- 无标题文档
查看论文信息

中文题名:

 钒氧化物电极材料的设计构筑与电化学性能的研究     

姓名:

 张磊    

学号:

 1049721200247    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080501    

学科名称:

 材料物理与化学    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

获奖论文:

 校优秀硕士学位论文    

院系:

 材料科学与工程学院    

专业:

 材料物理与化学    

研究方向:

 新能源材料    

第一导师姓名:

 麦立强    

第一导师院系:

 武汉理工大学    

完成日期:

 2014-11-01    

答辩日期:

 2014-12-12    

中文关键词:

 

钒氧化物 ; 电化 ; 学性能 ; 循环性能 ; 锂离子电池

    

中文摘要:

 21世纪以来,人们对能源需求的不断增长对可持续发展和能源环保是一个非常重要且具有巨大的挑战性问题。在现有能量储存技术中,锂离子电池由于具有高能量密度,长循环寿命以及无记忆效应等优点而受到关注。然而锂离子电池在电动汽车和电网级储能等大规模能源储存应用上还有待进一步开发。为了实现规模化应用,制备高功率密度的电池是迫切必需的。因此寻找理想的高能量密度和功率密度的电极材料具有非常重大意义的。钒氧化物在可再充锂离子电池中是非常好的正极材料,具有很高的的容量和非常丰富的资源。

然而,钒氧化物的电化学性能仍然存在许多缺陷,主要原因是其具有较低的电子电导率和离子电导。电子电导率比较低会影响其高倍率充放电性能,而较低的离子电导率会使锂离子在钒氧化物中脱嵌时受到更大阻力,在影响其容量的同时使循环稳定性变差。在本文探索了有效的方法来改进这些缺陷,从而会提高其电化学性能。

本论文通过水热方法以及固相烧结法制备了钴掺杂的钒氧化物纳米线、 NH4V3O8纳米线和多孔二氧化钒纳米线等锂离子电极材料。主要内容如下:

(1)通过水热方法合成了Co掺杂的钒氧化物纳米线。作为锂电池电极材料Co掺杂的钒氧化物纳米线相比于块状V2O5,在1 A/g 电流密度下,其首次容量为1603 mAh/g,在300圈后其比容量仍能保持640 mAh/g,显示出其作为锂电池负极材料具有广泛的应用前景。(2)通过调节水热时间与pH值,成功制备NH4V3O8纳米线。作为锂电池正极材料,在0.1 A/g电流密度下该材料初始容量为175 mAh/g,高于对照样块状NH4V3O8的循环初始容量(160 mAh/g),经过100圈循环后NH4V3O8纳米线容量为125 mAh/g,其容量保持率高达71%,远高于块状NH4V3O8 (56 mAh/g, 35%)。(3)通过在氮气气氛下控制不同温度烧结NH4V3O8纳米线得到不同价态的钒氧化物。由于加热过程中的氨气释放,通过调节烧结温度,利用氨气的还原性,成功制备得到不同价态的钒氧化物(VO2, V2O3等)。(4)结合水热法和固相烧结法制备了多孔VO2纳米线,其具有较高的比表面积(46.7 m2/g)远高于VO2纳米线(8 m2/g),作为正极电极材料,多孔VO2纳米线在1 A/g的大电流密度下500圈的容量保持率高达90%,远高于VO2纳米线的容量保持率75%。综上所述,多孔VO2纳米线展示出了更优异循环稳定性和倍率性能。

参考文献:

[1]Armand M, & Tarascon, J.-M. Building better batteries[J]. Nature, 2008, 451, 652-657.

[2]Liu J, Addressing the Grand Challenges in Energy Storage[J]. Advanced Functional Material, 2013, 23, 924-928.

[3]Kang B, Ceder G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458, 190-193.

[4]Kim S W, Seo D H, Ma X H, Ceder G, Kang K. Electrode materials for rechargeable sodium-Ion batteries: potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2, 701-910.

[5]Ji L W, Lin Z, Alcoutlabi M, Zhang X W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4, 2682-2699.

[6]Arico A S, Bruce P, Scrosati B, Tarascon J M, Schalkwijk W V. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4, 366-376.

[7]Bruce P G., Scrosati B, Tarascon J. M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47, 2930-2946.

[8]Thackeray M M, Wolverton, C. Isaacs E D. Electrical energy storage for transportation-approaching the limits of and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5, 7854-7863.

[9]Dunn B, Kamath H, Tarascon,J.-M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334, 928-935.

[10]Rolison D R, Nazar L F. Electrochemical energy storage to power the 21st century[J]. MRS Bulletin, 2011, 36,486-493.

[11]Tarascon J, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414, 359-367.

[12]Scrosati B, Garche J. Lithium batteries: Status,prospects and future[J]. Journal of Power Sources,2010,195,2419-2430.

[13]Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. nature, 2012, 488, 294-303.

[14]Rivest J B. .and Jain PK. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing[J]. Chem. Soc. Re, 2013, 42, 89.

[15]Pan A Q, Wu H B, Yu L, and Lou X. W. Template-Free Synthesis of VO2 Hollow Microspheres with Various Interiors and Their Conversion into V2O5 for Lithium-Ion[J]. BatteriesAngew. Chem., 2013, 6, 79.

[16]Tang K, Mu X K., Van Aken P A, Y. Yu, Maier J. Hollow Carbon Nanospheres with a High Rate Capability for Lithium-Based Batteries[J]. Adv. Energy Mater., 2013, 3, 49.

[17]Zhou Z Y, Tian N, Li J T, Broadwell I, et al. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage[J]. Chem. Soc.Rev., 2011, 40, 4167.

[18]Liu D W, Liu Y Y, et al.B Enhanced Lithium-Ion Intercalation Properties of V2O5 Xerogel Electrodes with Surface Defects[J]. J. Phys. Chem. C., 2011, 115, 4959.

[19]Wang Y, K, et al. Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium-Ion Intercalation[J]. Adv. Funct. Mater., 2006, 16, 1113.

[20]Nethravathi C, Rajamathi C R, et al. N-Doped Graphene–VO2(B) Nanosheet-Built 3D Flower Hybrid for Lithium Ion Battery[J]. ACS Appl. Mater. Interfaces, 2013, 5, 2708.

[21]Li H Q, He P, Wang Y G E. Hosonoa and H. S. Zhou, Single-crystal H2V3O8 nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries[J]. J. Mater.Chem., 2011, 21, 10999.

[22]Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354, 56-58.

[23]麦立强. 低维钒氧化物纳米材料制备,结构与性能研究[D],武汉: 武汉理工大学,2004.

[24]张立德,牟季美. 纳米材料和纳米结构 [M]. 北京:科学出版社,2001,124-138.

[25]Du N, Xu Y F, Zhang H et al. Porous ZnCo2O4 Nanowires Synthesis via Sacrificial Templates: High-Performance Anode Materials of Li-Ion Batteries[J]. Inorganic Chemistry 2011, 50, 3320–3324.

[26]Tao S L, Desai T et al. A Aligned arrays of biodegradable poly(ε-caprolactone) nanowires and nanofibers by template synthesis[J]. Nano Letters 2007, 7, 1463-1468.

[27]Lu Q Y, Gao F, et al. Ordered SBA-15 Nanorod Arrays Inside a Porous Alumina Membrane [J]. Journal of the American Chemical Society 2004, 126, 8650-8651.

[28]Hu C C, Chang K H et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors[J]. Nano Letters 2006, 6, 2690-2695.

[29]Molares M E T, BuschmannV et al. Single-Crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes[J].Advanced Materials 2001, 13, 62-65.

[30]Gao L, Wang X F, Xie Z, Song W F, Wang L J, Wu X, et al. High-performance energy-storage devices based on WO3 nanowirearrays/carbon cloth integrated electrodes [J]. Journal of Materials Chemistry A, 2013, 1, 7167-7173.

[31]Son J H, Wei J, Cobden D, Cao G Z, Xia Y N Hydrothermal Synthesis of Monoclinic VO2 Micro- and Nanocrystals in One Step and Their Use in Fabricating Inverse Opals [J]. Chemistry of Materials 2010, 22, 3043–3050.

[32]Xu J J, Wang K, Zu S Z, Han B H et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with Synergistic Effect for Energy Storage [J]. ACS Nano 2010, 4, 5019-5026.

[33]Zhu C B, Yu Y, et al. Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires[J]. Angewandte Chemie International Edition 2011, 50, 6278 –6282.

[34]Zhang S, Li Y, et al. Li2MnSiO4/Carbon Composite Nanofibers as a High-Capacity Cathode Material for Li-Ion Batteries[J].Soft Nanoscience Letters, 2012, 2, 54-57.

[35]Qu L T, Dai L, Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off[J]. Science, 2008, 322, 238-242.

[36]Wang Z L, Song J H Piezoelectric nanogenerators based on zinc oxide nanowire arrays [J]. Science, 2006, 312, 242-245.

[37]Yaoa J, Yana H, Nanowire nanocomputer as a finite-state machine[J]. Proceedings of the National Academy of Sciences 2014, 111, 2431-2435.

[38]Karni T C, Lieber C M, Nanowire nanoelectronics: Building interfaces with tissue and cells at the natural scale of Biology[J]. Pure and Applied Chemistry, 2013, 85, 883-901

[39]Mai L Q, Dong Y J et al. Single Nanowire Electrochemical Devices[J]. Nano Letter 2010, 10, 4273-4278.

[40]Mai L Q, Yang F et al. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance[J]. Nature Communnication 2011, 2, 381-386.

[41]Wei Q L, An Q Y et al. One-Pot Synthesized Bicontinuous Hierarchical Li3V2(PO4)3/C Mesoporous Nanowires for High-Rate and Ultralong-Life Lithium-ion Batteries[J]. Nano Letter 2014, 14, 1042?1048.

[42]Yan M Y Wang F C et al. Nanowire Templated Semihollow Bicontinuous GrapheneScrolls: Designed Construction, Mechanism, and Enhanced Energy Storage Performance[J]. Journal of the American Chemical Society 2013, 135, 18176?18182.

[43]Wu H, Chan G, Choi J W. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature Nanotechnology,2012, 7, 310-315.

[44]Wu H, Chan G et al. Stable cycling of double-walled silicon nanotube battery anodes t hrough solid-electrolyte interphase control[J]. Nature Nanothchnology, 2012, 7, 310-315.

[45]Cai L, Cho I S, et al. "Sol-Flame Synthesis of Cobalt-doped TiO2 Nanowires with Enhanced Electrocatalytic Activity for Oxygen Evolution Reaction[J]. Phys. Chem. Chem. Phys., DOI:10.1039/C4CP01748J (2014).

[46]Zhao M S, Song X P, Wang F, et al. Electrochemical performance of single crystalline spinel LiMn2O4 nanowires in an aqueous LiNO3 solution[J]. Electrochim. Acta, 2011, 56: 5673-5678.

[47]Kempa T J, Day R W, Lieber C M. Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells[J]. Energy Environ. Sci. 6, 719-733 (2013).

[48]Jiang X, Hu J, et al. Probing single- to multi-cell level charge transport in Geobacter sulfurreducens [J]. Nature Comm. 4, 2751 (2013).

[49]Bhide A, Hariharan K, et al. Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery [J]. Solid State Ionics 2011, 19, 360-363.

[50]Recham N, Chotard J N et al. Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials [J]. Journal of the Electrochemical Society, 2009, 156, 993-999.

[51]Misra S, Liu N, Nelson J, et al. In Situ X-ray Diffraction Studies of (De)lithiation Mechanism in Silicon Nanowire Anodes [J].ACS Nano 2012, 6, 5465.

[52]Mai L Q, Dong Y F, et al. Electrospun Ultralong Hierarchical Vanadium Oxide Nanowires with High Performance for Lithium Ion Batteries[J]. Nano Lett. 2010, 10, 4273.

[53]Liu J, Huang W, et al. Ultrathin Hetero‐Nanowire‐Based Flexible Electronics with Tunable Conductivity[J]. Advanced Materials, 2013, 25, 5910–5915.

[54]Liu C, Tang J, Chen H M,et al. A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting[J]. Nano Letters,2013, 13, 2989-2992.

[55]Yan R X, Gargas D et al. nanowire photonics[J].Nature Photonics, 2009, 3, 569-576.

[56]Chen T, Qiu L, Yang Z, et al. An Integrated “Energy Wire” for both Photoelectric Conversion and Energy Storage[J]. Angewandte Chemie International Edition,2012,51, 11977-11980.

[57]Mai L Q, Dong Y F, et al. et al. Single nanowire electrochemical devices[J]. Nano Letters, 2010,10,4273-4278.

[58]Mai L Q, Zhao Y, et al. Fast Ionic Diffusion-Enabled Nanoflake Electrode by Spontaneous Electrochemical Pre-Intercalation for High-Performance Supercapacitor[J]. Scientific Reports, 2013, 3, 1718.

[59]Garcia B, Millet M, Pereira-Ramos J, et al. Electrochemical behaviour of chemically lithiated LixV2O5 phases (0.9≤x≤ 1.6)[J]. Journal of Power Sources, 1999, 81, 670-674.

[60]Mai L Q, Xu L, Hu B, et al. Improved cycling stability of nanostructured electrode materials enabled by prelithiation[J]. Journal of Materials Research, 2010, 25, 1413-1420.

[61]Li Y, Tan B, Wu Y. Preparation and Application of Co3O4 Nanostructures with Various Morphologies[J]. Nano Lett. 2008, 8, 265.

[62]Kim J G, Nam S H, et al. Standing pillar arrays of C-coated hollow SnO2 mesoscale tubules for a highly stable lithium ion storage electrode[J].ACS Appl. Mater. Inter. 2011, 3, 828.

[63]Xu X, Luo Y Z, Mai L Q, et al. Topotactically synthesized ultralong LiV3O8 nanowire cathode materials for high-rate and long-life rechargeable lithium batteries[J]. NPG Asia Mater. 2012, 4, 20.

[64]Yan M Y, Han C H, et al. Nanowire Templated Semihollow Bicontinuous Graphene Scrolls:Designed Construction, Mechanism, and Enhanced Energy Storage Performance[J]. J. Am. Chem. Soc. 2013, 135, 18176.

[65]Chan C K, Zhang X F, Cui Y. High capacity Li ion battery anodes using Ge nanowire[J]. Nano Lett. 2008, 8, 307.

[66]Chan C K, Zhang X F, Cui Y. High capacity Li ion battery anodes using Ge nanowires[J]. Nano Letters,2008,8,307-309.

[67]Mai L Q, Hu B, Chen W, et al. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries[J]. Advance Materials, 2007, 19, 3712-3716.

[68]Mai L Q, Xu L, Hu B, et al. Improved cycling stability of nanostructured electrode materials enabled by prelithiation[J]. Journal of Materials Research, 2010, 25, 1413-1420.

[69]Ma H, Zhang S, Ji W, et al. á-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application[J]. Journal of American Chemical Society, 2008, 130, 5361-5367.

[70]Lee H W, Muralidharan P, Ruffo R, et al. Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries[J]. Nano Letters, 2010, 10, 3852–3856.

[71]Chen S, Zhu J, Wu X, et al. Graphene oxide-MnO2 nanocomposites for supercapacitors [J]. ACS Nano, 2010, 4, 2822-2830.

[72]Wu Z S, Ren W, Wang D W, et al. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors[J]. ACS Nano, 2010, 4, 5835-5842.

[73]He Y, Chen W, Li X, et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS nano, 2012, 7, 174-182.

[74]Peng L, Peng X, Liu B, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors[J]. Nano letters, 2013, 13, 2151-2157.

[75]Guo C X, Wang M, et al. A Hierarchically Nanostructured Composite of MnO2/Conjugated Polymer/Graphene for High‐Performance Lithium Ion Batteries[J]. Advanced Energy Materials, 2011, 1, 736-741.

[76]Li Q, Wang Z L, Li G R, et al. Design and Synthesis of MnO2/Mn/MnO2 Sandwich- Structured Nanotube Arrays with High Supercapacitive Performance for Electrochemical Energy Storage[J]. Nano Letters 2012, 12, 3803-3807.

[77]Mai L Q, Xu X, Han C H , et al. Rational Synthesis of Silver Vanadium Oxides/Polyaniline Triaxial Nanowires with Enhanced Electrochemical Property[J]. Nano Lett.2011, 11, 4992.

[78]Murugan A V, Muraliganth T, Manthiram A. Nanostructured electrode materials for electrochemical energy storage and conversion[J]. J. Phys. Chem. C. 2008, 112, 14665.

[79]Kim H, Cho J. Superior Lithium Electroactive Mesoporous Si@Carbon Core?Shell Nanowires for Lithium Battery Anode Material[J]. Nano Lett. 2008, 8, 3688.

[80]Li H, Zhou H. Enhancing the performances of Li-ion batteries by carbon-coating: present and future[J]. Chem. Commun. 2012, 48, 1201.

[81]Cui L F, Ruffo R, Chan C K, Peng H, Cui Y. Crystalline-Amorphous Core?Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes[J]. Nano Lett. 2008, 9, 491.

[82]Saravanakumar B, Purushothaman K K, Muralidharan G. Interconnected V2O5 Nanoporous Network for High-Performance Supercapacitors [J]. ACS Applied Materials & Interfaces, 2012, 4: 4484-4490.

[83]Zhu J X, Cao L J, Wu Y S, et al. Building 3D Structures of Vanadium Pentoxide Nanosheets and Application as Electrodes in Supercapacitors. Nano Letters, 2013, 13: 5408-5413.

[84]Tang Y X, Rui X H, Zhang Y Y, et al. Vanadium Pentoxide Cathode Materials for High-Performance Lithium-Ion Batteries Enabled by a Hierarchical Nanoflower Structure via an Electrochemical Process [J]. Journal of Materials Chemistry A, 2013, 1: 82-88.

[85]Pan A Q, Wu H B, Yu L, et al. Template-Free Synthesis of VO2 Hollow Microspheres with Various Interiors and Their Conversion into V2O5 for Lithium-Ion Batteries [J]. Angewandte Chemie International Edition, 2013, 52: 2226-2230.

[86]Zhang C F, Chen Z X, Guo Z P, et al. Additive-Free Synthesis of 3D Porous V2O5 Hierarchical Microspheres with Enhanced Lithium Storage Properties. Energy & Environmental Science, 2013, 6: 974-978.

[87]Pan A Q, Zhu T, Wu H B, et al. Template-Free Synthesis of Hierarchical Vanadium- Glycolate Hollow Microspheres and Their Conversion to V2O5 with Improved Lithium Storage apability [J]. Chemistry-A European Journal, 2013, 19: 494-500.

[88]Pan A Q, Wu H B, Zhang L, et al. Uniform V2O5 Anosheet-Assembled Hollow Microflowers with Excellent Lithium Storage Properties [J]. Energy & Environmental Science, 2013, 6: 1476-1479.

中图分类号:

 TM912    

馆藏号:

 TM912/0247/2014    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式