- 无标题文档
查看论文信息

中文题名:

 

空化水射流冲击船体附着物损伤特性研究

    

姓名:

 康丁    

学号:

 1049722003838    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082402    

学科名称:

 工学 - 船舶与海洋工程 - 轮机工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 船海与能源动力工程学院    

专业:

 船舶与海洋工程    

研究方向:

 空化水射流    

第一导师姓名:

 熊庭    

第一导师院系:

 交通与物流工程学院    

完成日期:

 2023-03-19    

答辩日期:

 2023-05-21    

中文关键词:

 

空化水射流 ; 有限元仿真 ; 正交试验 ; 空蚀损伤

    

中文摘要:

空化水射流是一种在水射流中自然产生空化气泡的连续射流。空化水射流具有节能、高效、环保等突出优点,近年广泛应用于船体附着物清洗中,但清洗过程中,由于空蚀强烈的冲击作用,会对表面漆膜会造成破坏,形成基体损伤。本文以空化水射流冲击船体附着物为研究对象,通过数值模拟和试验,对不同的清洗参数条件下的冲击应力及基材表面质量影响进行详细分析,研究冲洗后附着物基体损伤规律,建立空化水射流冲蚀损伤经验预测模型,阐明空化水射流清洗附着物对基体表面损伤机理。从而为空化水射流清洗船体附着物提供一定的理论指导和技术支持,主要研究内容和结论如下:

(1)以水射流冲击船体为研究对象,利用有限元法进行了数值模拟研究,对不同入射角θ、水射流流速v下靶体受冲击应力影响进行数值模拟。结果表明:随着入射角增大,靶件所受冲击压力会出现水锤压力与滞止压力阶段。在本文研究范围内入射角θ为0~10°时冲击靶件能增强冲击效果,而过大的入射角θ会减弱冲击效果;以一定入射角θ冲击时靶体表面应力分布更复杂且影响范围增大,远离靶体表面部位应力大小先增加后降低;射流速度v每增大100m/s,靶体内最大主应力出现最大值对应的入射角θ增加约2°。

(2)通过正交试验对空化水射流冲蚀面积展开研究,结果表明:最小冲蚀面积的参数组合为入射角θ=0°、靶距R=25mm、射流压力P=16MPa,为减小防腐漆损伤面积应优先考虑入射角θ的选择;方差分析结果表明入射角θ影响显著,射流压力P和靶距R实验因素影响不明显;建立了空化水射流冲蚀面积S经验预测模型,在一定的参数范围内建立的经验预测模型可以为以后空化水射流清洗参数优化、清洗效率调控等方面提供重要的理论依据和共性技术支撑。

(3)通过粗糙度和微观形貌分析空化水射流工艺参数对空蚀损伤影响,得出以下结论:清洗参数对试样表面粗糙度影响程度的显著性由低到高依次为入射角θ、靶距R、射流压力P;试样在空化水射流的清洗下有空化泡溃灭产生的爆炸力反复作用造成疲劳损伤和射流冲击导致微裂纹、塑性变形和剥落两种空蚀破坏机理。射流压力降低对疲劳破坏的减弱程度最大,靶距增大导致射流冲击试样表面能量减弱,空泡提前溃灭使疲劳损伤降低,空蚀孔减少。

参考文献:

[1]鄢和诚, 吴鹏, 臧坦坦.船舶生物污垢水下清洗回收作业要求[J]. 中国船检, 2022(12): 74-77.

[2]王立权, 李超, 陈凯云, 等.海洋钢桩清刷机器人清除粘附藤壶的力学研究[J]. 哈尔滨工程大学学报, 2021, 42(02): 259-265.

[3]QIU H Y, FENG K, Gapeeva A, et al. Functional polymer materials for modern marine biofouling control[J]. Progress in Polymer Science, 2022, 127.

[4]Ramasubburayan R, et al. Antifouling activity of marine epibiotic bacterium Bacillus flexus APGI isolated from Kanyakumari Coast, Tamilnadu, India[J]. INDIAN JOURNAL OF GEO-MARINE SCIENCES, 2017, 46(7): 1396-1400.

[5]王祥. 海洋防污功能菌株的筛选及其活性物质的研究[D]. 厦门:厦门大学, 2014.

[6]Cioanta I, McGHIN C. Cleaning and grooming water submerged structures using acoustic pressure shock waves: U.S. Patent 9,840, 313[P]. 2017-12-12.

[7]Davidson I C, McCann L D, Sytsma M D, et al. Interrupting a multi-species bioinvasion vector: the efficacy of in-water cleaning for removing biofouling on obsolete vessels[J]. Marine Pollution Bulletin, 2008, 56(9): 1538-1544.

[8]薛海, 刘科, 刘明潇, 等. 深水明渠附着水下空间体的水动力特性与体型优化[J]. 水利水电技术, 2021, 52(04): 134-142.

[9]罗宪中, 李贵平, 翁良华. 超声清洗领域新拓展——超声防垢[J]. 清洗世界, 2004(06): 10-14.

[10]Wilson D I, Köhler H, Cai L, et al. Cleaning of a model food soil from horizontal plates by a moving vertical water jet[J]. Chemical Engineering Science, 2015, 123: 450-459.

[11]夏宝莹, 刘望, 郑金豹, 等. 空化射流清洗技术及其在水下设施清洗中的应用[J]. 油气储运, 2011,v. 30; No. 274(10):729-731+713.

[12]武君, 张晓冬, 刘学武, 等. 水力空化及应用[J]. 化学工业与工程, 2003(06): 387-391.

[13]Kalumuck K M, Chahine G L. The Use of Cavitating Jets to Oxidize Organic Compounds in Water[J]. Journal of Fluids Engineering, 2000, 122(3): 465–470.

[14]邓松圣, 沈银华, 李赵杰, 等. 空化射流喷嘴流场的数值模拟[J]. 后勤工程学院学报, 2008(02): 42-46.

[15]孙鹏飞, 周正权, 陈祎, 等. 基于CFD的自激振动空化射流喷嘴结构参数影响研究[J]. 流体机械, 2019, 568(10): 1-7+19.

[16]王维. 自激振荡气溶性雾化射流发生机理及其改善研究[D]. 武汉:武汉科技大学, 2014.

[17]Armağan M. Cutting of St37 steel plates in stacked form with abrasive water jet[J]. Materials and Manufacturing Processes, 2021, 36(11): 1305-1313.

[18]王丽萍, 蔡晓君, 窦艳涛, 等. 高压水射流清洗参数试验研究[J]. 试验室研究与探索, 2017, 36(08):48-51.

[19]吴从前, 任瑞铭, 刘鹏涛, 等. 304不锈钢空化水射流表面空蚀损伤研究[J]. 材料研究学报, 2016, 30(06): 473-480.

[20]刘欢, 赵秀娟, 刘鹏涛, 等. 空化水射流冲蚀纯铜的表面空蚀损伤[J]. 机械工程材料, 2017, 41(05): 68-73.

[21]卢义玉, 冯欣艳, 李晓红, 等. 高压空化水射流破碎岩石的试验分析[J]. 重庆大学学报(自然科学版), 2006(05): 88-91+103.

[22]廖华林, 牛继磊, 易灿. 围压条件下空化磨料射流的冲蚀特性与机制分析[J]. 高压物理学报, 2012, 26(05): 590-594.

[23]康学勤, 杨春敏, 孙智, 等. 空化射流喷丸对45钢表面性能的影响[J]. 北京工业大学学报, 2011, 37(04): 554-558.

[24]王勇. 喷嘴结构对淹没空化水射流冲蚀能力影响的研究[D]. 株洲:湖南工业大学, 2021.

[25]兰华菊. 空化水射流破岩实验研究及机理分析[D]. 重庆:重庆大学,2007.

[26]李根生, 沈忠厚. 常压下淹没自振空化射流冲蚀岩石效果的试验研究[J]. 华东石油学院学报(自然科学版), 1987, 03:12-22.

[27]董星, 郭忱灏, 孙永猛. 前混合空化水射流解离鳞片石墨的微射流冲击特性[J]. 黑龙江科技大学学报, 2021, 31(05): 660-665.

[28]司鹄, 谢延明, 杨春和. 磨料水射流作用下岩石损伤场的数值模拟[J]. 岩土力学, 2011, 32(03): 935-940.

[29]周新超, 马小晶, 廖翔云, 等. 磨料水射流冲击孔隙岩体的SPH模拟研究[J]. 岩土工程学报, 2022, 44(04): 731-739.

[30]侯林利. 高压水射流去毛刺机理的数值模拟研究[D]. 重庆: 重庆大学,2018.

[31]白志华, 曹林卫. 脉冲水射流破岩的数值模拟与分析[J]. 重庆工学院学报(自然科学版), 2009, 23(02): 31-35.

[32]潘越, 杨帆, 张泽鹏, 等. 截断式脉冲水射流冲蚀煤岩特性数值模拟[J]. 振动与冲击, 2021, 40(06): 283-288.

[33]雷光宇, 李骞. 射流速度对水射流破岩影响效果数值试验研究[J]. 水利与建筑工程学报, 2019, 17(05): 138-142.

[34]李洪盛. 自激振荡脉冲射流破岩性能研究[D]. 徐州: 中国矿业大学, 2020.

[35]XU H S, QIANG D. Proceedings of the 2020 International Conference on Advanced Materials, Electronical and Mechanical Engineering[C]. Shanghai: DEStech Transactions on Materials Science and Engineering, 2020.

[36]Hammit F G. Cavitation and multiphase flow phenomena [M]. New York: Mc Graw—Hill Book Co, 1980.

[37]Yamauchi Y, Tomita Y, Takayama K. Suitable region of high-speed submerged water jets for cutting and peening[J]. The Japan Society of Mechanical Engineers International Journal, 1995, 38(1): 31-37.

[38]De H P. Investigation of corrosion phenomena in water turbines[J]. Escher Wyss News, 1933: 77-84.

[39]HUANG L, Folkes J, Kinnell P, et al. Mechanisms of damage initiation in a titanium alloy subjected to water droplet impact during ultra-high pressure plain waterjet erosion [J]. Journal of Materials Processing Technology, 2012, Vol.212(9): 1906-1915

[40]LU Y Y, HUANG F, LIU X C, et al. On the failure pattern of sandstone impacted by high-velocity water jet[J]. INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2015, Vol. 76: 67-74

[41]Srivastava M, Hloch S, Krejci L, et al. Residual stress and surface properties of stainless steel welded joints induced by ultrasonic pulsed water jet peening [J]. Measurement, 2018, Vol. 127: 453-462

[42]Conn A F. Proceedings of the the 1st International Symposium on Cutting Technology [C]. Melbourne: Swinburne University of Technology, 1972.

[43]Johnson V, Conn A, Lindenmuth W, et al. Proceedings of the 6th International Symposium on Jet Cutting Technology [C]. Cambridge: Barratt BHRA Fluid Engineering, 1982: 1-25.

[44]MA G W, WANG X J, REN F. Numerical simulation of compressive failure of heterogeneous rock-like materials using SPH method[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 353-363.

[45]Hopkins P F. A general class of Lagrangian smoothed particle hydrodynamics methods and implications for fluid mixing problems[J]. Monthly Notices of the Royal Astronomical Society, 2013, 428(4): 2840-2856.

[46]Oh T, Prasidhi A K, Cho G, et al. Effect of water jet geometric parameters on rock fracturing[J]. KSCE Journal of Civil Engineering, 2014, 18(3): 772-779.

[47]Hsu C Y, LIANG C C, TENG T L, et al. A numerical study on high-speed water jet impact(Article)[J]. Ocean Engineering, 2013, 72: 98-106

[48]GONG W J, WANG J M, GAO N. Numerical simulation for abrasive water jet machining based on ALE algorithm [J]. International Journal of Advanced Manufacturing Technology, 2011, 53: 247-253

[49]REN F S, FANG T C, CHENG X Z. Study on rock damage and failure depth under particle water-jet coupling impact [J]. International Journal of Impact Engineering, 2020, 139: 103504.

[50]Townsin R L. The ship hull fouling penalty[J]. Biofouling, 2003, 19(S1): 9-15.

[51]Bax N, Williamson A, Aguero M, et al. Marine invasive alien species: a threat to global biodiversity[J]. Marine policy, 2003, 27(4): 313-323.

[52]Schultz M, Bendick J, Holm E, et al. Economic impact of biofouling on a naval surface ship[J]. Biofouling, 2011, 27(1): 87-98.

[53]Chambers L D, Stokes K R, Walsh F C, et al. Modern approaches to marine antifouling coatings [J]. Surface & Coatings Technology, 2006, 201(6): 21-27.

[54]Abarzua S, Jakubowsky S. Biotechnological investigation for the prevention of biofouling. Biological and biochemical principles for the prevention of biofouling [J]. Mar EcolProg Ser, 1995, 123:301-312.

[55]Costerton J W, Irvin R T, Cheng K J. The bacterial glycocalyx in nature and disease[J]. Annu Rev Microbiol, 1981, 35:299-324.

[56]施春燕, 袁家虎, 伍凡. 冲击角度对射流抛光中材料去除面形的影响分析[J]. 光学学报, 2010(2): 513-517.

[57]杨庆, 张建民, 戴光清, 等. 空化形成机理和比尺效应[J]. 水力发电, 2004(04): 56-59.

[58]李子丰. 空化射流形成的判据和冲蚀机理[J]. 工程力学, 2007(03): 185-188.

[59]Knapp R T, Hollander A. Laboratory investigations of the mechanism of cavitation[J]. Transactions of the ASME, 1948, 70: 419-433.

[60]David A. Ramirez-Cadavid et al. Effects of hydrodynamic cavitation on dry mill corn ethanol production[J]. Process Biochemistry, 2016, 51(4): 500-508.

[61]贺照云. 处理难降解有毒有机物的旋流式壅塞空化技术研究[D]. 株洲: 湖南工业大学, 2016.

[62]Al-Hashem A, Caceres P G, Riad W T, et al. Cavitation corrosion behavior of cast nickel-aluminum bronze in seawater[J]. Corrosion, 1995, 51(05).

[63]王萍辉. 空化水射流清洗的实验研究[J]. 中国矿业, 2004(05): 45-48+52.

[64]黄继汤. 空化与空蚀的原理及应用. 北京: 清华大学出版社, 1991: 113-114

[65]Sasahara H, Obikawa T, Shirakashi T. FEM analysis of cutting sequence effect on mechanical characteristics in machined layer[J]. Joumal of Materials Processing Techonology, 1996, 62(4): 448-453.

[66]Takaffoli M, Papini M. Material deformation and removal due to single particle impacts on ductile materials using smoothed particle hydrodynamics[J]. Wear, 2012, 274-275: 50-59

[67]张嘉嘉. 超声振动金属切削有限元仿真研究[D]. 上海: 上海工程技术大学, 2017.

[68]李月琳. 镗削加工刀具磨损与切削功率有限元仿真研究[D]. 烟台: 烟台大学, 2021.

[69]刘云飞. 基于SPH法的铝合金表面磨料气射流抛光过程机理研究[D]. 淮南: 安徽理工大学, 2021.

[70]周宏, 李俊峰, 王天舒. 用于ALE有限元模拟的网格更新方法[J]. 力学学报, 2008(02): 267-272.

[71]Mabrouki T, Raissi K, Cornier A. Numerical simulation and experimental study of the interaction between a pure high-velocity waterjet and targets: contribution to investigate the decoating process[J]. Wear, 2000, 239(2): 260-273

[72]Olovsson L, Aquelet N, Souli M. Lagrange coupling with damping effects: Application to slamming problems[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 110-132

[73]Hallguist J O.LS-DYNA theory manual[M].Livermore: Livermore Software Technology Corporation, 2006: 155-161.

[74]David J B. Computational methods in Lagrangian and Eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99: 235-394

[75]黄飞. 水射流冲击瞬态动力特性及破岩机理研究[D]. 重庆: 重庆大学,2015.

[76]陈征, 魏红祥, 张玉峰, 等. 动量、动能与牛顿的力—动力学的基础概念与图像[J]. 物理, 2022, 51(02): 133-135.

[77]SHI H, WANG L M. Adhesion mechanism and prevention of marine biofouling barnacle[J]. Guangdong Agricultural Sciences, 2006(6): 72-74.

[78]徐慧, 刘增田. 正交试验设计方法在零值实验中的应用[J]. 无线电工程, 1996(04): 48-54.

[79]CHEN M T, JIANG X Y, ZHAO Y J. Optimization of injection molding process parameters of rubber outer windshield for high speed train based on orthogonal experiment[J]. China Rubber Industry, 2021, 68(3): 168-174.

[80]王荣华. 复杂薄壁曲面零件加工变形分析与有限元仿真研究[D]. 南京: 南京理工大学, 2021.

[81]FENG J, YIN G, TUO H, et al. Parameter optimization and regression analysis for multi-index of hybrid fiber-reinforced recycled coarse aggregate concrete using orthogonal experimental design[J]. Construction and building materials, 2021, 267: 121013.

[82]郭琦, 李方义, 李硕, 等. 高压水射流清洗对基体去污效果及损伤的研究[J]. 中国机械工程, 2014, 25(06): 817-820.

[83]Quah E W, Karri B, Ohl S W, et al. Expansion and collapse of an initially off-centered bubble within a narrow gap and the effect of a free surface[J]. International Journal of Multiphase Flow, 2018, 99: 62-72.

[84]Soh W K, Khoo B C, Yuen W Y. The entrainment of air by water jet impinging on a free surface[J]. Experiments in fluids, 2005, 39(3): 498-506.

[85]HUANG L, Folkes J, Kinnell P, et al. Mechanisms of damage initiation in a titanium alloy subjected to water droplet impact during ultra-high pressure plain waterjet erosion[J]. Journal of Materials Processing Tech, 2012, 212(9):51-57.

[86]ZHANG H, HAN B, YU X G, et al. Numerical and experimental studies of cavitation behavior in water-jet cavitation peening processing[J]. Shock and Vibration, 2013, 20(5): 895-905.

中图分类号:

 O358    

条码号:

 002000074549    

馆藏号:

 YD10002547    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式