- 无标题文档
查看论文信息

中文题名:

 

新型防护液舱抗侵彻机理与性能研究

    

姓名:

 张朴    

学号:

 104971130167    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082400    

学科名称:

 工学 - 船舶与海洋工程    

学生类型:

 博士    

学位:

 工学博士    

学校:

 武汉理工大学    

院系:

 交通学院    

专业:

 船舶与海洋工程    

研究方向:

 结构安全与可靠性    

第一导师姓名:

 吴卫国    

第一导师院系:

 船舶邮轮中心    

完成日期:

 2020-01-30    

答辩日期:

 2021-01-16    

中文关键词:

 

液舱防护 ; 高速弹体 ; 理论模型 ; 侵彻试验 ; 剪切增稠液

    

中文摘要:

随着反舰导弹的快速发展,其隐蔽性、命中精度和毁伤能力得到大幅度提高,大型水面舰船面临着越来越严重的威胁。由反舰导弹战斗部爆炸瞬间产生的高速破片能够对舰船内部重要设备和人员造成不同程度的损伤,从而使大型舰船丧失作战能力甚至沉没,因此被动防护结构是保障舰船生命力的最后一道防线。大型水面舰船利用其内部空间大的优势设置多舱室防护结构来防御反舰武器爆炸载荷,保护内部重要舱室、设备和人员的安全。大型水面舰船的被动防护结构一般采用多舱室进行防护,而液舱是其中重要的功能舱室,能够有效防御爆炸产生的高速破片。本文围绕液舱破坏机理和防护设计这两个问题,提出“新材料和新结构相结合”的思路,通过模型试验、理论分析和数值仿真的方法开展了液舱对高速破片的防御机理研究和优化方案设计研究,研究成果对指导液舱结构设计和提高我国大型水面舰船的生命力具有重要意义。具体内容如下:

(1)开展了一系列弹体侵彻液舱过程的试验研究,借助高速摄影仪得到了完整的弹体运动路径和空泡发展等物理过程。以能量分析为基础,综合弹体穿甲运动方程和弹体在流体中运动时的能量耗散特性,建立了简化分析模型。该理论模型综合考虑了前靶板背水、后靶板弯曲和弹体墩粗对弹速衰减的影响,并推导了弹体侵彻液舱后的剩余速度公式。将公式计算结果与试验测试数据进行了对比分析,结果吻合较好。

(2)基于显式动力学计算程序AUTODYN开展了高速弹体侵彻液舱过程的数值计算,并通过与试验结果对比验证了数值计算方法的准确性和可靠性。采用验证的数值方法开展了系列工况的仿真计算,分析了液舱宽度、初始弹速、入射角度和前后液舱靶板厚度等因素对弹体剩余速度的影响。掌握了高速弹体打击下液舱结构的响应和破坏特征。

(3)提出将陶瓷靶板放置在液舱迎弹面降低弹体入射速度从而增加液舱防护性能的方案,开展了陶瓷/液舱复合防护结构的抗弹性能研究。对陶瓷/金属复合靶板的抗弹特性进行了研究,基于修正的Florence模型分析陶瓷/金属复合装甲的弹道极限速度,继而推导了弹体侵彻陶瓷/液舱复合结构弹速衰减公式。采用AUTODYN程序对弹体侵彻陶瓷/金属复合靶板过程进行了仿真计算,进一步验证了理论分析模型的可靠性。

(4)研究剪切增稠液体(STF,Shear Thickening Fluid)的防护性能。制备了剪切增稠液材料,分析了剪切增稠液材料在不同剪切率下的粘度和不同应变率下的动态力学特性。基于ABAQUS软件开发了表征剪切增稠液粘度特性的用户子程序,并开展了数值仿真计算和试验对比分析。采用数值方法进一步对流体密度,初始弹速等影响弹速衰减的因素进行了深入分析。最后对水/剪切增稠液复合流体填充液舱的抗弹性能进行了研究。根据数值仿真方法,提出了低速平头弹侵彻剪切增稠液的阻力系数公式,在此基础上建立了弹体侵彻剪切增稠液填充液舱的理论模型。

参考文献:

[1] 徐双喜. 大型水面舰船舷侧复合多层防护结构研究[D]. 武汉: 武汉理工大学, 2010.

[2] 吴杨. 中国石油海上运输安全问题的研究[D]. 北京: 对外经济贸易大学, 2013.

[3] 彭玉辉, 姜威. 国外舰船弹药舱安全性研究[J]. 船海工程, 2013, 42(4): 102-105.

[4] 郭绍静. 新型舷侧水下及水上防护结构抗爆性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.

[5] 朱锡, 张振华, 刘润泉, 等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究[J]. 爆炸与冲击, 2004, 24(2): 38-44.

[6] Norman Friedman. Design History of the U.S.Battleships[M]. US Naval Institute Press, 1985.

[7] 高地. 大国的标志:盘点世界各国的航空母舰[J]. 交通与运输, 2011, 27(6): 70-72.

[8] Said M O. Theory and Practice of Total Ship Survivability for Ship Design[J]. Naval Engineers Journal, 1995, 107(4): 191-203.

[9] 张振华, 朱锡, 黄玉莹. 水面舰艇舷侧防雷舱结构水下抗爆防护机理研究[J]. 船舶力学, 2006(1): 113-119.

[10] 顾燕飞. 对反舰导弹末制导雷达的干扰技术研究[D]. 镇江: 江苏科技大学,2012.

[11] 贾伟. 反舰战斗部技术研究[D]. 太原: 中北大学,2012.

[12] Kappel L G. Hydraulic ram shock phase effects on fuel cell survivability[D]. Monterey, CA, US:Naval Postgraduate School, 1974.

[13] Varas D, Lo′pez-Puente J, Zaera R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact[J]. International Journal of Impact Engineering, 2009, 36(1): 81-91.

[14] McMillen J H. Shock wave pressures in water produced by impact of small Spheres[J]. Physical Review 1945, 68: 198-209.

[15] McMillen J H, Harvey E N. A spark Shadowgraphic study of Body waves in water[J]. Journal of Applied Physics 1946, 17(7): 541-55.

[16] Lee T W, Yatteau J D. Preliminary hydrodynamic ram investigations at Denver

Research Institute[R]. Denver Research Institute, University of Dayton and Air

Force Flight Dynamics Laboratory, 1977, Technical Report AFFDL-TR-77-32.

[17] Shi H H, Kume M. An experimental research on the flow field of water entry by pressure measurements[J]. Physics of Fluids, 2001, 13(1): 347-349.

[18] Cross L A. Aircraft fuel tank responses to high velocity cubical fragments[R]. University of Dayton Research Institute, 1980, Technical Report AFWAL-TR-80-3042.

[19] Korobkin A. Blunt-body impact on a compressible liquid surface[J]. Journal of Fluid Mechanics, 1992, 244(1): 437-453.

[20] Dear J P, Field J E. High-speed photography of surface geometry effects in liquid/solid impact[J]. Journal of Applied Physics, 1988, 63(4): 1015-1021.

[21] Lundstrom E A, Andersen T. Hydraulic ram model for high explosive ammunition[C]. In: Symposium on shock and wave propagation, fluid structure interaction and structural responses, ASME Pressure Vessels and Piping Conference, Honolulu: 1989.

[22] Kuttruff, Heinrich K. Pressure-induced interaction between bubbles in a cavitation field[J]. The Journal of the Acoustical Society of America, 1999, 106(1): 190-194.

[23] May, Albert. Vertical Entry of Missiles into Water[J]. Journal of Applied Physics, 1952, 23(12): 1362-1372.

[24] Honghui S, Makoto K. Underwater acoustics and cavitating flow of water entry[J]. Acta Mechanica Sinica, 2004, 20(4): 374-382.

[25] Leslie, Charles B. Underwater Noise Produced by Bullet Entry[J]. The Journal of the Acoustical Society of America, 1964, 36(6): 1138-1144.

[26] Field J E. The physics of liquid impact, shock wave interactions with cavities, and the implications to shock wave lithotripsy[J]. Physics in Medicine & Biology, 36(11): 1475-1484.

[27] Disimile P J, Swanson L A, Toy N. The hydrodynamic ram pressure generated by spherical projectiles[J]. International Journal of Impact Engineering, 2009, 36(6): 821-829.

[28] Bless S. Fuel tank survivabilty for hydrodynamic ram induced by high-velocity

Fragments[R]. Part I experimental result and design summary. Tech. Rep. AFFDLTR-78-184, Part I. Dayton, Ohio, USA: University of Dayton Research Institute, 1979.

[29] Deletombe E, Fabis J, Dupas J, et al. Experimental analysis of 7.62mm hydrodynamic ram in containers[J]. Journal of Fluids and Structures, 2013, 37: 1-21.

[30] Varas D, Lopez-Puente J, Zaera R. Experimental Analysis Of Fluid-filled Aluminium Tubes Subjected To High-velocity Impact[J]. International journal of impact engineering, 2009, 36(1): 81-91.

[31] Varas D, Zaera R, Lopez-Puente J. Numerical Modelling Of The Hydrodynamic Ram Phenomenon[J]. International journal of impact engineering, 2009, 36(3): 363-374.

[32] Varas D, Zaera R, Lopez-Puente J. Experimental study of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2011, 93(10): 2598-2609.

[33] Artero-Guerrero J A, Pernas-Sánchez J, Varas D. Numerical analysis of CFRP fluid-filled tubes subjected to high-velocity impact[J]. Composite Structures, 2013: 286-297.

[34] Copland A. Hydrodynamic Ram Attenuatioan[R]. US Army Armament and Rsearch and Development Command, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, 1983.

[35] Disimile P J, Davis J, Toy N. Mitigation of shock waves within a liquid filled tank[J]. International Journal of Impact Engineering, 2011, 38(23): 61-72.

[36] Townsend D, Park N, Devall P M. Failure of fluid filled structures due to high velocity fragment impact[J]. Inter- national Journal of Impact Engineering, 2003(29): 723-733.

[37] Anderson C E. An Overview of the Theory of Hydrocodes[J]. International Journal of Impact Engineering, 1987, 5(1-4): 33–59.

[38] Lee M, Longoria R G, Wilson D E. BALLISTIC WAVES IN HIGH-SPEED WATER ENTRY[J]. Journal of Fluids & Structures, 1997, 11(7): 819-844.

[39] Sparks C, Hinrichsen R, Friedmann D. Comparison and Validation of Smooth Particle Hydrodynamics (SPH) and Coupled Euler Lagrange (CEL) Techniques for Modeling Hydrodynamic Ram[C]. In: 46th AIAA/ASME/ASCE/AHS/ASC structures,

Structural dynamics and materials conference, Austin, Texas, 2005: 18-21.

[40] Lee M. Generation of Shock Waves by a Body during High-Water Entry[D]. Taxes: The University of Taxes at AUSTIN, 1995.

[41] Birkhoff G, Isaacs, R. Transient Cavities in Air-Water Entry[R]. White Oak: NAVORD Report No.1490, 1951.

[42] Lecysyn N, Aurélia Bony-Dandrieux, Aprin L, et al. Experimental study of hydraulic ram effects on a liquid storage tank: Analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010, 178(1-3): 635-643.

[43] 张元豪, 陈长海, 侯海量, 等. 高速破片侵彻防护液舱后的水中运动特性试验研究[J]. 兵器材料科学与工程, 2016, 39(5): 44-48.

[44] 沈晓乐, 朱锡, 侯海亮, 陈长海. 高速破片侵彻防护液舱试验研究[J]. 中国舰船研究, 2011, 6(3): 12-15.

[45] 拾路. 弹体撞击作用下液舱结构的毁伤失效研究[D]. 镇江: 江苏科技大学, 2019.

[46] 陈长海, 侯海量, 张元豪. 钝头弹高速斜侵彻中厚背水金属靶板的机理研究[J]. 工程力学, 2017(11): 245-253.

[47] 金键, 侯海量, 吴梵, 等. 战斗部近炸下防护液舱破坏机理分析[J]. 国防科技大学学报, 2019, 41(02): 166-172.

[48] 徐双喜,吴卫国,李晓彬,等. 舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J]. 爆炸与冲击,2010, 30(4): 395-400.

[49] 孔祥韶, 王旭阳, 徐敬博, 等. 复合防护液舱抗爆效能对比试验研究[J]. 兵工学报, 2018, 39(12): 152-163.

[50] 黄威. 高速弹体水平入水特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

[51] 侯海量, 张成亮, 朱锡, 等. 水下舷侧防雷舱结构防护效能评估方法研究[J]. 中国舰船研究, 2013(3): 22-26.

[52] Aman Zhang, Furen Ming, Xueyan Cao, et al. Protective Design of a Warship Broadside Liquid Cabin[J]. Journal of Marine Science and Application, 2011(10): 437-446.

[53] 李思宇. 舷侧液舱对爆炸破片的防御作用研究[D]. 武汉: 武汉理工大学, 2017.

[54] 吴林杰, 侯海量, 朱锡. 高速破片侵彻下防护液舱后板的载荷特性数值分析[J]. 舰船科学技术, 2018, 40(7): 1-5.

[55] 仲强, 侯海量, 李典. 陶瓷/液舱复合结构抗侵彻机理试验研究[J]. 船舶力学, 2017, 21(10): 1282-1290.

[56] 蔡斯渊, 侯海量, 吴林杰. 隔层设置对防雷舱液舱防护能力的影响[J]. 哈尔滨工程大学学报, 2016, 37(4): 527-532.

[57] Lecysyn N, Aurélia Dandrieux, Frédéric Heymes, et al. Ballistic impact on an industrial tank: Study and modeling of consequences[J]. Journal of Hazardous Materials, 2009, 172(2):587-594.

[58] 钱伟长. 穿甲力学[M]. 北京: 国防工业出版社, 1984.

[59] Recht R F, Ipson T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3):384-390.

[60] Neilson A J. Empirical Equations for the Perforation of Mild Steel Plates[J]. International Journal of Impact Engineering, 1985, 3(2):137-142.

[61] 许陈虎, 陈斌, 宋殿义. 一种金属薄靶板弹道极限速度的计算公式[C]. 第14届全国结构工程学术会议论文集, 2005.

[62] Jones N, Paik J K. Impact perforation of aluminium alloy plates[J]. International Journal of Impact Engineering, 2012(48): 46-58.

[63] Wen H M, Jones N. Experimental investigation of the scaling laws for metal plates struck by large masses[J]. International Journal of Impact Engineering, 1993, 13(3): 485-505.

[64] 邓云飞, 张伟, 孟凡柱, 等. Q235钢单层板对平头刚性弹抗穿甲特性研究[J]. 振动与冲击, 2015, 34(2): 74-78.

[65] Othe S, Yoshizawa H, Chiba N, et al. Impact Strength of Steel Plates Struck by Projectiles: Evaluation Formula for Critical Fracture Energy of Steel Plate[J]. Bulletin of JSME, 1982, 25(206): 1226-1231.

[66] Corbett G G, Reid S R, Johnson W. Impact loading of plates and shells by free-flying projectiles: a review[J]. Int. J. Impact Eng, 1996, 18(2): 141-230.

[67] Forrestal M J, Luk V K. Dynamic Spherical Cavity-Expansion in a Compressible Elastic-Plastic Solid[J]. Journal of Applied Mechanics, 1988, 55(2): 275-279.

[68] Bishop R F, Hill R, Mott N F. The theory of indentation and hardness test[J]. Proc Phys Soc, 1945, 57(3): 147-159.

[69] Hill R. The mathematical theory of plasticity[M]. Oxford university press, 1988.

[70] GOODIER J N. On the mechanics of indentation and cratering in solid targets of strain-hardening metal by impact of hard and soft spheres[C]//Proceedings of the 7th Symposium on Hypervelocity Impact, New York, 1965: 21-219.

[71] Hanagud B S, Ross B. Large deformation, deep penetration theory for a compressible strain-hardening target material[J]. AIAA Journal, 1971, 9(5): 905-911.

[72] Bernard R S. A projectile penetration theory for layered targets[R]. US Army Waterways Experiment Station, AD-A025976, 1976.

[73] Norwood F R. Cylindrical cavity expansion in a locking soil, SLA-74-0201[R]. Sandia Laboratories, 1974.

[74] Butler D K. An analytical study of projectile penetration in rock[R]. Misc Paper 5-75-7 AD-A 012140, US Army Waterways Experiment Station, 1975.

[75] Rohani B. Analysis of projectile penetration into concrete and rock targets[R]. Misc Paper 5-75-25 AD-A016909, US Army Waterways Experiment Station, 1975.

[76] Forrestal M J, Norwood F R, Longcope D B. Penetration into targets described by

locked hydrostats and shear strength[J]. Int J Solids Struct, 1981(17): 915-924.

[77] Forrestal M J, Longcope D B, Lee L M. Analytical and experimental studies on

penetration into geological targets[R]. Sandia National Laboratories, Albuqerque,

Report AD-P001710, 1983.

[78] Forrestal M J, Longcope D B. Target strength of ceramic materials for high-velocity penetration[J]. Journal of Applied Physics, 1990(67): 3669-3672.

[79] Zhou H, Wen H. Penetration of Bilinear Strain-Hardening Targets Subjected to Impact by Ogival-Nosed Projectiles[C]. Proceedings of the 2003 International Autumn Seminar on Propellants, Explosives and Pyrotecnics (2003 IASPEP) Part B, 2003.

[80] 周辉, 文鹤鸣. 动态柱形空穴膨胀模型及其在侵彻问题中的应用[J]. 高压物理学报, 2006, 20(1): 67-78.

[81] 魏雪英. 长杆弹侵彻问题的理论研究[D]. 西安: 西安交通大学, 2002.

[82] 何涛. 动能弹在不同材料靶体中的侵彻行为研究[D]. 合肥: 中国科学技术大学, 2007.

[83] 何涛, 文鹤鸣. 卵形钢弹对铝合金靶板侵彻问题的数值模拟[J]. 高压物理学报, 2006, 20(4): 408-414.

[84] 何涛, 文鹤鸣. 球形弹对金属靶板侵彻问题的数值模拟[J]. 爆炸与冲击, 2006(05): 74-79.

[85] 何涛, 文鹤鸣. 可变形弹丸贯穿铝合金靶的数值模拟[J]. 高压物理学报, 2008, 22(2): 153-159.

[86] 孙炜海, 文鹤鸣. 锥头弹丸撞击下固支金属厚靶的侵彻与穿透的理论研究(英文)[J]. 高压物理学报, 2010, 24(2): 93-101.

[87] Birkhoff G, MacDougall D P, Pugh E M, et al. Explosives with Lined Cavities[J]. Journal of Applied Physics, 1948, 19(6): 563-582.

[88] Tate A. A theory for the deceleration of long rods after impact[J]. Journal of the Mechanics & Physics of Solids, 1967, 15(6): 387-399.

[89] Alekseevskii V P. Penetration of a rod into a target at high velocity[J]. Combustion Explosion and Shock Waves, 1966, 2(2): 63-66.

[90] Bernard R S. Empirical analysis of projectile penetration in rock[R]. Army Waterways Experiment Station Paper AEWES-MP-S-77-16, 1976.

[91] Chen X W, Li Q M. Transition from non-deformable projectile penetration to semi-hydrodynamic penetration[J]. Journal of Engineering Mechanics, 2004, 130(1): 123-127.

[92] Li Q M. A framework of penetration mechanics for hard projectile[C]. In: Yong YS, editor. Applied Advances in Mechanics, ed: Beijing Science Press, 2004: 261-270.

[93] Pellegri M, Berlenghi S, Mariotti P, et al. Investigation of Scaling Effects in Penetration[C]. Proc 11th Int Symp Ballistics, 1989: 481-492.

[94] Randles P W, Carney T C, Libersky L D, et al. Calculation of oblique impact and fracture of tungsten cubes using smoothed particle hydrodynamics[J]. International Journal of Impact Engineering, 1995, 17(4-6): 661-672.

[95] Borvik T, Hopperstad O S , Langseth M , et al. Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates[J]. International Journal of Impact Engineering, 2003, 28(4): 413-464.

[96] Iqbal M A, Tiwari G, Gupta P K, et al. Ballistic performance and energy absorption characteristics of thin aluminium plates[J]. International Journal of Impact Engineering, 2014, 77: 1-15.

[97] 陈刚. 半穿甲战斗部弹体穿甲效应数值模拟与实验研究[D]. 绵阳: 中国工程物理研究院, 2006.

[98] 司马玉洲, 肖新科, 王要沛, 等. 7A04-T6高强铝合金板对平头杆弹抗侵彻行为的试验与数值模拟研究[J]. 振动与冲击, 2017, 36(11): 1-7.

[99] 李言语. 陶瓷/金属复合靶板抗侵彻数值分析及影响因素研究[D]. 南宁: 广西大学, 2013.

[100] Wilkins M L. Mechanics of penetration and perforation [J]. Int J Impact Eng, 1978, 16(11): 793–807.

[101] Sternberg J. Material properties determining the resistance of ceramics to high velocity penetration[J]. Journal of Applied Physics, 1989, 65(9): 3417-3424.

[102] Flinders M, Ray D, Anderson A, et al. High-toughness Silicon Carbide as Armor[J]. Journal of the American Ceramic Society, 2005, 88(8): 2217-2226.

[103] Rosenberg Z, Bless S J, Brar N S. On the influence of the loss of shear strength on the ballistic performance of brittle solids[J]. International Journal of Impact Engineering, 1990, 9(1): 45-49.

[104] Bourne N K. The relation of failure under 1D shock to the ballistic performance of brittle materials[J]. International Journal of Impact Engineering, 2008, 35(8): 674-683.

[105] Hohler V, Stilp A J, Weber K. Hypervelocity Penetration of Tungsten Sinter-Alloy Rods Into Alumina[J]. International Journal of Impact Engineering, 1995, 17: 409-418.

[106] Reaugh J E, Holt A C, Welkins M L, et al. Impact studies of five ceramic materials and pyrex[J]. International Journal of Impact Engineering, 1999, 23(1): 771-782.

[107] Verlag S. Nonlinear Mechanics of Crystals[M]. Springer Netherlands, 2011.

[108] Zaera R. Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours[J]. International Journal of Impact Engineering, 1998, 21(3): 133-148.

[109] Christian K, Duane C, Michael W, et al. Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour[J]. Shock and Vibration, 2003, 10(1): 51-58.

[110] Den Reijer. Impact on Ceramic Faced Armours[D]. Delft University of Technology, 1991.

[111] Riou P, Denoual C, Cottenot C E. Visualization of the damage evolution in impacted silicon carbide ceramics[J]. International Journal of Impact Engineering, 1998, 21(4): 225-235.

[112] Briales C, Corte′s R, Zaera R et al. An experimental and numerical study on the impact of ballistic projectiles onto ceramic/metal armours [C]. Israel: Proc. on the 15th Int. Symp. On Ballistics, 1995.

[113] 张晓晴, 姚小虎, 杨桂通, 等. Al2O3陶瓷材料高应变率下的动态力学性能[J]. 太原理工大学学报, 2006, 37(1): 25-28.

[114] 孙晓波, 高玉波, 徐鹏. 冲击载荷下Al2O3陶瓷的失效与破碎特性[J]. 高压物理学报, 2019, 33(5): 114-122.

[115] 杜忠华, 赵国志, 王晓鸣, 等. 双层陶瓷复合靶板抗弹性的研究[J]. 航空学报, 2002, 23(2): 147-150.

[116] 侯海量, 朱锡, 刘志军, 等. 船用轻型陶瓷复合装甲抗弹性能实验研究[J]. 兵器材料科学与工程, 2007, 30(3): 5-10.

[117] 匡格平. 陶瓷/金属复合靶高速撞击特性研究[D]. 北京: 北京理工大学, 2015.

[118] Florence A L. Interaction of projectiles and composite armou[R]. California: Standard Research Institute Menlo Park, AMMRC-CR-69-15, 1969.

[119] Ben-Dor G, Dubinsky A, Elperin T. Improved Florence model and optimization of two-component armor against single impact or two impacts[J]. Composite Structures, 2009, 88(1): 158-165.

[120] 蒋志刚, 谭清华, 曾首义, 等. 陶瓷/金属复合靶板优化设计[J]. 弹道学报, 2006, 18(2): 69-74.

[121] 杜忠华. 动能弹侵彻陶瓷复合装甲机理[D]. 南京: 南京理工大学, 2002.

[122] 张晓晴. 陶瓷/金属复合靶板受变形弹体撞击问题的研究[D]. 山西: 太原理工大学, 2003.

[123] López-Puente J, Arias A, Zaera R, et al. The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours: An experimental and numerical study[J]. International Journal of Impact Engineering Fifth International Symposium on Impact Engineering, 2005, 32(1-4): 321-336.

[124] Espinosa H D, Dwivedi S, Zavattieri P D, et al. A numerical investigation of penetration in multilayered material/structure systems[J]. 1998, 35(22): 2975-3001.

[125] Feli S, Asgari M R. Finite element simulation of ceramic/composite armor under ballistic impact[J]. Composites Part B: Engineering, 2011, 42(4): 771-780.

[126] Lee M, Yoo Y H. Analysis of ceramic/metal armour systems[J]. International Journal of Impact Engineering, 2001, 25(9): 819-829.

[127] Fawaz Z, Zheng W, Behdinan K. Numerical simulation of normal and oblique ballistic impact on ceramic composite armours[J]. Composite Structures, 2004, 63(3): 387-395.

[128] Gamble E A, Compton B G, Zok F W. Impact response of layered steel–alumina targets[J]. Mechanics of Materials, 2013, 60(1): 80-92.

[129] 黄晓明, 方志威, 侯海量, 等. 陶瓷/钢复合装甲抗高速破片侵彻性能数值模拟[J]. 舰船科学技术, 2019, 41(5): 34-38.

[130] 邹磊, 杨文兵. 陶瓷/金属复合板抗侵彻问题的数值模拟[J]. 弹箭与制导学报, 2008, 28(5): 99-101.

[131] 马天宝, 岳恒超, 任会兰, 等. 陶瓷/金属复合靶抗侵彻性能的数值模拟方法研究[J]. 工程力学, 2015, 32(4): 228-233.

[132] 宋顺成, 王军, 王建军. 钨合金长杆弹侵彻陶瓷层合板的数值模拟[J]. 爆炸与冲击, 2005, 25(2): 102-106.

[133] 徐景林, 顾文彬, 刘建青, 等. PVDF 的标定及在泡沫铝爆炸冲击实验中的应用[J]. 中国测试, 2018, 44(10): 101-106.

[134] 曾明超. 基于PVDF的嵌入式水下爆炸冲击波测试系统研究[D]. 南京: 南京理工大学, 2017.

[135] 王永强, 肖英淋, 刘长林, 等. 自制PVDF薄膜压力传感器标定[J]. 实验技术与管理, 2014, 31(5): 84-90.

[136] 张岳青. 结构物入水冲击响应的试验研究及应用[D]. 西安: 西北工业大学, 2015.

[137] Held M. Verification of the equation for radial crater growth by shaped charge jet penetration[J]. International Journal of Impact Engineering, 1995, 17(1-3):387-398.

[138] Nicolas L, Frederic H, Aurelia D, et al. Experimental Investigation of a Catastrophic Tank Failure with a High Speed Video Recorder. Image Processing and Hydrodynamic Characterization of the Liquid Jet[C]. Icheme Symposium. 2007.

[139] Fourest T, Laurens J M, Deletombe E, et al. Analysis of bubbles dynamics created by Hydrodynamic Ram in confined geometries using the Rayleigh-Plesset equation[J]. International Journal of Impact Engineering, 2014, 73: 66-74.

[140] Chou P C, Schaller R, Hoburg J. Analytical study of the fracture of liquid-filled tanks impacted by hypervelocity particles: DIT Report 160-9 [R]. USA: NASA CR-72169, 1967.

[141] Gupta N K, Iqbal M A, Sekhon G S. Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates[J]. International Journal of Impact Engineering, 2008, 44(10): 3411-3439.

[142] Liu D, Stronge W J. Ballistic limit of metal plates struck by blunt deformable missiles: Experiments[J]. International Journal of Solids and Structures, 2000, 37(10): 1403-1423.

[143] 潘万庆. 动能弹对靶体的侵彻特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

[144] Jones N, Paik J K. Impact perforation of aluminium alloy plates[J]. International Journal of Impact Engineering, 2012, 48: 46-53.

[145] X.W.Chen, X.Q.Zhou, X.L.Li. On perforation of ductile metallic plates by blunt rigid projectile[J]. European Journal of Mechanics A/Solids, 2009, 28(2): 273-283.

[146] 梅志远, 朱锡, 张立军. 高速破片穿透船用钢靶剩余特性研究[J]. 工程力学, 2005, 22(4): 235-240.

[147] Rajendran R, Lee J M. A Comparative Damage Study Of Air And Water-Backed Plates Subjected To Non-Contact Underwater Explosion[J]. International Journal of Modern Physics B, 2008, 22(9-11): 1311-1318.

[148] 张伟, 黄威, 任鹏, 等. 高速弹体水平入水产生冲击波特性[J]. 哈尔冰工业大学学报, 2016, 48(4): 43-47.

[149] 吴成, 金俨, 李华新. 固支方板对水中爆炸作用的动态响应研究[J]. 高压物理学报, 2003, 17(4): 275-282.

[150] 张阿漫, 杨树涛, 姚熊亮. 高速弹丸侵彻储油容器液固耦合数值分析[J]. 船舶力学, 2010, 14(9): 998-1007.

[151] 孔祥韶, 吴卫国, 李俊, 等. 爆炸破片对防护液舱的穿透效应[J]. 爆炸与冲击, 2013, 33(5): 471-478.

[152] Kouadri S, Necib K, Atlati S, et al. Quantification of the chip segmentation in metal machining: Application to machining the aeronautical aluminium alloy AA2024-T351 with cemented carbide tools WC-Co[J]. International Journal of Machine Tools & Manufacture, 2013, 64: 102-113.

[153] 孔祥韶. 爆炸载荷及复合多层防护结构响应特性研究[D]. 武汉: 武汉武汉理工大学, 2013.

[154] 郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

[155] Florence A L. Interaction of projectiles and composite armor. Stanford Research Institute, Menlo Park, California, Report No.AMMRC-CR-69-15, Part 2, 1969.

[156] Feli S, Aaleagha A M E, Ahmadi Z. A new analytical model of normal penetration of projectiles into the light-weight ceramic-metal targets[J]. Int J Impact Eng, 2010, 37(5): 561-567.

[157] 孙炜海, 鞠桂玲, 杨班权. 平头弹丸侵彻B4C陶瓷/金属复合靶板的数值模拟[J]. 装甲兵工程学院学报, 2014, 28(1): 45-48.

[158] Rajendran A M. Modeling the impact behavior of AD85 ceramic under multiaxial loading [J]. Int J Impact Eng, 1993, 15(6): 749-768.

[159] Haris A, Lee H P, Tay T E, et al. Shear thickening fluid impregnated ballistic fabric composites for shock wave mitigation[J]. International Journal of Impact Engineering, 2015, 80(12):143-151.

[160] 刘梅. 剪切增稠液性能优化与应用研究[D]. 合肥: 中国科技大学, 2019.

[161] HOFFMAN R. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability [J]. Transactions of the Society of Rheology, 1972, 16(1): 155-73.

[162] Bossis G, Brady J F. The rheology of Brownian suspensions[J]. The Journal of Chemical Physics, 1989, 91(3): 1866-1874.

[163] S Guillou, R Makhloufi. Effect of a shear-thickening rheological behaviour on the friction coefficient in a plane channel flow: A study by Direct Numerical Simulation[J]. Journal of Non-Newtonian Fluid Mechanics, 2007, 144: 73-86.

[164] MARANZANO B J, WAGNER N J. The effects of particle size on reversible shear thickening of concentrated colloidal dispersions [J]. The Journal of chemical physics, 2001, 114(23): 10514-27.

[165] Kalman D P, Merrill R L, Wagner N J, et al. Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particle?Fluid Suspensions[J]. Acs Appl Mater Interfaces, 2009(11): 2602-2612.

[166] Lee Y S, Wagner N J. Dynamic properties of shear thickening colloidal suspensions[J]. Rheologica Acta, 2003, 42(3): 199-208.

[167] Galindo-Rosales F J, Rubio-Hernández F J. Transient Study on the Shear Thickening Behaviour of Surface Modified Fumed Silica Suspensions in Polypropylene Glycol[C]. The Society of Rheology 80th Annual Meeting, 2008: 686-688.

[168] Petel O E, Ouellet S, Loiseau J, et al. The effect of particle strength on the ballistic resistance of shear thickening fluids[J]. Applied Physics Letters, 2013, 102(6): 1-4.

[169] Wagner N, Wetzel E D. Effect of particle hardness on the penetration behavior of fabrics intercalated with dry particles and concentrated particle-fluid suspensions[J]. ACS Applied Materials and Interfaces, 2009, 1(11): 2602-2612.

[170] Majumdar A, Butola B S, Srivastava A. Development of soft composite materials with improved impact resistance using Kevlar fabric and nano-silica based shear thickening fluid[J]. Materials & Design, 2014(54): 295-300.

[171] PARK Y, KIM Y H, BALUCH A H, et al. Empirical study of the high velocity impact energy absorption characteristics of shear thickening fluid impregnated Kevlar fabric [J]. International Journal of Impact Engineering, 2014, 72(4): 67-74.

[172] 沙晓菲. 剪切增稠液体的制备与性能研究[D]. 无锡: 江南大学, 2013.

[173] 富蕾, 路遥, 杨硕, 等. 剪切增稠液体的制备及其性能和应用[J]. 高科技纤维与应用, 2012(2): 68-74.

[174] 赵玲, 顾建文, 张江龙, 等. SiO2/PEG分散体系的流变学性能研究[J]. 广州化工, 2011, 39(1): 76-78.

[175] 冯新娅. 剪切增稠流体的动态响应及其在防护结构中的应用[D]. 北京: 北京理工大学, 2014.

[176] 谭柱华, 左乐, 刘立胜, 等. 剪切增稠液填充泡沫铝材料力学性能及吸能特性分析[C]. 中国力学大会, 2015.

[177] 王志刚, 周兰英, 朱杰. SiO2纳米粒子/Kevlar织物复合材料的防刺性能研究[J]. 产业用纺织品, 2008, 26(10): 15-21.

[178] 伍秋美. SiO2分散体系流变学研究及其在防护材料方面的应用[D]. 长沙:中南大学, 2007.

[179] Waitukaitis S R, Jaeger H M. Impact-activated solidification of dense suspensions via dynamic jamming fronts[J]. Nature, 2012, 487(7406): 205-209.

[180] Jiang W, Gong X, Xuan S, et al. Stress pulse attenuation in shear thickening fluid[J]. Applied Physics Letters, 2013, 102(10): 101901.

[181] Cao S, Chen Q, Wang Y, et al. High strain-rate dynamic mechanical properties of Kevlar fabrics impregnated with shear thickening fluid[J]. Composites Part A: Applied Science and Manufacturing, 2017, 100: 161-169.

[182] 徐素鹏, 张玉芳. 不同配制方法下剪切增稠液体的性能表征[J]. 硅酸盐通报, 2011, 30(4): 966-969.

[183] Petel O E, Hogan J D. An investigation of shear thickening fluids using ejecta analysis techniques[J]. International journal of impact engineering, 2016, 93: 39-43.

[184] Crouch I G, Baxter B J, Woodward R L. Empirical tests of a model for thin plate perforation[J]. International Journal of Impact Engineering, 1990, 9(1): 19-33.

[185] 李营, 张磊, 朱海清, 等. 爆炸破片在液舱中的速度衰减特性研究[J]. 中国造船, 2016, 57(1): 127-137.

中图分类号:

 U674.703    

条码号:

 002000034476    

馆藏号:

 YD10010412    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式