- 无标题文档
查看论文信息

中文题名:

 

热导率效应对水溶液中椭球状胶体热泳的影响分析

    

姓名:

 杨明远    

学号:

 1049722003850    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082402    

学科名称:

 工学 - 船舶与海洋工程 - 轮机工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 能源与动力工程学院    

专业:

 轮机工程    

研究方向:

 微流体传热传质    

第一导师姓名:

 周懿    

第一导师院系:

 船海与能源动力工程学院    

完成日期:

 2023-03-20    

答辩日期:

 2023-05-18    

中文关键词:

 

热泳 ; 椭球状颗粒 ; 表面电荷密度 ; 表面电势 ; 双电层

    

中文摘要:

热泳在纳米流体的强化传热中具有重要意义。最近,热泳技术与微流体技术的结合为纳米颗粒的积累、自脉冲、微尺度涡轮机、DNA操作、癌症检测和卷积神经网络等领域提供了一个高效的工具。本文以水溶液中单个带电椭球形胶体颗粒为研究对象,通过理论推导和数值模拟的方法描述了在热导率效应的影响下,不同带电性质的椭球体颗粒在水溶液中的热泳。参数化分析得到了在热导率效应的影响下,热扩散系数与颗粒形状、双电层(EDL)厚度以及不同带电性质的依赖关系,所得结论对操纵椭球体颗粒提供理论指导,且有助于有效实现纳米流体的强化传热。

1)对于固定表面电势的长(扁)椭球体颗粒,在厚度接近短半轴的薄区域内,长椭球体和扁椭球体周围的温度场呈现出非线性分布。当非线性温度区域相对EDL较薄时,椭球状颗粒热扩散系数与热导率效应之间没有明确的依赖关系。当非线性温度区域相对EDL较厚时,椭球状颗粒热扩散系数受热导率效应的影响不可忽略,且热导率效应的影响和热导率比以及长径比有关。对于聚合物椭球体,热扩散系数大于“正常”颗粒,并且随着EDL厚度的减小而逐渐增加至一个恒定值。对于二氧化硅或金属氧化物椭球体,热扩散系数小于“正常”颗粒,并且随着EDL厚度的减小而逐渐减小至一个恒定值。最后,为了预测具有任意热导率、电解质浓度和颗粒形状的椭球状胶体的热扩散系数,推导出了一个参数,即EDL区域内椭球体赤道处的平均无量纲轴向温度梯度,以近似估计具有任意热导率和EDL厚度的带电椭球体颗粒的热泳行为。

2)对于固定表面电荷密度的长(扁)椭球体颗粒,表面电势的分布取决于EDL厚度和颗粒形状。在EDL较厚情况下,颗粒表面电势分布不均匀且最大值分别位于长(扁)椭球体的赤道处(两极)。而EDL较薄情况下,表面电势分布均匀。长(扁)椭球体颗粒的热扩散系数与长径比、EDL厚度的依赖关系和恒定表面电势相比趋势完全不同。当EDL较厚时,长(扁)椭球体在固定表面电荷密度的边界条件下获得的热扩散系数都远大于固定表面电势时的热扩散系数。而当EDL较薄时,结论正好相反。但是与长椭球体不同的是,当长径比足够大时,扁椭球体颗粒的曲率效应对热扩散系数几乎没有影响。当EDL较厚时,热导率效应对长(扁)椭球体的热扩散系数的影响较小。然而,当EDL较薄时,热导率效应较为显著。相比于长椭球体,扁椭球体的热导率效应更加明显,尤其是聚合物椭球体。

参考文献:

[1] Niether D, Afanasenkau D, Dhont J, et al. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(16) : 4272-4277.

[2] Baaske P, Weinert F, Duhr S, et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems [J]. Proceedings of the National Academy of Sciences of the United State of America, 2007, 104(22) : 9346-9351.

[3] Okabe K, Inada N, Gota C, et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy [J]. Nature Communications, 2012, 3(1) : 705-714.

[4] Tan Z. Thermophoretic Transport in Dispersions of Asymmetric Colloids and Microchannels, [D]. Germany: University of Cologne, 2018.

[5] Ludwig C. Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösungen [J]. Sitzungsber Akad Wiss Wien Math-Naturwiss, 1856, 20(539) : 302-311.

[6] Sieniutycz S. Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical and Biological Systems [J]. Open Systems & Information Dynamics, 2003, 10(2) : 205-212.

[7] Lin L, Zhang J, Peng X, et al. Opto-thermophoretic assembly of colloidal matter [J]. Adv, 2017, 3(9) : 458-463.

[8] Duhr S, Braun D. Optothermal molecule trapping by opposing fluid flow with thermophoretic drift [J]. Phys Rev Lett, 2006, 97(3) : 103-124.

[9] Wienken C, Baaske P, Rothbauer U, et al. Protein-binding assays in biological liquids using microscale thermophoresis [J]. Nature Communications, 2010, 1(1): 100-116.

[10] Maeda Y, Buguin A, Libchaber A, et al. Thermal separation: interplay between the Soret effect and entropic force gradient [J]. Phys Rev Lett, 2011, 107(3): 301-316.

[11] Baaske P, Wienken C, Reineck P, et al. Optical Thermophoresis for Quantifying the Buffer Dependence of Aptamer Binding [J]. Angewandte Chemie International Edition, 2009, 49(12) : 2238-2241.

[12] Mcenaney P. Platform Technologies in Drug Discovery and Validation [M]. San Diego: Academic Press, 2017 : 481-518.

[13] Williams M. Thermophoretic forces acting on a spheroid [J]. Journal of Physics D, Applied Physics, 1986, 19(9) : 1631-1642.

[14] Rasuli S, Golestanian R. Soret motion of a charged spherical colloid [J]. Physical review letters, 2008, 101(10) : 301-314.

[15] Ande J. Colloid Transport by Interfacial Forces [J]. Annual Review of Fluid Mechanics, 1989; 21(1) : 61-99.

[16] Galliero G, Volz S. Thermodiffusion in model nanofluids by molecular dynamics simulations [J]. Journal of Chemical Physics, 2008, 128(6) : 6330-6346.

[17] Ruckenstein E. Can phoretic motions be treated as interfacial tension gradient driven phenomena [J]. Journal of Colloid and Interface Science, 1981, 83(1) : 77-81.

[18] Zhao Y, Zhao C, He J, et al. Collective effects on thermophoresis of colloids: a microfluidic study within the framework of DLVO theory [J]. Soft matter, 2013, 9(32) : 7726-7734.

[19] Chen J, Cong H, Loo F, et al. Thermal gradient induced tweezers for the manipulation of particles and cells [J]. Scientific Reports, 2016, 6(1) : 1-13.

[20] Lin L, Peng X, Mao Z, et al. Interfacial-entropy-driven thermophoretic tweezers [J]. Lab on a Chip, 2017, 17(18): 3061-3076.

[21] Vigolo D, Rusconi R, Stone H A, et al. Thermophoresis: Microfluidics characterization and separation [J]. Soft matter, 2010, 6(15) : 3489-3493.

[22] Zha L, Banik B, Alexis F. Stimulus responsive nanogels for drug delivery [J]. Soft matter, 2011, 7(13) : 5908-5916.

[23] Scherer C, Figueiredoneto A . Ferrofluids: Properties and Applications [J]. Brazilian Journal of Physics, 2005, 35(3) : 718-727.

[24] Mériguet G, Demouchy G, Dubois E, et al. Experimental Determination of the Soret Coefficient of Ionic Ferrofluids: Influence of the Volume Fraction and Ionic Strength [J]. Journal of Non-Equilibrium Thermodynamics, 2007, 32(3) : 271-279.

[25] Sehnem A, Neto A, Niether D, et al. Diffusiophoresis as ruling effect: Influence of organic salts on thermodiffusion of iron oxide nanoparticles [J]. Physical Review E, 2018, 98(6) : 615-629.

[26] Duhr S, Braun D. Why molecules move along a temperature gradient [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(52) : 19678-19682.

[27] Würger A. Temperature Dependence of the Soret Motion in Colloids [J]. Langmuir, 2009, 25(12) : 6696-6701.

[28] Kumar N , Ghanta K , Hens A . CFD based investigation of Microfluidic thermophoresis [J]. Journal of the Indian Chemical Society, 2020, 97 (6) : 302-324

[29] Huang B, Roger M, Bonetti M, et al. Thermoelectricity and thermodiffusion in charged colloids [J]. The Journal of chemical physics, 2015, 143(5) : 902-921.

[30] Dhont J, Wiegand S, Duhr S, et al. Thermodiffusion of Charged Colloids:  Single-Particle Diffusion [J]. Langmuir, 2007, 23(4) : 1674-1683.

[31] Anderson J. Colloid Transport by Interfacial Forces [J]. Annual Review of Fluid Mechanics, 1989, 21(1) : 61-99.

[32] Prieve D, Anderson J, Ebel J, et al. Motion of a particle generated by chemical gradients [J]. Journal of Fluid Mechanics, 1984, 148(2) : 247-269.

[33] Sehnem A, Figueiredo N, Aquino R, et al. Temperature dependence of the Soret coefficient of ionic colloids [J]. Physical review E, Statistical, nonlinear, and soft matter physics, 2015, 92(4) : 311-324.

[34] Putnam S, Cahill D, Wong G. Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles [J]. Langmuir, 2007, 23(18) : 9221-9228.

[35] Soo S. Topics in Current Aerosol Research[J]. Journal of Aerosol Science, 1972, 3(3) : 212-213.

[36] Ghofraniha N, Ruocco G, Conti C. Collective thermal diffusion of silica colloids studied by nonlinear optics [J]. Langmuir, 2009, 25(21) : 12495-12500.

[37] Zhou Y, Deng X, Liang S, et al. Numerical analysis of thermophoresis of charged colloidal particles in non-Newtonian concentrated electrolyte solutions [J]. Electrophoresis, 2022, 43(21-22) : 2267-2275.

[38] Dong R, Zhou Y, Yang C, et al. Experimental study on thermophoresis of colloids in aqueous surfactant solutions [J]. Journal of physics Condensed matter : an Institute of Physics journal, 2015, 27(49) : 102-118.

[39] Morthomas J, Würger A. Thermoelectric effect on charged colloids in the Hückel limit [J]. The European Physical Journal E, 2008, 27(4): 425-434.

[40] Mcnab G, Meisen A. Thermophoresis in liquids [J]. Journal of Colloid and Interface Science, 1973, 44(2) : 339-346.

[41] Zhou Y, Zhao C, Li K, et al. Numerical analysis of thermal conductivity effect on thermophoresis of a charged colloidal particle in aqueous media [J]. International Journal of Heat and Mass Transfer, 2019, 142(1) : 421-431.

[42] Tyndall J. On Haze and Dust [J]. Nature, 1870, 1(1) : 339-432.

[43] Maxwell J. On Stresses in Rarified Gases Arising from Inequalities of Temperature [J]. Philosophical Transactions of the Royal Society of London, 1879, 170(185) : 231-256.

[44] Schadt C, Cadle R. Thermal forces on aerosol particles [J]. The Journal of Physical Chemistry, 1961, 65(10) : 1689-1694.

[45] Brock J. On the theory of thermal forces acting on aerosol particles [J]. Journal of Colloid Science, 1962, 17(8) : 768-780.

[46] Brenner H, Bielenberg J. A continuum approach to phoretic motions: Thermophoresis [J]. Physica A Statistical Mechanics & Its Applications, 2005, 355(2-4) : 251-273.

[47] Senchenko S, Keh H. Thermophoresis of a slightly deformed aerosol sphere [J]. Physics of Fluids, 2007, 19(3) : 21-39.

[48] Keh H, Tu H. Thermophoresis and photophoresis of cylindrical particles [J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2001, 176(2) : 213-223.

[49] Williams M. The thermophoretic forces acting on a bispherical system [J]. Journal of Physics D: Applied Physics, 1987, 20(3) : 354-368.

[50] Leong K. Thermophoresis and diffusiophoresis of large aerosol particles of different shapes [J]. Journal of Aerosol Science, 1984, 15(4) : 511-517.

[51] Keh H, Ou C. Thermophoresis of aerosol spheroids [J]. Aerosol science and technology, 2004, 38(7) : 675-684.

[52] Grashchenkov S. The use of the finite element method for calculating the thermophoresis velocity of large aerosol particles [J]. Colloid Journal, 2017, 79(1) : 35-41.

[53] Grashchenkov S. The Use of the Finite Element Method for Calculating Thermophoresis Velocity of Two Interacting Large Aerosol Particles [J]. Colloid Journal, 2019, 81(1) : 28-34.

[54] Leong K. Thermophoresis and diffusiophoresis of large aerosol particles of different shapes [J]. Journal of aerosol science, 1984, 15(4) : 511-517.

[55] Malai N, Shchukin E. On the thermophoresis of a spheroidal solid aerosol particle [J]. Technical Physics, 2003, 48(9) : 1118-1123.

[56] Chang Y, Keh H. Thermophoresis at small but finite Péclet numbers [J]. Aerosol Science and Technology, 2018, 52(1) : 1028-1036.

[57] Tseng Y, Keh H. Thermophoresis of a cylindrical particle at small finite Péclet numbers [J]. Aerosol Science and Technology, 2020, 55(1) : 54-62.

[58] Braibanti M, Vigolo D, Piazza R. Does thermophoretic mobility depend on particle size [J]. Phys Rev Lett, 2008, 100(10) : 303-321.

[59] Eslahian K, Majee A, Maskos M, et al. Specific salt effects on thermophoresis of charged colloids [J]. Soft matter, 2014, 10(12) : 1931-1936.

[60] Alves S, Demouchy G, Bee A, et al. Investigation of the sign of the Soret coefficient in different ionic and surfacted magnetic colloids using forced Rayleigh scattering and single-beam Z -scan techniques [J]. Philosophical Magazine, 2003, 83(17-18) : 2059-2066.

[61] Syshchyk O, Afanasenkau D, Wang Z, et al. Influence of temperature and charge effects on thermophoresis of polystyrene beads [J]. The European Physical Journal E, 2016, 39(12): 1-9.

[62] Ramachandran S, Sobhan C, Peterson G. Thermophoresis of nanoparticles in liquids [J]. International Journal of Heat and Mass Transfer, 2020, 147(81): 925-942.

[63] Meisen M. Thermophoresis in liquids [J]. Journal of Colloid and Interface Science. 1973; 44(2) : 339-346.

[64] Zhou Y, Zhao C, Li K, et al. Numerical analysis of thermal conductivity effect on thermophoresis of a charged colloidal particle in aqueous media [J]. International Journal of Heat and Mass Transfer, 2019, 142(1) : 421-435.

[65] Dong R, Zhou Y, Yang C, et al. Translational thermophoresis and rotational movement of peanut-like colloids under temperature gradient [J]. Microfluidics and Nanofluidics, 2015, 19(4) : 805-811.

[66] Wang Z, Kriegs H, Buitenhuis J, et al. Thermophoresis of charged colloidal rods [J]. Soft matter, 2013, 9(36) : 8697-8704.

[67] Zhou Y, Yang Y, Zhu C, et al. Numerical Analysis of Thermophoresis of a Charged Spheroidal Colloid in Aqueous Media [J]. Micromachines, 2021, 12(2) : 224-238.

[68] Zhou Y, Zhu C, Bian K, et al. Analytical analysis of anisotropic thermophoresis of a charged spheroidal colloid in aqueous media for extremely thin EDL cases [J]. Electrophoresis, 2021, 42 (21-22) : 2391-2400.

[69] Barreiro A, Rurali R, Hernandez E, et al. Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes [J]. Science, 2008, 320(5) : 775-778.

[70] Santamaría I, Reguera D, Rubi J. Carbon-Nanotube-Based Motor Driven by a Thermal Gradient [J]. Journal of Physical Chemistry C, 2013, 117(6) : 3109-3113.

[71] Hou Q, Cao B, Guo Z. Thermal gradient induced actuation in double-walled carbon nanotubes [J]. Nanotechnology, 2009, 20(49) : 503-522.

[72] Roberto, Piazza. Thermophoresis: moving particles with thermal gradients [J]. Soft matter, 2008, 4(9) : 1740-1744.

[73] Piazza R, Parola A. Thermophoresis in colloidal suspensions [J]. Journal of Physics Condensed Matter, 2008, 20(15) : 102-153.

[74] Würger A. Thermal non-equilibrium transport in colloids [J]. Reports on Progress in Physics, 2010, 73(12) : 601-623.

[75] Tsuji T, Saita S, Kawano S. Dynamic Pattern Formation of Microparticles in a Uniform Flow by an On-Chip Thermophoretic Separation Device [J]. Physical Review Applied, 2018, 9(2) : 24-35.

[76] Würger A. Thermophoresis in Colloidal Suspensions Driven by Marangoni Forces [J]. Physical Review Letters, 2007, 98(13) : 301-324.

[77] Würger A. Transport in charged colloids driven by thermoelectricity [J]. Physical review letters, 2008, 101(10) : 108-122.

[78] Würger A. Molecular-weight dependent thermal diffusion in dilute polymer solutions [J]. Phys Rev Lett, 2009, 102(7) : 78-89.

[79] Tsuji T, Saita S, Kawano S. Thermophoresis of a Brownian particle driven by inhomogeneous thermal fluctuation [J]. Physica A: Statistical Mechanics and its Applications, 2018, 493(1) : 467-482.

[80] Lüsebrink D, Yang M, Ripoll M. Thermophoresis of colloids by mesoscale simulations [J]. Journal of physics Condensed matter : an Institute of Physics journal, 2012, 24(28) : 284-298.

[81] Tsuji T, Iseki H, Hanasaki I, et al. Molecular dynamics study of force acting on a model nano particle immersed in fluid with temperature gradient: Effect of interaction potential [J] AIP Conference Proceedings , 2016, 1786(1) : 110-113.

[82] Tsuji T, Iseki H, Hanasaki I, et al. Negative thermophoresis of nanoparticles interacting with fluids through a purely-repulsive potential [J]. Journal of Physics Condensed Matter, 2017, 29(47) : 475-479.

[83] Schoen P, Walther J, Poulikakos D, et al. Phonon assisted thermophoretic motion of gold nanoparticles inside carbon nanotubes [J]. Applied Physics Letters, 2007, 91(7) : 253-262.

[84] Iacopini S, Rusconi R, Piazza R. The “macromolecular tourist": Universal temperature dependenceof thermal diffusion in aqueous colloidal suspensions [J]. The European Physical Journal E, 2006, 19(1) : 59-67.

[85] Rauch J, Hartung M, Privalov A, et al. Correlation between thermal diffusion and solvent self-diffusion in semidilute and concentrated polymer solutions [J]. The Journal of chemical physics, 2007, 126(21) : 214-221.

[86] Schermer R, Olson C, Coleman J, et al. Laser-induced thermophoresis of individual particles in a viscous liquid [J]. Optics express, 2011, 19(11) : 10571-10586.

[87] Piazza R, Guarino A. Soret effect in interacting micellar solutions [J]. Physical review letters, 2002, 88(20) : 208-212.

[88] Tan Z, Yang M, Ripoll M. Anisotropic thermophoresis [J]. Soft matter, 2017, 13(40) : 7283-7291.

[89] Olarte J, Bresme F. Theoretical description of the thermomolecular orientation of anisotropic colloids [J]. Physical Chemistry Chemical Physics, 2019, 21(3) : 1131-1140.

[90] Zhou Y, Yang C, Lam Y, et al. Thermophoresis of charged colloidal particles in aqueous media-Effect of particle size [J]. International Journal of Heat and Mass Transfer, 2016, 101(1) : 1283-1291.

[91] He Y, Tsutsui M, Scheicher R, et al. Thermophoretic Manipulation of DNA Translocation through Nanopores [J]. Acs Nano, 2013, 7(1) : 538-542.

[92] Tsutsui M, Taniguchi M, Yokota K, et al. Identifying single nucleotides by tunnelling current [J]. Nature Nanotechnology, 2010, 5(4) : 286-290.

[93] Kawaguchi C, Noda T, Tsutsui M, et al. Electrical detection of single pollen allergen particles using electrode-embedded microchannels [J]. Journal of Physics: Condensed Matter, 2012, 24(16) : 164-182.

[94] Tsutsui M, Maeda Y, He Y, et al. Trapping and identifying single-nanoparticles using a low-aspect-ratio nanopore [J]. Applied Physics Letters, 2013, 103(1) : 209-234.

[95] Regazzetti A, Hoyos M, Martin M. Experimental Evidence of Thermophoresis of Non-Brownian Particles in Pure Liquids and Estimation of Their Thermophoretic Mobility [J]. The Journal of Physical Chemistry B, 2004, 108(39) : 15285-15292.

[96] Piazza R. Thermal diffusion in ionic micellar solutions [J]. Philosophical Magazine, 2003, 83(1) : 2067-2085.

[97] Maeda Y, Tlusty T, Libchaber A. Effects of long DNA folding and small RNA stem–loop in thermophoresis [J]. Proceedings of the National Academy of Sciences, 2012, 109(1) : 17972-17977.

[98] Braun D, Libchaber A. Trapping of DNA by thermophoretic depletion and convection [J]. Physical review letters, 2002, 89(18) : 188-195.

[99] Fayolle S, Bickel T, Nonlinear A, et al. Thermophoresis of charged colloidal particles [J]. 2008, 77(4): 404-423.

[100] Dong S, Liu Y, Ning Z, et al. Theoretical study of thermophoretic impulsive force exerted on a particle in fluid [J]. Journal of Molecular Liquids, 2017, 241(1): 99-101.

[101] Ly A, Würger A. Hydrodynamic interactions in DNA thermophoresis [J]. Soft Matter, 2018, 14(5) : 848-852.

[102] Piazza R, Parola A. Thermophoresis in colloidal suspensions [J]. Journal of Physics: Condensed Matter, 2008, 20(15) : 153-172.

[103] Tsuji T, Kozai K, Ishino H, et al. Direct observations of thermophoresis in microfluidic systems [J]. Micro & Nano Letters, 2017, 12(8) : 520-525.

[104] Kołacz J, Konya A, Selinger R, et al. Thermophoresis of colloids in nematic liquid crystal [J]. Soft matter, 2020, 16(8) : 1989-1995.

[105] Makihara T, Demers S M E, Cole L, et al. Thermophoresis of gold nanorods from surface enhanced Raman scattering and real-time Rayleigh scattering in solution [J]. Analytical Methods, 2019, 11(18) : 2482-2488.

[106] Xuan X, Xu B, Sinton D, et al. Electroosmotic flow with Joule heating effects [J]. Lab on a Chip, 2004, 4(3) : 230-236.

[107] Everett D. Basic principles of colloid science [J]. Royal society of chemistry, 18(1) : 110-118.

[108] Probstein R. Physicochemical hydrodynamics : an introduction [J]. Physiochemical Hydrodynamics, 1994, 425(2) : 125-126.

[109] Hunter, R. Zeta potential in colloid science [M]. London ,Academic Press, 1981 : 56-60.

[110] Parsons R. Fundamentals of interface and colloid science, volume II. Solid-liquid interfaces [J]. Journal of Electroanalytical Chemistry, 1997, 421(1-2): 225-226.

[111] Ong G, Gallegos A, Wu J. Modeling Surface Charge Regulation of Colloidal Particles in Aqueous Solutions [J]. 2020, 36(40): 11918-11928.

[112] Niether D, Wiegand S. Thermophoresis of biological and biocompatible compounds in aqueous solution [J]. 2019, 31(50) : 503-516.

[113] Wang Z, Niether D, Buitenhuis J, et al. Thermophoresis of a colloidal rod: contributions of charge and grafted polymers [J]. Langmuir, 2019, 35(4) : 1000-1007.

[114] Blanco P, Kriegs H, Lettinga M, et al. Thermal diffusion of a stiff rod-like mutant Y21M fd-virus [J]. Biomacromolecules, 2011, 12(5) : 1602-1609.

[115] Tan Z, Yang M, Ripoll M. Anisotropic thermophoresis [J]. Soft matter, 2017, 13(40) : 7283-7291.

[116] Fayolle S, Bickel T, Würger A. Thermophoresis of charged colloidal particles [J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2008, 77(4) : 404-423.

[117] Würger A. Transport in charged colloids driven by thermoelectricity[J]. Physical review letters, 2008, 101(10) : 108-112.

[118] Wuerger A. Thermophoresis in colloidal suspensions driven by Marangoni forces [J]. Physical Review Letters, 2007, 98(13) : 138-141.

[119] McNab G, Meisen A. Thermophoresis in liquids [J]. Journal of Colloid and Interface Science, 1973, 44(2): 339-346.

[120] Giddings J, Shinudu P, Semenov S. Thermophoresis of Metal Particles in a Liquid [J]. Journal of Colloid & Interface Science, 1995, 176(2): 454-458.

[121] Moon P, Spencer D. Eleven coordinate systems [J]. Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions, 1988, 16(1) : 1-48.

[122] Happel J, Brenner H. Low Reynolds Number Hydrodynamics [J]. Mechanics of Fluids & Transport Processes, 1973, 6(3-4) : 273-273.

[123] Wang Z, Kriegs, H. Thermophoresis of charged colloidal rods [J]. Soft Matter 2013, 9(36): 8697-8708.

[124] Wang Z, Niether D, Buitenhuis J, et al. Thermophoresis of a colloidal rod: contributions of charge and grafted polymers [J]. 2019, 35(4) : 1000-1007.

[125] 赵诗华, 李英骏. 带电导体椭球表面的电荷密度与电场 [J].大学物理, 2008, 27(10): 2-8.

[126] Mou Y, Howe J. Diffusion fields associated with prolate spheroids in size and shape coarsening [J]. Acta Materialia, 1997, 45(2) : 823-835.

[127] Ohshima H. Double-layer potential distribution and surface charge density/surface potential relationship for a nearly spherical spheroid in an electrolyte solution [J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2000, 169(1) : 13-16.

[128] Ohshima H. Electrophoresis of soft particles [J]. Advances in Colloid & Interface Science, 1995, 62(3) : 189-235.

[129] Yoon B. Electrophoresis of spheroidal particles [J]. Journal of Colloid & Interface Science, 1989, 128(1) : 275-288.

中图分类号:

 TB383    

条码号:

 002000074333    

馆藏号:

 YD10002473    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式