- 无标题文档
查看论文信息

中文题名:

 平台三用工作船有约束动力定位系统的控制和仿真研究    

姓名:

 余培文    

学号:

 10497106101c    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082402    

学科名称:

 轮机工程    

学生类型:

 博士    

学位:

 工学博士    

学校:

 武汉理工大学    

院系:

 能源与动力工程学院    

专业:

 轮机工程    

研究方向:

 工业过程系统仿真与控制    

第一导师姓名:

 陈辉    

第一导师院系:

 武汉理工大学    

完成日期:

 2014-03-10    

答辩日期:

 2014-06-04    

中文关键词:

 动力定位 ; 平台三用工作船 ; 前馈控制 ; 模型预测控制 ; 二次规划 ; 滚动时域估计 ; 加速度反馈 ; 推力分配 ; 约束系统    

中文摘要:

随着人类向深海进军,传统的锚泊方式在安全性,经济性上都不再合适。动力定位(Dynamic Positioning,DP)已成为深海作业的关键技术之一。控制技术是DP系统的核心,传统的Kalman滤波和LQG控制是无约束DP系统的最优控制方法,在实用中取得了巨大成功,然而,DP控制系统始终面临一些难题:复杂的非线性特性对建模精度的影响;多变的海况,不确定的环境干扰力,系统设备的物理限制,不同的工况以及故障等给DP系统加上的各种约束;船舶的大惯性特点引起的反馈控制滞后等等。随着DP系统定位精度和控制性能要求的日益提高,解决动力定位系统的约束问题,提高控制技术的鲁棒性和动态性能已经成为DP控制领域的研究热点之一。

本文的研究工作针对上述的热点问题展开,以我国一艘海洋平台三用工作船“南海222”轮为仿真母船,在建立船舶运动和环境干扰力模型的基础上,对有约束DP系统的控制方法进行了一系列研究,包括有约束DP系统状态估计、控制器和推力分配方案等方面的设计与改进,并进行了相关的仿真研究,为DP控制系统的研究、设计和改进提供了一种思路和方法,主要研究内容和成果如下:

(1)动力定位船舶运动数学模型的建立。本文针对仿真母船建立了两种船舶运动数学模型,一种是过程模型,另一种是控制模型。过程模型是按照MMG方法建立船舶运动非线性数学模型,对风、浪、流等环境干扰力进行细致建模,力求接近真实世界;控制模型是在过程模型的基础上简化,抓住系统的本质特性建立的。两种模型为动力定位控制系统的研究奠定了基础,过程模型用于模拟船舶真实运动;控制模型用于状态估计和控制器的设计。仿真结果表明,过程模型较好地描述船舶运动和环境干扰力的特征,控制模型的趋势与过程模型接近,两种模型都是正确可靠的。

(2)有约束动力定位系统的状态估计方法。本文结合经典的Kalman滤波和滚动时域的思想,设计一种可以处理约束的滚动时域滤波器。仿真实验表明,一般情况下,Kalman滤波器和滚动时域滤波器都能满足动力定位系统的要求,但在系统噪声不是零均值白噪声等约束条件或者系统模型参数变化时,滚动时域滤波器比Kalman滤波器鲁棒性更好。

(3)有约束动力定位系统控制器的设计。本文设计了基于DMC控制的模型预测控制器来处理动力定位中的约束问题,仿真实验表明与传统LQG控制器相比,DMC预测控制器的鲁棒性和动态性能更优。

(4)加速度前馈和模型预测前馈控制策略。本文从经典的LQG控制器出发,提出两种采用前馈控制提前抵消环境干扰力,改善控制器性能的措施。一种为加速度反馈,当硬件条件满足时,采用加速度传感器信息来改善控制器性能;另一种为模型预测前馈控制,当硬件条件不满足时,引入模型预测控制,通过模型预测的思路来提前抵消环境干扰力。仿真实验表明,两种措施均能较好地改善控制器的性能。

(5)有约束DP系统的推力分配方案。本文根据仿真母船的特点,采用了二次规划法和伪逆矩阵的方法开展推力分配研究。并将推进器动态模型引入推力分配环节。仿真实验表明:无约束状态下,二次规划法和逆矩阵法均能满足动力定位系统要求,但二次规划法在处理推进器约束上更占优势,采用动态推力模型更能反映推进器的真实特性。

本文的研究以一艘平台三用工作船“南海222”轮为研究对象,在建立船舶运动机理模型和控制模型的基础上,深入研究了有约束动力定位系统的状态观测器、控制算法和推力分配问题,文中做了大量的仿真研究,结果表明本文建立的模型和设计改进工作的有效性。

参考文献:

[ ] Dimitra Panagou, Kyriakopoulos K J. Dynamic positioning for an underactuated marine vehicle using hybrid control [J]. International Journal of Control, 2014, Vol.87(2),pp.264-280.

[2] S?rensen A J. A survey of dynamic positioning control systems [J] Annual Reviews in Control, 2011, Vol.35(1), PP.123-136.

[3] Tannuri E A, Agostinho A C. Morishita H.M. et al. Dynamic positioning systems: An experimental analysis of sliding model control [J]. Control Engineering Practice, 2010, Vol.18(10),pp.1121-1132.

[4] 赵志高,杨建民,王磊,等. 动力定位系统发展状况及研究方法[J].海洋工程, 2002,(01).

[5] 夏国清.水面舰船动力定位系统智能控制技术研究[D].哈尔滨:哈尔滨工程大学,2001 .

[6] 何崇德.船舶动力定位系统的应用和实践[J].中国造船. 2004,45:279-299.

[7] 何崇德.“大洋一号”船的动力定位系统[J].海洋世界,2007,(01):35-40.

[8] 廖再文.亚洲第一船-中远航运新型半潜船泰安口轮启航[J].中国远洋航务公告,2003, (01): pp 43-44.

[9] 孙武.动力定位系统规范介绍[J].中国船检, 2002,(09) .

[10] Det norske Veritas (DNV). Rules and regulations of ships newbuildings, Special Equipment and Systems, Additional class,Part 6, Chapter: Dynamic Positioning Systems (DP), Norway, 1990.

[11] American Bureau of Shipping (ABS), Guide for thrusters and dynamic positioning systems, New York, 1994.

[12] Lloyd’s Register of Shipping (LRS), Rules and regulations for the classification of ships, Part 8,Chapter 4: Rules for the construction and classification of dynamic positioning systems installed in ships, U.K., 1997.

[13] China Classification Society. Guidelines on Surveys for Dynamic Positioning System.2002.

[14]International Maritime Organization (IMO). Guidelines for Vessels with Dynamic Positioning Systems.Msc/Circ.645,1994.

[15] Hoffman-wellenhof B, Lichtenegger H, and Collins J. GPS theory and practice[J]. New York: Springer, 1994.

[16] 黄金锋.1000米采矿船动力定位的推力系统研究[D].武汉:武汉理工大学, 2004.

[17] 吴显法.DP半潜式平台的推力系统设计[D].大连:大连理工大学, 2007.

[18] 郑海.中国拥有世界顶级深水三用船[J].中华魂, 2012,(08).

[19] Sargent J S, Cowgill P N. Design considerations for dynamically positioned utility vessels. [C]. Proceedings of the 8th offshore technology conference, Dalas, 1976

[20] Meling A M. DP Control on DEP (Diesel Electric Propulsion) Vessels [C]. Dynamic positioning conference, October 17–18, 2000.

[21] Jon Holvik. Basics of Dynamic Positioning [C]. Dynamic positioning conference, October 13 – 14, 1998.

[22] Balchen, J.G. et al. Dynamic positioning of floating vessels based on Kalman filtering and optimal control[C].Proceedings of the 19th IEEE conference on decision and control, NewYork,1980: 852-864

[23] Tannuri E A, Morishita H M. Experimental and numerical evaluation of a typical dynamic positioning system [J]. Applied Ocean Research 28 (2006), pp.133–146.

[24] 童进军,何黎明,田作华. 船舶动力定位系统的数学模型[J]. 船舶工程, 2002,(05):27-29.

[25] Grimble M J, Patton R J,Wise D A. The design of dynamic positioning control systems using stochastic optimal control theory[J]. Optimal control applications and methods, 1980: 167-202

[26] Balchen J G., Jenssen N A, S?lid S. Dynamic positioning using Kalman filtering and optimal control theory. In: IFAC/IFIP Symposium on Automation in O.shore Oil Field Operation. Amsterdam, Holland, 1976,pp.183—186.

[27] Grimble M J, Patton R J. Partitioned Extended Kalman Filter With Application to Ship Positioning Systems [C]. Control 85 International Conference, 1985.

[28] Grimble M J, Patton R J,Wise D A. The design of Dynamic Ship Positioning Control Systems Using Extended Kalman Filtering Techniques.1979.

[29] Fossen T I, Strand J P. Passive nonlinear observer design for ships using Lyapunov methods: full-scale experiments with a supply vessel[J]. Automatic,1999, 35(1),pp.3-16.

[30] Fossen T I, Gr?vlen A. Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping[J]. IEEE transactions on control systems technology,1998, 6(1): 369-376.

[31] Fossen T I, Berge S P. Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics[C]. Proceedings of IEEE conference on decision and control, San Diego, 1997,pp.4237-4242.

[32] Robertson A, Johansson R. Comments on “nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping” [J].IEEE transactions on control systems technology, 1998, 6(3), pp.439-441.

[33] Fossen T I, Gr?vlen A. A tutorial on nonlinear backstepping: applications to ship control [J]. Modeling identification and control, 1999, 20(2), pp.83-135.

[34] Fossen T I, Blanke M. Nonlinear output feedback control of underwater vehicle propellers using feedback from estimated axial flow velocity [J]. IEEE transactions on journal of oceanic engineering, 2000, 25(2), pp.241-255.

[35] Lorial A, Fossen T I, Panteley E. A separation principle for dynamic positioning of ships: theoretical and experimental results [J]. IEEE transactions on control systems technology,2000,8(2), pp.332-343.

[36] Strand J P, Fossen T L. Nonlinear output feedback and locally optimal control of dynamically positioned ships: experimental results [C]. Proceedings of the IFAC conference on control application in marine systems, Fukuoka, Japan, 1998:89-95.

[37] Loria A, Fossen T I, Teel A. UGAS and ULES of non-autonomous systems: applications to integral action control of ships and manipulators [C]. Proceedings of the 5th European control conference, Karlsruhe, Germany, 1999.

[38] Paulsen M, Egeland O, Fossen T I. A passive feedback controller with wave filter for marine vehicles [J]. International journal of robust and nonlinear control, 1998, 8(15):1239-1253

[39] 何黎明, 田作华, 施颂椒. 动力定位船舶的非线性观测器设计[J].上海交通大学学报, 2003,(06): 964-968.

[40] Fossen T I, Nonlinear passive control and observer design for ships [J].Modeling, identification and control, 2000, MIC-21(3),pp. 129-184.

[41] Girard A R, de Sousa J Borges, Hedrick J K. Dynamic positioning concepts andstrategies for the mobile offshore base[C].Proceedings of the IEEE international conference on intelligent transportation systems, Oakland, 2001.

[42] Girard A R, Hedrick J K. Dynamic positioning of ships using nonlinear dynamic surface control[C].Proceedings of the 5th IFAC symposium on nonlinear control systems, Saint-Petersburg, 2001.

[43] Girard A R. Relative dynamic positioning of ships and/or offshore platforms using nonlinear dynamic surface control[C], ASME OOAE student paper competition, doctoral category, 2001.

[44] Le M D, Tran Q T, Nguyen T N. Control of Large Ship Motions in Harbor Maneuvers by Applying Sliding Mode Control[C]. AMC 2004 - Kawasaki, Japan.

[45] Le M D, Nguyen S H, Ngwen L A. Sliding Mode Control For Harbor Maneuvering Of Large Ships[C]. SICE Annual Conference in Fukui, August 44, 2003.

[46] 吴鹤雄,李东明. 变结构控制理论在船舶动力定位系统中的应用[J]. 哈尔滨工程大学学报, 2002(03).

[47] Katebi M R, Grimble M J, Zhang Y. H∞ Robust Control Design for Dynamic Ship Positioning. IEEE Proceedings on Control Theory and Applications. 1997, Vol.1442, pp. 110–120.

[48] 李兰花,夏国清. H∞滤波器在船舶动力定位系统中的应用[J].自动化技术与应用,2005,24(11):35-37.

[49] 孟浩.船舶航行的智能自适应控制研究[D].哈尔滨:哈尔滨工程大学 ,2003.

[50] 李家炜,庞永杰,徐玉如,等. 用模糊逻辑实现动力定位船舶的艏向寻优[J]. 船舶工程, 1998(02) .

[51] 芮世民,朱继懋,黄根余. 应用自适应模糊控制实施船舶动力定位 [J]. 上海交通大学学报, 2000(01) .

[52] 李和贵,翁正新,施颂椒. 基于模糊控制的船舶动力定位系统设计与仿真[J]. 系统工程与电子技术, 2002(11) .

[53] 谷丽丽,邓志良. 船舶动力定位中的模糊控制器优化技术[J]. 舰船电子工程, 2006(03): pp.114-116.

[54] Yamamoto M, Morooka C K. Dynamic Positioning System of Semi- Submersible Platform Using Fuzzy Control [J]. J. of the Braz. Soc. of Mech. Sci. & Eng. October-December 2005, Vol. XXVII, No. 4,pp.449-455.

[55] 张桂兰,邓志良. 模糊控制器在船舶动力定位系统中的应用及改进[J].中国造船,2005,46(4):26-30.

[56] Cao Y S, Lee T H, David L ,et al. Dynamic Positioning of Drilling Vessels with A Fuzzy Logic Controller[C]. Dynamic positioning conference,September 18-19,2001,pp.1-20.

[57] 张松涛. 模糊多模型船舶运动控制系统的研究[D].大连:大连海事大学, 2006.

[58] Yip P P C, Pao Y H. A recurrent neural net approach to 1-step ahead control problems. Systems,Man and Cybernetics[J]. IEEE Transactions on Vol.24,1994.

[59] 李定,顾懋祥. 自适应神经网络用于船舶动力定位系统[J]. 中国造船,1995(04) .

[60] Ayman B M. Predicting the capability-polar-plots for dynamic positioning systems for offshore platforms using artificial neural networks [J]. Ocean Engineering, 34 (2007), pp.1151–1163.

[61] Cao Y S, Zhou Z Q, William S V. Application of a Neural Network Predictor/Controller to Dynamic Positioning of Offshore Structures[C]. Dynamic positioning conference, October 17–18, 2000.

[62] Naoki M, Masaki K, Tadatsugi O, et al. Minimum time ship maneuvering method using neural network and nonlinear model predictive compensator [J].Control Engineering Practice, 15(2007), pp.757–765.

[63] 刘清.船舶操纵运动模糊神经网络控制系统研究[D].武汉:武汉理工大学, 2002.

[64] 林叶锦. 船舶运动模糊神经网络控制系统的研究[D].大连:大连海事大学,2006.

[65] Triantafyllou M S, Hover F S. Maneuvering and Control of Marine Vehicles. Massachusetts: Massachusetts Institute of Technology, 2003.

[66] Girard A R, Spry S, Hedrick J K. Intelligent Cruise-control Applications[J]. IEEE Robotics & Automation Magazine,2005,12(1):22-28.

[67] Aalbers A B, Tapand R F, Pinkster J A. An application of dynamic positioning control using wave feed forward [J]. Int. J. Robust Nonlinear Control 2001,11,pp.1207-1237.

[68] 余培文,陈辉,刘芙蓉.船舶动力定位系统控制技术的发展与展望[J].中国水运.2009:44-45.

[69] 贾欣乐,杨盐生.船舶运动数学模型-机理建模与辨识建模[M].大连:大连海事大学,1998.11.

[70] 张显库,贾欣乐.船舶运动控制[M]. 北京:国防工业出版社,2006.2.

[71] 吴秀恒,刘祖源, 施生达, 等.船舶操纵性[M]. 北京:国防工业出版社,2005.9.

[72] 金鸿章.船舶控制原理[M].哈尔滨:哈尔滨工程大学出版社,2001.

[73] 李殿璞. 船舶运动与建模(第二版)[M].北京:国防工业出版社,2008.

[74] 周昭明. 多用途货船的操纵性预报计算[J]. 船舶工程. Vol.6, 1983.

[75] 吴恒.船舶动力装置技术管理[M]. 大连:大连海事大学出版社,1999.

[76] 曾凡明,巫影,吴家明.舰船推进装置性能仿真在设计中的应用研究[J]. 武汉理工大学学报,2004 (9):71-74.

[77] ?yvind N S. Control of Marine Propellers: From Normal to Extreme Conditions [D]. NTNU, September 2006.

[78] 李殿璞.基于螺旋桨特性四象限Chebyshev拟合式的深潜艇正倒航变速推进模型[J]. 哈尔滨工程大学学报,2002,23(1):52-57

[79] Van Lammeren W P A, Van Manen J D, Oosterveld M M C. The wageningen B-screw series [J]. SNAME Trans, 1969, 19(1):269-317

[80] 乐美龙. 基于正交正弦函数基的数值拟合方法[J]. 上海交通大学学报,2001,35(4):522-526

[81] Li D P, WANG Z Y, CHI H H. Chebyshev Fitting Way and Error Analysis for Propeller Atlas across Four Quadrants [J]. Journal of Marine Science and Application, 2002(1): 52-59

[82] 翁史烈.船舶动力装置及仿真技术[M].上海:交通大学出版社,1993.

[83] Nautronix Ask5000 Dynamic Positioning System Operations and Mantainence Manual.

[84] 吴爽. 船舶调距桨推进装置及其控制系统的建模和仿真研究. [D].大连:大连海事大学, 2006.

[85] 叶光. 基于VV&A的船舶运动控制系统仿真的研究. [D]. 大连:大连海事大学,2007.

[86] Price W S, Bishop R E D. Probabilistic theory of ship dynamics[M]. London: chapmann and Hall Ltd, 1974.

[87] 唐东洋. 风浪联合作用下深水半潜式平台水动力性能实验研究[D]. 大连:大连理工大学.2010.12.

[88] 董胜,夏俊庆,李孟杰. 南海风浪极值组合统计分析[J]. 中国造船,2005,11.Vol(46):268-272

[89] 康凤举. 现代仿真技术与应用[M].国防工业出版社.2008,6

[90] S?rensen A J. Marine Cybernetics: Modelling and Control. Lecture Notes, Fifth Edition [M] .The Norwegian University of Science and Technology, Trondheim, Norway.2005.

[91] S?rensen A J. Structural Issues in the Design and Operation of Marine Control Systems[J]. IFAC Journal of Annual Reviews in Control, 2005,Vol. 29, Issue 1, pp. 125-149, Elsevier Ltd.

[92] 赵之韵. 船舶动力定位系统控制器设计[D]. 大连:大连海事大学,2009.

[93] Fossen T I. Guidance and Control of Ocean Vehicles: John Wiley & Sons Ltd. 1994.

[94] 张有为. 维纳与卡尔曼滤波理论导论[M].人民教育出版社,1980.

[95] Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. Trans. ASME, J. Basic Engineering, March 1960, pp.35-45.

[96] Balchen J G., Jenssen N A, Mathisen E,et al. A Dynamic Positioning System Based on Kalman Filtering and Optimal Control: Modeling[C], Identification and Control. 1980, Vol. 1, Issue 3, pp: 135-163.

[97] 秦永元,张洪绒,汪叔华.卡尔曼滤波与组合导航原理[M].西安,西北工业大学出版社,1989.

[98] Bryson A E, Fraizier M. Smoothing for Linear and Nonlinear Dynamic Systems[C], Proc. Optimum Systems Synthesis Conf., U. S. Air Force Tech. Rept. ASD-TDR. 1963,63-119.

[99] Thomas Y A. Linear Quadratic Optimal Estimation and Control with Receding Horizon [J].Electron. Lett. 1975, 11, 19-21.

[100] Kwon W H, Bruckstein A M, Kailath T. Stabilizing State-feedback Design Via the Moving Horizon Method[C], Int. J. Control, 1983,Vol.37(3), pp.631-643.

[101] Jang S S, Joseph B, Mukai H. Comparison of two approaches to Online Parameter and State Estimation of Nonlinear Systems[C]. Ind, Eng. Chem. Process Des. Dev. 1986, 25:809-814,

[102] Bquette B W. Nonlinear Predictive Control Using Multi-rate Sampling[J], Can. J. Chem. Eng. 1991,Vol.69,pp.136-143,

[103] Ramamurthi Y, Sistu P,Bequette B. Control-relevant Dynamic Data Reconciliation and Parameter Estimation[J], Comput. Chem.Eng. 1993,17(1), 41-59.

[104] Bemporad A, Mignone D, Morari M. Moving Horizon Estimation for Hybird Systems and Fault Detection[C]. in ‘proceedings of 1999 American Control Conference, San Diego, California’, 1999.

[105]Gatzke EP, Doyle F J. Use of multiple models and qualitative knowledge for on-line moving horizon disturbance estimation and fault diagnosis[J]. Journal of process control. 2002, 12:339–352.

[106] Muske K R, Rawlings J B. Model Predictive Control with Linear Models[C], AIChE J. 1993,39(2), 262-287.

[107] Rao C V, Rawlings J B. Nonlinear Moving Horizon State Estimatio[J]. Nonlinear Model Predictive Control, Vol. 26 ,2000, pp. 45-69.

[108] Tyler M L. Performance Monitoring and Fault Detection in Control Systems[D], California Institute of Technology, 1997.

[109] Tyler M L, Morari M. Stability of Constrained Moving Horizon Estimation Shchemes[J], Preprint AUT96-18, Automatic Control Laboratoty, Swiss Federal Institute of Technology. 1996.

[110] 陈虹,邹卫平,孙鹏远. 连续搅拌反应釜浓度的滚动时域估计[J]. 系统仿真学报. 2001, Vol.13(8):37-40.

[111] 王曌,刘志远,裴润.一种滚动时域方法在目标跟踪中的应用[J].机器人. 2001, 23(7):594-597.

[112] 刘芙蓉; 陈辉; 高海波; 滚动时域滤波在动力定位船舶中的应用[J]. 武汉理工大学学报.2010,12:117-120.

[113] 赵海燕. 时域约束系统的滚动时域估计方法研究 [D]. 吉林:吉林大学,2007.

[114] Rao C V, Rawlings J B,Lee J H. Constrained linear state estimation—a moving horizon approach[J]. Automatica, 2001,37(10):1619-1628.

[115] Muske K R, Rawlings J B,Lee J H. Receding Horizon Recursive State Estimation[C], in Proceedings of the 1993 American Control Conference, 1993, pp. 900-904.

[116] 胡寿松,王执铨,胡维礼. 最优控制理论与系统[M]. 北京, 科学出版社 2005.5

[117] Bertsekas D P. Dynamic Programming and Stochastic Control Mathematics in Science Engineering[J]. Academic Press, New York, 1976 (125)

[118] 舒迪前.预测控制系统及其应用[M].机械工业出版社,1996.

[119] 王树青.先进控制技术及应用[M].化学工业出版社,2001

[120] Qin S J, Thomas A B. A survey of industrial model predictive control technology [J]. Control Engineering Practice. 2003, 11:733-764.

[121] 席裕庚. 预测控制[M]. 北京: 国防工业出版社, 1993.

[122] 丁宝苍. 预测控制的理论与方法[M]. 北京: 机械工业出版社, 2008.

[123] 王献忠,杜维. 模型预测控制发展概况[J]. 自动化与仪器仪表, 1999, 4:4-9.

[124] 武俊峰, 王振. 模型预测控制的新发展[J]. 自动化技术与应用, 2004, 23(12): 1-4.

[125] 徐祖华. 模型预测控制理论及应用研究[D]. 浙江: 浙江大学, 2004.

[126] 杨圆圆. 模型预测控制与应用. [D]. 大庆: 大庆石油学院, 2006.

[127] 史红梅. 多变量模型预测控制应用研究[D]. 昆明: 昆明理工大学, 2003.

[128] Cutler C R, Ramaker B L. Dynamic matrix control-a computer control algorithm[C]. In: Proceedings of the joint automatic control conference,1980.

[129] 刘超刚. 工业模型预测控制理论,算法及应用. [D].河北工业大学,2008.

[130] Smit M R, Tjallema A R, Huijsmans R H M. Current Feed Forward Control in Dynamic Positioning [C]. Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, Netherlands.June 19-24, 2011.

[131] Pinkster J A. Low Frequency Second Order Wave Exciting Forces on Floating Structures [D]. Netherlands Ship Model Basin, Wageningen, Netherlands, 1980.

[132] Pinkster J A. Wave feed-forward as a means to improve dynamic positioning [C]. Offshore Technology Conference, 1978.

[133] Aalbers A B, Tap R F, Pinkster J A . An application of dynamic positioning control using wave feed forward[J]. Int. Journal of Robust and Nonlinear Control. 2001,Vol.11, pp.1207-1237.

[134] Aalbers A B,Nienhuis U. Wave Direction Feed-Forward on Basis of Relative Motion Measurements to Improve Dynamic Positioning Performance [C]. Offshore Technology Conference, Houston, Texas, April 27-30, 1987: 225-232.

[135] Aalbers A B, Waals O J, Tap R F, et al. Wave Feed Forward DP and the Effect on Shuttle Tanker Operation [C]. Dynamic Positioning Conference, September 28-30, 2004.

[136] Lindegaard K P W. Acceleration Feedback in Dynamic Positioning[D].Department of Engineering Cybernetics. Norwegian University of Science and Technology. September. 2003.

[137] Blakelock J H. Automatic Control of Aircraft and Missiles. second ed. [M].John Wiley & Sons, Inc. 1991.

[138] 王元慧, 施小成, 边信黔. 基于模型预测控制的船舶动力定位约束控制[J].船舶工程. 2007, 29(3): 22-25

[139] Berge S P, Fossen T I. Robust control allocation of overactuated ships; experiments with a model ship[C]. In International IFAC conference on manoeuvring and control of marine craft MCMC’97. Brijuni, Croatia. 1997.

[140] Plater B B. The algorithm of power distribution in multipropellers driving system of floating vessel (in Polish)[C]. In Second national conference on automation in navigation and control. Gdynia,Poland. 1989.

[141] Johansen T A, Fuglseth T P,Tondel P,et al. Optimal constrained control allocation in marine surface vessels with rudders[C]. In International IFAC conference on manoeuvring and control of marine craft MCMC’03. Girona, Spain,2003.

[142] Liang C C, Cheng W H. The optimum control of thruster systems for dynamically positioned vessels[J]. Ocean Engineering, 2004,31, 97-110.

[143] Jin J, Park B, Park Y, et al. Attitude control of a satellite with redundant thrusters[J]. Aerospace Science andTechnology, 2006, 10(7): 644-651.

[144] Servidia P A,Pena R S. Spacecraft thruster control allocation problems[J].IEEE Transactions on Automatic Control, 2005, 50(2): 245-249.

[145] Gierusz W. Logic thrust allocation applied to multivariable control of the training ship[J]. Control Engineering Practice,2006, 511–524

[146] 谢清程,易小冬.吊舱式推进器的新发展[J].上海造船,2007(1):35-36

[147] 徐荣华.船舶动力定位系统建模与随机控制研究[D]. 广州:广东工业大学,2011.

[148] Johansen T A, Fossen T I, Berge S P. Constrained Nonlinear Control Allocation with Singularity Avoidance using Sequential Quadratic Programming[J].IEEE Trans. on Cont. Syst. Technology, TCST-12(1), 2004: 211-216.

[149] Fossen T I, Johansen T A. A Survey of Control Allocation Methods for Ships and Underwater Vehicles Control and Automation[A], MED '06. 14th Mediterranean Conference, 2006, pp.1 - 6.

[150] Wichers J, Bultema S, Matten R. Hydro-dynamic research on optimizing dynamic positioning system of a deep water drilling vessel, OTC 8854, 1998.

[151] Serdalen O J. Optimal thrust allocation for marine vessels[J]. Control engineering practice. 1997, 5 (9): 1223-1231.

[152] Webster W C, Sousa J. Optimum allocation for multiple thrusters[C]. Proceeding of the ninth international offshore and polar engineering conference (ISOPE) Blest, France, 1999.

[153] Johansen T A. Optimal constrained control allocation in marine Surface vessels with rudders[J]. Control Engineering Practice, 2007.

[154] Johansen T A. Constrained Nonlinear Control Allocation With Singularity Avoidance Using Sequential Quadratic Programming[J]. IEEE Transaction on Control Systems Technology. Vol.12, 2004.

[155] 顾楠. 一种新的动力定位系统推力分配算法[J].中国海洋平台. Vol.26 No.2,2011.

[156] 刘曰强.半潜式平台动力定位系统推力分配优化算法研究[D].哈尔滨工程大学,2009.

[157] 闫欢欢. 船舶动力定位系统推力分配优化算法研究[D].大连海事大学,2011.

中图分类号:

 U664.82    

馆藏号:

 U664.82/B101/2014    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式