- 无标题文档
查看论文信息

中文题名:

 脉冲激光沉积制备Cu_xSi_1-x薄膜    

姓名:

 贺志强    

学号:

 1049721300319    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 材料学    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 薄膜制备技术    

第一导师姓名:

 章嵩    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-04-24    

答辩日期:

 2015-05-21    

中文关键词:

 Cu_xSi_1-x薄膜 ; 脉冲激光沉积(PLD) ; 物相 ; 择优取向 ; 显微形貌 ; 外延生长 ; 生长机理    

中文摘要:

本论文采用脉冲激光沉积技术在Si(001)与Si(111)基板上制备了Cu_xSi_1-x薄膜,采用X-射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、原子力显微镜(AFM)、极图等测试手段研究了工艺参数对薄膜的物相,面内、外取向,表、截面显微形貌以及外延生长关系的影响规律。此外,基于居里-乌尔夫原理及晶体学理论讨论了薄膜的生长机理。主要内容及创新点如下:

(1)研究沉积温度对薄膜物相的影响:沉积温度(Td)由20 °C上升至700 °C,薄膜物相由Cu依次转变为η’’-Cu_3Si、η’-Cu_3Si、ε-Cu_15Si_4、δ-Cu_0.83Si_0.17、η-Cu_3Si。

(2)研究了Si基板取向对薄膜物相的影响,在Si(001)基板上,T_d由20 °C上升至700 °C依次出现Cu、η''、η'、ε、δ以及η相;在Si(111)基板上,T_d由20 °C上升至700 °C依次出现Cu、η''、η'以及η相。

(3)研究并控制了薄膜面内、外取向。T_d=20 °C时在Si(001)基板上沉积得到具有Cu(001)完全取向的薄膜;T_d=700 °C时在Si(111)基板上沉积得到具有η(001)完全取向的薄膜。采用极图测试对薄膜面内取向进行研究,阐述了薄膜的外延关系与薄膜-基板界面的原子排布情况。

(4)研究了基板取向对薄膜形貌的影响。T_d=600-700 °C时,分别在Si(001)与Si(111)基板上沉积得到具有四棱锥,三棱柱形貌的Cu_xSi_1-x晶粒。基于居里-乌尔夫原理分析晶粒形貌演化规律。

(5)研究表面重构对薄膜表面形貌的影响。对T_d =600 °C条件下Si(001)基板上Cu_xSi_1-x晶粒的生长过程进行观察,研究晶粒形貌的演化过程,并利用表面重构对晶粒演化过程进行阐述。采用选择性刻蚀法研究了薄膜-基板界面中Cu、Si间的化学反应。利用HNO_3溶液对Cu_xSi_1-x的选择性刻蚀研究了Cu/Si界面原子扩散及反应进程。

参考文献:

[1] Xiao M, Huang F, Huang W, et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells[J]. Angewandte Chemie, 2014, 126(37):10056-10061.

[2] Carcia P F, Meinhaldt A D, Suna A. Perpendicular magnetic anisotropy in Pd/Co thin film layered structures[J]. Applied Physics Letters, 1985, 47(2):178-180.

[3] Paital S R, Dahotre N B. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies[J]. Materials Science and Engineering: R: Reports, 2009, 66(1–3):1-70.

[4] Sinha A K. Refractory metal silicides for VLSI applications[J]. Journal of Vacuum Science and Technology, 1981, 19(3):778-785.

[5] Murarka S P, Silicides for VLSI applications. 1983: Academic Press.

[6] Aboelfotoh M O, Krusin-Elbaum L. Electrical transport in thin films of copper silicide[J]. Journal of Applied Physics, 1991, 70(6):3382-3384.

[7] Chen L J. Metal silicides: An integral part of microelectronics[J]. JOM, 2005, 57(9):24-30.

[8] Kudo H, Haneda M, Ohtsuka N, et al. Ultrathin barrier formation using combination of manganese oxide encapsulation and self-aligned copper silicon nitride barriers for copper wiring in future LSI interconnects [J]. Electron Devices, IEEE Transactions on, 2011, 58(10):3369-3378.

[9] Foley J H, Raynor G V. Lattice spacings in the system copper+germanium+silicon[J]. Transactions of the Faraday Society, 1961, 57(0):51-60.

[10] Foley J H, Cahn R W, Raynor G V. Stacking fault densities in the copper-germanium, copper-silicon and copper-germanium silicon alloys[J]. Acta Metallurgica, 1963, 11(5):355-360.

[11] Mukherjee K P, Bandyopadhyaya J, Gupta K P. Phase relationship and crystal structure of intermediate phases in the Cu-Si system in the composition range of 17 to 25 at. percent Si[J]. Transactions of the metallurgical society of AIME, 1969, 245(10):2335-2338.

[12] Solberg J. The crystal structure of η-Cu3Si precipitates in silicon[J]. Acta Crystallographica Section A, 1978, 34(5):684-698.

[13] Frank T C, Falconer J L. Surface compositions of copper-silicon alloys[J]. Applications of Surface Science, 1983, 14(3–4):359-374.

[14] Gubbiotti G, Carlotti G, Socino G, et al. Perpendicular and in-plane magnetic anisotropy in epitaxial Cu/Ni/Cu/Si(111) ultrathin films[J]. Physical Review B, 1997, 56(17):11073-11083.

[15] Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932):1312-1314.

[16] Li S Y, Lee C Y, Tseng T Y. Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor–liquid–solid process[J]. Journal of Crystal Growth, 2003, 247(3–4):357-362.

[17] Scheuermann M, Chi C C, Tsuei C C, et al. Magnetron sputtering and laser patterning of high transition temperature Cu oxide films[J]. Applied Physics Letters, 1987, 51(23):1951-1953.

[18] Hu B, Ago H, Ito Y, et al. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD[J]. Carbon, 2012, 50(1):57-65.

[19] Daugy E, Mathiez P, Salvan F, et al. 7×7 Si(111)/Cu interfaces: Combined LEED, AES and EELS measurements[J]. Surface Science, 1985, 154(1):267-283.

[20] Wilson R J, Chiang S, Salvan F. Examination of the Cu/Si(111) 5×5 structure by scanning tunneling microscopy[J]. Physical Review B, 1988, 38(17):12696-12699.

[21] Nishino Y, Ota Y, Kawazoe T. Amplitude-dependent internal friction in copper thin films on silicon substrates[J]. Materials Science and Engineering: A, 2004, 370(1–2):146-149.

[22] Jain A, Kodas T T, Jairath R, et al. Selective and blanket copper chemical vapor deposition for ultra-large-scale integration[J]. Journal of Vacuum Science & Technology B, 1993, 11(6):2107-2113.

[23] Kaili Z, Carole R, Christophe T, et al. Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate[J]. Nanotechnology, 2007, 18(27):275607.

[24] Zhang Z H, Hasegawa S,Ino S. Epitaxial growth of Cu onto Si(111) surfaces at low temperature[J]. Surface Science, 1998, 415(3):363-375.

[25] Bhansali S, Sood D K, Zmood R B. Selective electroless copper plating on silicon seeded by copper ion implantation[J]. Thin Solid Films, 1994, 253(1–2):391-394.

[26] Zhang J, Liu C, Fan J. Comparison of Cu thin films deposited on Si substrates with different surfaces and temperatures[J]. Applied Surface Science, 2013, 276(0):417-423.

[27] He Y, Wang Y, Yu X, et al. Si-Cu thin film electrode with kirkendall voids structure for lithium-ion batteries[J]. Journal of The Electrochemical Society, 2012, 159(12):2076-2081.

[28] Li S, Cai H, Gan C L, et al. Controlled synthesis of copper-silicide nanostructures[J]. Crystal Growth & Design, 2010, 10(7):2983-2989.

[29] Zhou Zhang, Wong L M. Self-assembled shape and orientation-controlled synthesis of nanoscale Cu3Si triangles, squares, and wires[J]. Nano Letters, 2008, 8(10):3205-3210.

[30] Ng P K, Fisher B, Low K B, et al. Comparison between bulk and nanoscale copper-silicide: Experimental studies on the crystallography, chemical, and oxidation of copper-silicide nanowires on Si(001)[J]. Journal of Applied Physics, 2012, 111(10):104301.

[31] Harper J M E, Charai A, Stolt L, et al. Room-temperature oxidation of silicon catalyzed by Cu3Si[J]. Applied Physics Letters, 1990, 56(25):2519-2521.

[32] Stolt L, D'Heurle F M. The formation of Cu3Si: Marker experiments[J]. Thin Solid Films, 1990, 189(2):269-274.

[33] Stolt L, Charai A, D’Heurle F M, et al. Formation of Cu3Si and its catalytic effect on silicon oxidation at room temperature[J]. Journal of Vacuum Science & Technology A, 1991, 9(3):1501-1505.

[34] Stolt L, D'Heurle F M, Harper J M. On the formation of copper-rich copper silicides[J]. Thin Solid Films, 1991, 200(1):147-156.

[35] Ichinokawa T, Inoue T, Izumi H, et al. Epitaxial growth in Cu/Si(001)2×1 at high temperatures[J]. Surface Science, 1991, 241(3):416-424.

[36] Tung R T, Gibson J M, Poate J M. Formation of ultrathin single-crystal silicide films on Si: surface and interfacial stabilization of Si-NiSi2 epitaxial structures[J]. Physical Review Letters, 1983, 50(6):429-432.

[37] Tung R T, Gibson J M, Poate J M. Growth of single crystal epitaxial silicides on silicon by the use of template layers[J]. Applied Physics Letters, 1983, 42(10):888-890.

[38] Zotov A V, Gruznev D V, Utas O A, et al. Multi-mode growth in Cu/Si(111) system: Magic nanoclustering, layer-by-layer epitaxy and nanowire formation[J]. Surface Science, 2008, 602(1):391-398.

[39] Pashley D. The growth and structure of epitaxial layers. Mat. Res. Soc. Symp. Proc[C].1985.67-76.

[40] Zur A, McGill T C. Lattice match: An application to heteroepitaxy[J]. Journal of Applied Physics, 1984, 55(2):378-386.

[41] Chang C A. Formation of copper silicides from Cu (100)/Si (100) and Cu (111)/Si (111) structures[J]. Journal of applied physics, 1990, 67(1):566-569.

[42] Bai P, Yang G-R, You L, et al. Room-temperature epitaxy of Cu on Si(111) using partially ionized beam deposition[J]. Journal of Materials Research, 1990, 5(05):989-997.

[43] Olesinski R W, Abbaschian G J. The Cu?Si (Copper-Silicon) system[J]. Bulletin of Alloy Phase Diagrams, 1986, 7(2):170-178.

[44] Schlesinger M E. Thermodynamics of solid transition-metal silicides[J]. Chemical Reviews, 1990, 90(4):607-628.

[45] Predel B. Cu-Si (Copper-Silicon)[M]. Springer Berlin Heidelberg, 1994.1-9.

[46] Wen C Y. Precipitation of copper silicide in voids in silicon single crystals[D], USA: Harvard University, 2005.

[47] Mattern N, Seyrich R, Wilde L, et al. Phase formation of rapidly quenched Cu–Si alloys[J]. Journal of Alloys and Compounds, 2007, 429(1–2):211-215.

[48] Fagerberg S, Westgren A. The Crystal Structure of β-Manganese and Isomorphous Alloys[J]. Metallwirtschaft, 1935, 14:265-267.

[49] Chen L. JCPDS No.51-0916 [J]. Private communication, 1998.

[50] Nes E, Solberg J K. In situ transmission electron microscope investigation of the annealing of copper precipitate colonies in silicon[J]. Journal of Applied Physics, 1973, 44(1):486-487.

[51] Das G. Precipitation of copper in silicon[J]. Journal of Applied Physics, 1973, 44(10):4459-4467.

[52] Wen C Y, Spaepen F. In situ electron microscopy of the phases of Cu3Si[J]. Philosophical Magazine, 2007, 87(35):5581-5599.

[53] Myers S M, Follstaedt D M. Chemical, electrical and structural properties of cavities in Si and Ge[J]. Journal of Applied Phyics, 1995, 79:1337-1349.

[54] Dijkkamp D, Venkatesan T, Wu X D, et al. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material[J]. Applied Physics Letters, 1987, 51(8):619-621.

[55] Kern W. The Evolution of silicon wafer cleaning technology[J]. Journal of The Electrochemical Society, 1990, 137(6):1887-1892.

[56] Higashi G S, Chabal Y J, Trucks G W, et al. Ideal hydrogen termination of the Si?(111) surface[J]. Applied Physics Letters, 1990, 56(7):656-658.

[57] Schulz L. A direct method of determining preferred orientation of a flat reflection sample using a Geiger Counter X-Ray Spectrometer[J]. Journal of Applied Physics, 1949, 20(11):1030-1033.

[58] Decker B, Asp E, Harker D. Preferred orientation determination using a Geiger Counter X-Ray Diffraction Goniometer[J]. Journal of Applied Physics, 1948, 19(4):388-392.

[59] Singh R K, Narayan J. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model[J]. Physical Review B, 1990, 41(13):8843-8859.

[60] Zhang S, He Z, Ji X, et al. Understanding the deposition mechanism of pulsed laser deposited B-C films using dual-targets[J]. Journal of Applied Physics, 2014, 115(15):154906.

[61] Chambers S A, Weaver J H. Thermally induced structural and compositional modification of the Cu/Si(111)-7×7 interface[J]. Journal of Vacuum Science & Technology A, 1985, 3(5):1929-1934.

[62] Lotgering F K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I[J]. Journal of Inorganic and Nuclear Chemistry, 1959, 9(2):113-123.

[63] Csepregi L, Kennedy E F, Mayer J W, et al. Substrate-orientation dependence of the epitaxial regrowth rate from Si-implanted amorphous Si[J]. Journal of Applied Physics, 1978, 49(7):3906-3911.

[64] Lau S S. Regrowth of amorphous films[J]. Journal of Vacuum Science & Technology, 1978, 15(5):1656-1661.

[65] Herring C. Some theorems on the free energies of crystal surfaces[J]. Physical Review, 1951, 82(1):87-92.

[66] Nes E. The mechanism of repeated precipitation on dislocations[J]. Acta Metallurgica, 1974, 22(1):81-87.

[67] Rossi G, Kendelewicz T, Lindau I, et al. The Si(111)/Cu interface studied with surface sensitive techniques[J]. Journal of Vacuum Science & Technology A, 1983, 1(2):987-990.

[68] Wen C Y, Spaepen F. Filling the voids in silicon single crystals by precipitation of Cu3Si[J]. Philosophical Magazine, 2007, 87(35):5565-5579.

[69] Nes E, Washburn J. Precipitation in high-purity silicon single crystals[J]. Journal of Applied Physics, 1971, 42(9):3562-3574.

[70] F?ll H, Kolbesen B O. Formation and nature of swirl defects in silicon[J]. Applied physics, 1975, 8(4):319-331.

[71] Pohl J, Albe K. Void formation in melt-grown silicon studied by molecular dynamics simulations: From grown-in faulted dislocation loops to vacancy clusters[J]. Applied Physics Letters, 2011, 99(8):081910.

[72] West D, Estreicher S K, Knack S, et al. Copper interactions with H, O, and the self-interstitial in silicon[J]. Physical Review B, 2003, 68(3):035210.

[73] Ronay M, Schad R G. New insight into silicide formation: The creation of silicon self-interstitials[J]. Physical Review Letters, 1990, 64(17):2042-2045.

[74] Mo Y W, Swartzentruber B S, Kariotis R, et al. Growth and equilibrium structures in the epitaxy of Si on Si(001)[J]. Physical Review Letters, 1989, 63(21):2393-2396.

[75] Lagally M G, Kariotis R, Swartzentruber B S, et al. Ordering kinetics at surfaces[J]. Ultramicroscopy, 1989, 31(1):87-98.

[76] Tromp R M, Hamers R J, Demuth J E. Si(001) dimer structure observed with scanning tunneling microscopy[J]. Physical Review Letters, 1985, 55(12):1303-1306.

[77] Hamers R J, Tromp R M, Demuth J E. Scanning tunneling microscopy of Si(001)[J]. Physical Review B, 1986, 34(8):5343-5357.

[78] Laracuente A R, Baker L A,Whitman L J. Copper silicide nanocrystals on hydrogen-terminated Si(001)[J]. Surface Science, 2014, 624(0):52-57.

[79] Rubbo M. Basic concepts in crystal growth[J]. Crystal Research and Technology, 2013, 48(10):676-705.

中图分类号:

 TB43    

馆藏号:

 TB43/0319/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式