LI X, et al. Evacuation dynamics considering pedestrians’ movement behavior change with fire and smoke spreading[J]. Safety Science, 2017,92: 180-189.

[76] WANG P, CAO S. Simulation of pedestrian evacuation strategies under limited visibility[J]. Physics Letters a, 2019,383(9): 825-832.

[77] 牟瑞芳, 杨锐, 王列妮. 熟悉环境条件下的公共场所人员疏散仿真模型研究[J]. 中国安全生产科学技术, 2015,11(05): 181-186.

[78] 杨灿, 陈群, 陈璐. 考虑在能见度受限下行人跟随行为特性的建模与模拟[J]. 物理学报, 2019,68(24): 81-95.

[79] 李强, 崔喜红, 陈晋. 大型公共场所人员疏散过程及引导作用研究[J]. 自然灾害学报, 2006(04): 92-99.

[80] 崔喜红, 李强, 李学东, 等. 公共场所疏散引导人静态布局优化算法及其应用[J]. 系统仿真学报, 2008(22): 6285-6289.

[81] 高凤强, 颜逾越, 许策, 等. 一种考虑引导作用的行人疏散元胞自动机模型[J]. 交通运输系统工程与信息, 2016,16(06): 60-66.

[82] 吕伟, 穆治国, 刘丹. 大型购物中心人员疏散引导模拟优化研究[J]. 中国安全生产科学技术, 2019,15(5): 136-141.

[83] 赵薇. 公共场所人员应急疏散引导研究[J]. 中国安全生产科学技术, 2016,12(09): 164-170.

[84] 马伟伟, 王洁, 吴茜蒙, 等. 紧急疏散下的引导员设置与仿真模拟[J]. 安全与环境学报, 2017,17(2): 625-629.

[85] KIRCHNER A, SCHADSCHNEIDER A. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics[J]. Physica a: Statistical Mechanics and its Applications, 2002,312(1): 260-276.

[86] 吕伟, 穆治国, 刘丹. 大型购物中心人员疏散引导模拟优化研究[J]. 中国安全生产科学技术, 2019,15(05): 136-141.

[87] 朱孔金, 杨立中. 房间出口位置及内部布局对疏散效率的影响研究[J]. 物理学报, 2010,59(11): 7701-7707.

[88] 杨灿, 陈群, 陈璐. 考虑在能见度受限下行人跟随行为特性的建模与模拟[J]. 物理学报, 2019,68(24): 87-101.

[89] 岳昊, 邵春福, 关宏志, 等. 基于元胞自动机的行人视线受影响的疏散流仿真研究[J]. 物理学报, 2010,59(07): 4499-4507.

[90] 胥旋. 人员非均匀分布条件下的疏散引导方向优化算法研究[J]. 中国安全生产科学技术, 2011,7(08): 34-37.

[91] ZHANG Z, JIA L. Optimal guidance strategy for crowd evacuation with multiple exits: A hybrid multiscale modeling approach[J]. Applied Mathematical Modelling, 2021,90: 488-504.

[92] HOU L, LIU J, PAN X, et al. A social force evacuation model with the leadership effect[J]. Physica A: Statistical Mechanics and its Applications, 2014,400: 93-99.

中图分类号:

 TU998.1    

条码号:

 002000062923    

馆藏号:

 TD10049576    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式