- 无标题文档
查看论文信息

中文题名:

 含WS2和ZnO钛铝基自润滑复合材料的摩擦学性能研究    

姓名:

 侯佳涛    

学号:

 1049721101247    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080201    

学科名称:

 机械制造及其自动化    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 机电工程学院    

专业:

 机械工程    

研究方向:

 表面微纳结构及摩擦学    

第一导师姓名:

 章桥新    

第一导师院系:

 武汉理工大学    

完成日期:

 2014-10-30    

答辩日期:

 2014-11-12    

中文关键词:

 钛铝 ; WS2 ; ZnO ; 自润滑复合材料 ; 摩擦磨损    

中文摘要:

       相比液体润滑剂,固体润滑剂在高温摩擦磨损领域具有明显优势。但大量研究发现,传统固体润滑剂如石墨、二硫化钨、氧化锌、氟化钡和软金属Ag等只能在有限的温度区间内发挥良好的润滑减摩耐磨性能。因此,恰当的选用两种或两种以上固体润滑剂组合为复合固体润滑剂,利用复合固体润滑剂的协同润滑减摩耐磨效应是实现固体自润滑材料宽温域均拥有优异摩擦学性能的有效方法之一。

       本文从固体润滑剂组元、不同添加量等方面设计了适用于低温到高温范围的钛铝基自润滑复合材料,采用放电等离子烧结制备含固体润滑剂WS2、固体润滑剂ZnO和复合固体润滑剂(WS2和ZnO)的钛铝基自润滑复合材料。研究了含不同添加量润滑剂的钛铝基自润滑复合材料的微观组织结构特征;不同添加量固体润滑剂的钛铝基自润滑复合材料在25-800°C测试温度区间的摩擦学性能;复合固体润滑剂(WS2和ZnO)的钛铝基自润滑复合材料材料在25-800°C测试温度区间的协同润滑减摩耐磨性能;采用X射线衍射仪分析了钛铝基自润滑复合材料的表面成分,利用扫描电子显微镜、场发射扫描电镜、光电子能谱仪、X射线衍射仪、电子探针和能谱仪观察分析了复合材料不同测试温度下磨痕和磨痕端口的形貌及其成分,并探讨了钛铝基自润滑复合材料的摩擦磨损与自润滑机理。

       通过高温摩擦磨损试验分析了含0wt.%、5wt.%、10wt.%和15wt.%gut 润滑剂WS2的钛铝基自润滑复合材料在25-800°C测试温度区间的摩擦学性能。结果表明:固体润滑剂WS2的添加能够改善钛铝基自润滑复合材料的摩擦学性能,在低温区间(25-400°C)钛铝基自润滑复合材料中WS2的理想的添加量是10wt.%,使其显示出了较优异的摩擦学性能。

       通过高温摩擦磨损试验分析了含0wt.%、5wt.%、10wt.%和15wt.%固体润滑剂ZnO的钛铝基自润滑复合材料在25-800°C测试温度区间的摩擦学性能。结果表明:固体润滑剂ZnO的添加能够改善钛铝基自润滑复合材料的摩擦学性能,在高温区间(400-800°C)钛铝基自润滑复合材料中ZnO的理想的添加量是10wt.%,使其显示出了较优异的摩擦学性能。

       研究了10wt.% WS2+10wt.% ZnO复合固体润滑剂的钛铝基自润滑复合材料在25-800°C测试温度区间的摩擦学性能。结果表明:在25-800°C区间,含10wt.% WS2+10wt.% ZnO的钛铝基自润滑复合材料的摩擦系数和磨损率均明显低于钛铝基自润滑复合材料;其摩擦系数和磨损率基本处于恒定值,在低中温测试区间WS2发挥润滑减摩耐磨特征,在高温测试区间ZnO发挥润滑减摩耐磨特征;这种不同温域选择性的摩擦学特性为我们认识固体润滑剂的使用和实现宽温域优异摩擦学性能设计提供理论指导与新认识。

参考文献:

[1] 李玉峰, 欧阳家虎, 周玉. 高温固体润滑材料研究的发展现状 [J]. 热处理技术与装备, 2007, 28(6): 2-5.

[2] Jianing Li, Chuanzhong Chena, Tiziano Squartini, et. al. A study on wear resistance and microcrack of the Ti3Al/TiAl+TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy [J]. Applied Surface Science, 2010, 257(5):1550-1555.

[3] S. Djanarthany, J.C. Viala, J. Bouix. An overview of monolithic titanium aluminides based on Ti3Al and TiAl [J]. Materials Chemistry and Physics , 2001, 72(3):301-319.

[4] Xiu-Bo Liu, Hua-Ming Wang. Modification of tribology and high-temperature behavior of Ti-48Al-2Cr-2Nb intermetallic alloy by laser cladding [J]. Applied Surface Science, 2006, 252(16):5735-5744.

[5] Sugishita. Junji, Terada. Mashahito. Friction and wear of TiAl-alloys [J]. Institute of Materials, Processing and Fabrication of Advanced Materials, 1998,6(2): 1891-1900.

[6] C.X. Li, J. Xia, H. Dong. Sliding wear of TiAl intermetallics against steel and ceramics of Al2O3,Si3N4 and WC/Co [J]. Wear, 2006, 261(5-6):693-701.

[7] A.R. Rastkar, A. Bloyce, T. Bell. Sliding wear behaviour of two gamma-based titanium aluminides [J]. Wear, 2000, 240(1-2):19-26.

[8] A.R. Rastkar, B. Shokri. A multi-step process of oxygen diffusion to improve the wear performance of a gamma-based titanium aluminide [J]. Wear, 2008, 264(11-12): 973-979.

[9] Kazuhisa Miyoshi, Bradley A. Lerch, Susan L. Draper. Fretting wear of Ti-48Al-2Cr-2Nb [J]. Tribology International, 2003, 36(2):145-153.

[10] Xiaoping Liu, Wenhuai Tian, Wei Xu, et al. Wear resistance of TiAl intermetallics by plasma alloying and plasma carburization [J]. Surface & Coatings Technology, 2007, 201(9-11): 5278-5281.

[11] T. Sun, Q.Wang, D.L. Sun, et al. Study on dry sliding friction and wear properties of Ti2AlN/TiAl composite [J]. Wear, 2010, 268(5-6):693–699

[12] S. Gupta, D. Filimonov, V. Zaitsev, et al. Ambient and 550℃ tribological behavior of select MAX phases against Ni-based superalloys [J]. Wear, 2008, 264(3-4):270-278.

[13] H.E. Sliney. A new chromium carbide-based tribological coating for use to 900°C with particular reference to the Stirling engine [J]. J. Vac. Sci. Technol. A, 1986, 4:2629-2632.

[14] C. DellaCorte, H.E. Sliney. Tribological Properties of PM212: A High-Temperature, Self-Lubricating Powder Metallurgy Composite. NASA/TM-102355, 1990.

[15] Y. Jin, K. Kato, N. Umehara. Tribological properties of self-lubricating CMC/Al2O3 pairs at high temperature in air [J]. Tribol. Lett., 1998, 4:243-250.

[16] M.B. Peterson, S.F. Murray, J.J. Florek. Consideration of lubricants for temperatures above 1 000F [J]. ASME Trans, 1959, 2:225-234.

[17] 李建亮, 熊党生. 宽温固体润滑材料基涂层的高温摩擦特性研究 [D]. 南京:南京理工大学, 2009.

[18] N Hiraoka. Wear life mechanism of journal bearings with bonded MoS2 film lubricants in air and vacuum [J]. Wear, 2001, 249(10-11), 1014-1020.

[19] 王黎钦, 应丽霞, 古乐等. 固体自润滑复合材料研究进展及其制备技术发展趋势 [J]. 机械工程师, 2002, (9):6-8.

[20] D.S. Xiong, C.Q.Peng, Q.Z. Huang. Development of MoS2-containing Ni-Cr based alloys and their high-temperature tribological properties [J]. Trans. Nonferrous. Met. Soc. China, 1998, 8(2):226-229.

[21] D.S. Xiong. Effects of MoS2 on mechanical and tribological properties of NiCr-based alloys [J]. Trans. Nonferrous. Met. Soc. China, 2000, 10(3):328-331.

[22] 刘如铁, 李溪滨, 程时和. 金属基固体自润滑材料的研究概况 [J]. 粉末冶金工业, 2001,11(3):51-55.

[23] R. Tyagi, D.S. Xiong, J.L. Li. Effect of load and sliding speed on friction and wear behavior of silver/h-BN containing Ni-base P/M composites [J]. Wear, 2011, (270):423-430.

[24] S. Gupta, M.W. Barsoum. On the tribology of the MAX phases and their composites during dry sliding: A review [J]. Wear, 2011, (271):1878-1894.

[25] M. Woydt. Tribological characteristics of polycrystalline Magneli-type titanium dioxides [J]. Tribol. Lett., 2000, (8):117-130.

[26] M. Woydt, A. Skopp, K.H. Habig. Dry friction and wear of self-mated sliding couples of SiC-TiC and Si3N4-TiN [J]. Wear, 1991, (148):377-394.

[27] Z.Y. Huang, H.Z. Zhai, M.L. Guan, X. Liu, M. Ai, Y. Zhou. Oxide-film-dependent tribological behaviors of Ti3SiC2 [J]. Wear, 2007, (262): 1079-1085.

[28] S.M. Aouadi, Y. Paudel, B. Luster, S. Stadler, P. Kohli, C. Muratore, C. Hager, A.A.Voevodinl. Adaptive Mo2N/MoS2/Ag tribological nanocomposite coatings for aerospace applications [J]. Tribol. Lett., 2008, (29):95-103.

[29] C.S. Ramesh, A. Ahamed. Friction and wear behaviour of cast Al 6063 based in situ metal matrix composites [J]. Wear, 2011, (271):1928-1939.

[30] F. Akhtar. Microstructure evolution and wear properties of in situ synthesized TiB2 and TiC reinforced steel matrix composites [J]. J. Alloys Compd., 2008, (459):491-497.

[31] J. Cheng, J. Yang, X.H. Zhang, H. Zhong, J.Q. Ma, F. Li, L.C. Fu, Q.L. Bi, J.S. Li, W.M. Liu. High temperature tribological behavior of a Ti-46Al-2Cr-2Nb intermetallics [J]. intermetallics, 2012, (31):120-126.

[32] S.Y. Zhu, Q.L. Bi, J. Yang, W.M. Liu. Tribological Property of Ni3Al Matrix Composites with Addition of BaMoO4 [J]. Tribol. Lett., 2011, (43):55-63.

[33] Z.Y. Zhai, H.X. Zhai, Y. Zhou, Z.L. Zhang, Y.F. Wang. Frictional layer and its antifriction effect in high-purity Ti3SiC2 and TiC-contained Ti3SiC2 [J]. Key Eng. Mater., 2005, (280-283):1347-1352.

[34] Z.Y. Zhai, H.X. Zhai, Y. Zhou, Y.F. Wang, Z.L. Zhang. Sliding friction behavior of bulk Ti3SiC2 under different normal pressures [J]. Key Eng. Mater., 2005, (280-283):1353-1356.

[35] C. Muratore, A.A. Voevodin. Chameleon coatings: Adaptive surfaces to reduce friction and wear in extreme environments [J]. Annu. Rev. Mater. Res., 2009, (39):297-324.

[36] S.M. Aouadi, B. Luster, P. Kohli, C. Muratore, A.A. Voevodin. Progress in the development of adaptive nitride-based coatings for high temperature tribological applications [J]. Surf. Coat. Technol., 2009, (204):962-968.

[37] T.A. Blanchet, J.H. Kim, S.J. Calabrese, C. Dellacorte. Thrust-washer evaluation of self-lubricating PS304 composite coatings in high temperature sliding contact [J]. Tribol. Trans., 2002, (45):491-498.

[38] W. Wang. Application of a high temperature self-lubricating composite coating on steam turbine components [J]. Surf. Coat. Technol., 2004, (177): 12-17.

[39] 薛群基,吕晋军. 高温固体润滑研究的现状及发展趋势 [J]. 摩擦学学报, 1999, 19(1):91-95.

[40] 党鸿辛,高金堂. 空间技术用固体润滑的发展现状与展望 [J]. 摩擦学学报, 1992, 12(1):1-7.

中图分类号:

 TB333    

馆藏号:

 TB333/1247/2014    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式