- 无标题文档
查看论文信息

中文题名:

 面向异构网络的光纤传感嵌入式适配系统设计与实现    

姓名:

 陈高波    

学号:

 1049721203142    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0810    

学科名称:

 信息与通信工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 信息工程学院    

专业:

 信息与通信工程    

研究方向:

 嵌入式系统与智能控制    

第一导师姓名:

 周祖德    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-04-10    

答辩日期:

 2015-05-04    

中文关键词:

 异构网络 ; 光纤传感 ; 适配接入 ; 协议转换 ; 速率匹配    

中文摘要:

  光纤传感技术是现代工业测控、机械装备的行为状态监测和故障诊断等应用领域中的新兴的一种技术和方法。光纤传感器具备体积小、电绝缘、抗电磁干扰、分布多参数检测等优点,基于光栅光纤传感的检测适配技术,有效解决了传统的工业异构网络无法有效获取复杂工业环境下多点、多参数、分布式检测信息的问题。研究光纤传感网络与传统异构网络间数据的互联互通,可以共享各异构网络的检测信息,更全面、精准的实现对机械设备的监测、预警、实时故障诊断。
  本文分析和总结的光纤传感网络的技术优势和通信特点,针对光纤传感网络与工业现场总线网络、工业无线网络的数据传输的差异性,提出了面向异构网络的光纤传感嵌入式适配体系架构,设计并实现了基于该体系架构的适配系统的软硬件功能,实现了三种异构网络间的数据交互和差异化数据速率匹配。研究工作如下:
  (1)针对光纤传感网络的数据峰值高数据特点,适配系统应用领域的功能需求、技术难点、现有成熟应用方案的架构,提出了适配系统的整体功能架构。该架构采用了统一的以太网接口接入三种异构网络,屏蔽了异构网络的差异化数据接口。
  (2)针对光纤传感网络的高速数据流量和实时数据解析需求,提出了采用千兆以太网电路适配接入光纤传感网络。针对现场总线网络数据接口的不统一,设计了EthernetToCAN硬件模块接入现场总线网络适配系统的整体硬件电路。此外还设计了相关辅助电路:AM3359核心电路、WLAN无线网络电路、USB和串口调试电路、W5500以太网电路、CAN接口电路、50Ω微带线电路、系统电源管理电路等。并对各模块电路进行了原理的设计分析、功能性验证仿真设计与分析、PCB板图设计、板级信号完整性仿真设计与分析。
  (3)设计了三种异构网络与适配系统间的数据接入接口以及工业现场总线网络和工业无线网络接入光纤传感网络数据的接入接口。针对异构网络间的数据接口和传输速率的差异,提出了基于查找表分块策略的协议转换和速率匹配机制。
  (4)搭建了实际的测试平台,测试和分析了适配系统的整体性能。硬件方面,测试和分析系统供电模块性能和高速数字差分信号的完整性;软件方面,进行了适配系统的功能完整性测试和分析、光纤传感网络与工业现场总线网络的数据交互测试、光纤传感网络与工业无线网络间的数据交互测试,从丢包率和数据传输的实时性方面分析和总结适配系统的数据接入性能。
  本文设计与实现了面向异构网络的光纤传感嵌入式适配系统,测试结果表明适配系统实现了光纤传感网络的数据与工业现场总线网络、工业无线网络的数据交互和适配接入,在数据吞吐量、速率匹配以及整体接入性能方面达到设计标准,有效的解决了光纤传感网络与传统异构网络间的互联互通问题。

 

 

参考文献:

[1] Yang Ming, Li Guang.Analysis of PROFINET IO Communication Protocol[C]. Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control,2014.

[2] Huseyin Ulvi Aydogmus,Akbas,Ibrahim Delibasoglu.Designing a CAN BUS Based Measurement System for Forklift Simulator[J].Computer Engineering Department, 2013:498-50.

[3] Guohong Li, Cheng Xiao and Zhuang Wu. Development and Application Control Network Based on DeviceNet[C]. International Conference on Information Science and Technology, March 26-28, 2011 Nanjing, Jiangsu, China.

[4] Cena. G, Bertolotti.I.C, Tingting Hu, Valenzano.A. Design, verification, and performance of a MODBUS-CAN adaptation layer[J]. Factory Communication Systems (WFCS), 2014. 10:1-10.

[5] Li Hui, Zhang Hao, Peng Daogang. Research and application on INTERBUS operator terminal[J]. Computer Science and Information Technology, 2009:309 – 312.

[6] Noguchi. S, Suzuki. K, Chino. S, Sakurada. H, Tarui. I, Ban. N, Charles. P. FDT technology for CC-link network[C]. SICE Annual Conference (SICE), 2011.

[7] Xu Guangli, Zhang Hao. Research and development for the communication interface conversion of Profibus and CAN bus[C]. Computer Application and System Modeling, 2010.

[8] 周倩.工业无线网路技术研究与应用[D].大连理工大学,2007.

[9] 周祖德,谭跃刚,刘明尧,杨文玉,李正颖. 机械系统光纤光栅分布动态监测与诊断的现状与发展[J]. 机械工程学报, 2013, 49(19):55-69.

[10] 徐德慧. 现场总线嵌入式技术和应用研究[D]. 上海交通大学,2009.

[11] Krystian Erwinski, Marcin Paprocki, Lech M. Grzesiak, Kazimierz Karwowski, and Andrzej Wawrzak. Application of Ethernet Powerlink for Communication in a Linux RTAI Open CNC system[J]. Industrial Electronics, 2013, 60(2): 628-636.

[12] 杨兴果. 基于MCGS与CAN_bus的石墨电极生产过程参数监测网设计[D].湖南大学,2007.

[13] Jihong Liu,Wenting Xu. Technical State Monitoring and Evaluation of Aerospace Product Manufacturing Workshop Based on Internet of Things[C]. Green Computing and Communications, 2013.

[14] Mangan. S, Jihong Wang. Development of a Novel Sensorless Longitudinal Road Gradient Estimation Method Based on Vehicle CAN Bus Data[J].Mechatronics, 2007, 12(3):375-386.

[15] Zhao Jue, Yang Shun.Design of Modbus-Profibus fieldbus bridge based on the STM32 and VPC3 + C[C].Software Engineering and Service Science, 2012: 411-414.

[16] Naiping Hu, Lu Li.The Research and Design of the Can Bus to Ethernet Gateway Based on SSL[C].Computer Science and Engineering, 2009:135-138.

[17] Strasser. T, Froschauer. R.Autonomous Application Recovery in Distributed Intelligent Automation and Control Systems[J].Systems, Man, and Cybernetics, Part C: Applications and Reviews,2012, 42(6):1054-1070.

[18] Silva. I, Guedes L.A., Vasques F.A new AODV-based routing protocol adequate for monitoring applications in oil & gas production environments[J].Factory Communication Systems, 2010:283-293.

[19] Galloway, B, Hancke G.P.Introduction to Industrial Control Networks[J].Communications Surveys & Tutorials,2013,15(2):860-880.

[20] Silva, F. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards[M].Industrial Electronics Magazine,2014.

[21] Haibo Zhang, Soldati P, Johansson, M. Performance Bounds and Latency-Optimal Scheduling for Convergecast in WirelessHART Networks[J].Wireless Communications,2013,12(6):2688-2696.

[22] Saifullah A, You Xu, Chenyang Lu, Yixin Chen.Real-Time Scheduling for WirelessHART Networks[C].31st Real-Time Systems Symposium,2010:150-159.

[23] Omiyi P.E, Bu?r K, Yang. Y.Distributed Convergecast Scheduling for Reduced Interference in Wireless Sensor and Actuator Networks[C].Wireless Communications and Networking,2010:1-5.

[24] Nazari Shirehjini, A.A., Yassine, A., Shirmohammadi, S. An RFID-Based Position and Orientation Measurement System for Mobile Objects in Intelligent Environments[J].Instrumentation and Measurement,2012,61(6):1664-1675.

[25] S. Willis and S. Helal, A passive RFID information grid for location and proximity sensing for the blind user, Univ. Florida, Gainesville, FL,Tech. Rep. TR04-009. [Online]. Available: http://www.cise.ufl.edu/tech_reports/tr04/tr04-009.pdf

[26] Ahmad, M.Y., Mohan, A.S. Novel Bridge-Loop Reader for Positioning With HF RFID Under Sparse Tag Grid[J].Industrial Electronics,2014,61(1):556-566.

[27] Baldi M, Giacomelli R, Marchetto G. Included in Your Digital Subscription Time-Driven Access and Forwarding for Industrial Wireless Multihop Networks[J].Industrial Informatics,2009,5(2):99-112.

[28] Maier M, Le?vesque M. Dependable Fiber-Wireless (FiWi) Access Networks and Their Role in a Sustainable Third Industrial Revolution Economy[J].Reliability,2014,63(2):386-400.

[29] Yanhong Yang, Xiaotong Zhang, Qiong Luo, Wenchao Li.Dynamic time division multiple access algorithm for industrial wireless hierarchical sensor networks[J].network technology and application, 2013,10(5):137-145.

[30] 高汉荣. 基于EPAWireless的无线接入网关设计[D].浙江大学,2010.

[31] 张 帅, 冯冬芹, 褚 健. 基于概率的EPAWireless时钟同步方法[J]. 浙江大学学报(工学版),2014,48(9):1552-1557.

[32] 程 峰,冯冬芹,褚 健.基于 EPA 的工业无线网络实时可靠路由算法[J].计算机工程,2014,40(5):73-80.

[33] 夏显中,牛玉刚,王 骏.基于WirelessHART的监控系统设计[J].华东理工大学学报(自然科学版),2013,39(4):488-492.

[34] 唐天勇,章国宝,叶 桦.基于嵌入式Linux系统的WLAN/CAN网桥的设计与实现[J].东南大学学报(自然科学版),2003,33:171-174.

[35] Zhou Zude,Liu Quan,AI Qingsong,et al. Intelligent monitoring and diagnosis for modern mechanical equipment based on the integration of embedded technology and FBGS technology[J]. Measurement ,2011,44(9):1499-1511.

[36] Zhou Z D,Jiang Desheng,Zhang Dongshen. Digital monitoring for heavy duty mechanical equipment based on fiber Bragg grating sensor[J]. Science in China Series E-Technological Sciences,2009,52(2):285-293.

[37] 赵哲.光纤布拉格光栅液位传感器的实验研究[D].北京化工大学,2008.

[38] 蒋熙馨,周祖德.基于C型管的FBG压力传感器特性研究[J].武汉理工大学学报,2009,31(24):46-49.

[39] Zhang K, Butler C, Qingping Yang, Lu Y.A fiber optic sensor for the measurement of surface roughness and displacement using artificial neural networks[J].Instrumentation and Measurement,1997,46(4):899-902.

[40] XiaoleiLi,Qizhen Sun,Jianghai Wo,Manliang Zhang,Deming Liu. Hybrid TDM/WDM-Based Fiber-Optic Sensor Network for Perimeter Intrusion Detection[J].Lightwave Technology,2012,30(8):1113-1120.

[41] Meunier C,Guerin J J,Lequime M, Rioual M, Noel E, Eguiazabal D, Fleury D, Maurin J, Mongin R. Industrial prototype of a fiber-optic sensor network for the thermal monitoring of the turbogenerator of a nuclear power plant-design, qualification, and settlement[J]. Lightwave Technology,1995,13(7):1354-1361.

[42] 邓希望.基于NI数据采集模块光纤光栅传感解调系统研究[D].武汉理工大学,2013.

[43] Yuhan Ding,Xianzhong Dai,Tao Zhang.Low-Cost Fiber-Optic Temperature Measurement System for High-Voltage Electrical Power Equipment[J].Instrumentation and Measurement,2010,59(4):923-933.

[44] 王月明.光纤光栅传感产业化技术研究及应用[D].武汉理工大学,2009.

[45] 蔡林均.高速光纤光栅传感解调系统设计与实现[D].武汉理工大学,2013.

[46] 唐志浩.高速光纤光栅解调系统数据传输与监测软件设计[D].武汉理工大学,2013.

[47] Childs, P. An FBG sensing system utilizing both WDM and a novel harmonic division scheme[J]. Journal of Lightwave Technology, 2005, (1):348-354.

[48] Fu J J, Liu W S, Chen D, et al. Ultra-long-distance fbg sensor system based on spectrum-limited fourier domain modelocking fibre laser with raman pumps[J]. Electronics Letters, 2008, 44(16):961 - 963.

[49] J S, Y D, X C, et al. Thermally tunable dispersion compensator in 40-Gb/s system using FBG fabricated with linearly chirped phase mask.[J]. Opt Express, 2006, 14(1):44-49.

[50] Ukkonen L, Sydanheimo L, Kivikoski M. Read Range Performance Comparison of Compact Reader Antennas for a Handheld UHF RFID Reader[C]. RFID, 2007:63 - 70.

[51] Kiang J. Microstrip Lines On Substrates With Segmented Or Continuous Permittivity Profiles[J]. Microwave Theory and Techniques, 1997, 45(2):229 - 235.

[52] Guha D, Antar Y M M, Siddiqui J Y, et al. Resonant resistance of probe- and microstrip-line-fed circular microstrip patches[J]. Microwaves, antennas and propagation, 2005:481-484.

中图分类号:

 TP311.52    

馆藏号:

 TP311.52/3142/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式