- 无标题文档
查看论文信息

中文题名:

 

基于CO2驱动固结的镁渣基3D打印材料制备与性能研究

    

姓名:

 黄帅    

学号:

 1049732000910    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085204    

学科名称:

 工学 - 工程 - 材料工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 无机非金属材料    

第一导师姓名:

 张文芹    

第一导师院系:

 材料科学与工程学院    

完成日期:

 2023-03-20    

答辩日期:

 2023-05-16    

中文关键词:

 

镁渣 ; CO2养护 ; 抗压强度 ; 3D打印 ; 流变性能

    

中文摘要:

镁渣是镁冶炼行业中产生的固体废弃物,水化活性较差而碳化活性优异,通过CO2养护的方式能够激发其活性。目前CO2养护的镁渣建筑制品仍然以压制和浇筑成型为主,3D打印技术具有快速成型、无模、节省材料的优点。若能将镁渣通过3D打印方式的成型再通过CO2养护提升力学性能,既能够充分利用镁渣的碳化活性,又可以发挥3D打印的优势,但相关的研究仍处于空白状态。本文首次提出利用高碳化活性的镁渣为胶凝组分,在打印完成后进行CO2养护,在短时间内即可获得具有优异力学强度的3D打印制品。基于配合比优化设计,综合考虑打印性能和力学性能制备出了一种基于CO2驱动固结且力学性能良好的镁渣基3D打印材料。

论文开展的主要工作及取得的主要成果如下:

(1)不同配比参数的流变特性以及实际打印状态的结果表明,塑性粘度在2.05 - 2.81 Pa·s之间、屈服应力在297.41 - 401.75 Pa之间为合适的打印参数范围。优选出1.0 wt.%的壳聚糖,10 wt.%的硅灰,0.1 wt.%的温轮胶为最佳配合比,制备出的镁渣基3D打印材料在CO2养护24 h后的抗压强度为88.29 MPa,具有良好的力学性能。

(2)研究预干燥处理和CO2养护制度(CO2养护时间和CO2养护分压)对镁渣基3D打印材料的碳化性能的影响。打印试块进行适当的预干燥处理后再进行CO2养护有利于提升碳化性能,确定了打印试块在CO2养护前的最佳水固比为0.09。提升CO2分压有利于提升镁渣基3D打印材料的抗压强度,在0.3 MPa 的CO2分压下的抗压强度是0 MPa的CO2分压下的1.52倍。延长CO2养护时间能够提高抗压强度,但碳化反应进行到一定程度时,对于抗压强度的提升有限。

(3)镁渣基3D打印试块在CO2养护后的产物组成及微观结构表明,CO2养护后形成了大量的方解石型碳酸钙,孔径得到了细化,多害孔级的数量明显下降,总体孔隙率显著降低。微观结构致密化和方解石型碳酸钙的形成是镁渣基3D打印材料在CO2养护后显著提升力学强度的主要原因。

(4)对温轮胶(WG)和三种不同粘度的羟丙基甲基纤维素(HPMC1、HPMC2、HPMC3,粘度HPMC1<HPMC2<HPMC3)四种增稠剂配比打印试块的力学性能差异进行分析。一方面,碳化反应活性:WG组>HPMC1组>HPMC2组>HPMC3组,较高的碳化反应活性更有利于获得更高的碳化程度,导致CO2养护后,WG组比HPMC1组、HPMC2组、HPMC3组生成了更多的方解石型碳酸钙,从而有利于抗压强度的提升。另一方面,WG组的打印试块的孔隙无论在数量和尺寸上均明显小于HPMC1组、HPMC2组、HPMC3组。方解石型碳酸钙含量的不同和孔结构的差异导致打印试块的力学性能产生差异。

参考文献:

[1] Yang X, Dong F, Zhang X, et al. Review on comprehensive utilization of magnesium slag and development prospect of preparing backfilling materials[J]. Minerals, 2022, 12(11).

[2] 孙睿, 邬兆杰, 王栋民, 等. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023(09): 1-20.

[3] 镁行业规范条件[EB/OL]. [2020-03-03]. https://www.miit.gov.cn/jgsj/ycls/gzdt/art/2020/art_d00a739657cd49b4940600c96ce45a71.html.

[4] Tian Y, Wang L, Yang B, et al. Comparative evaluation of energy and resource consumption for vacuum carbothermal reduction and pidgeon process used in magnesium production[J]. Journal of Magnesium and Alloys, 2022, 10(3): 697-706.

[5] 八部门关于印发加快推动工业资源综合利用实施方案的通知[EB/OL]. [2022-02-10]. https://www.miit.gov.cn/zwgk/zcwj/wjfb/tz/art/2022/art_fc489238e7134848ab3f14bfe86c283e.html.

[6] 李咏玲, 梁鹏翔, 范远, 等. 镁渣的资源利用特性与重金属污染风险[J]. 环境化学, 2015, 34(11): 2077-2084.

[7] Mu Y, Liu Z, Wang F. Comparative study on the carbonation-activated calcium silicates as sustainable binders: reactivity, mechanical performance, and microstructure[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7058-7070.

[8] Mo L, Hao Y, Liu Y, et al. Preparation of calcium carbonate binders via CO2 activation of magnesium slag[J]. Cement and Concrete Research, 2019, 121: 81-90.

[9] 史才军, 王吉云, 涂贞军, 等. CO2养护混凝土技术研究进展[J]. 材料导报, 2017, 31(5): 134-138.

[10] Meng D, Unluer C, Yang E-H, et al. Carbon sequestration and utilization in cement-based materials and potential impacts on durability of structural concrete[J]. Construction and Building Materials, 2022, 361.

[11] Liu Z, Zeng H, Wang F. Development of high performance carbonatable concrete for steel slag valorization[J]. Construction and Building Materials, 2021, 291.

[12] Lei M, Deng S, Liu Z, et al. Development of a sustainable CO2 solidified aerated concrete[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(12): 3990-4001.

[13] Mo L, Panesar D K. Accelerated carbonation – A potential approach to sequester CO2 in cement paste containing slag and reactive MgO[J]. Cement and Concrete Composites, 2013, 43: 69-77.

[14] 刘志超, 张志鹏, 王发洲, 等. 一种基于二氧化碳驱动固结的纤维水泥板及其制备方法: CN113816668A[P]. 2021-09-29.

[15] Lei M, Deng S, Huang K, et al. Preparation and characterization of a CO2 activated aerated concrete with magnesium slag as carbonatable binder[J]. Construction and Building Materials, 2022, 353.

[16] Kristombu Baduge S, Navaratnam S, Abu-Zidan Y, et al. Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods[J]. Structures, 2021, 29: 1597-1609.

[17] Tay Y W D, Panda B, Paul S C, et al. 3D printing trends in building and construction industry: a review[J]. Virtual and Physical Prototyping, 2017, 12(3): 1-16.

[18] Ngo T D, Kashani A, Imbalzano G, et al. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196.

[19] Perkins I, Skitmore M. Three-dimensional printing in the construction industry: A review[J]. International Journal of Construction Management, 2015, 15(1): 1-9.

[20] 张超, 邓智聪, 马蕾, 等. 3D打印混凝土研究进展及其应用[J]. 硅酸盐通报, 2021, 40(6): 1769-1795.

[21] Buswell R A, Leal De Silva W R, Jones S Z, et al. 3D printing using concrete extrusion: A roadmap for research[J]. Cement and Concrete Research, 2018, 112: 37-49.

[22] Kreiger E L, Kreiger M A, Case M P. Development of the construction processes for reinforced additively constructed concrete[J]. Additive Manufacturing, 2019, 28: 39-49.

[23] García De Soto B, Agustí-Juan I, Hunhevicz J, et al. Productivity of digital fabrication in construction: Cost and time analysis of a robotically built wall[J]. Automation in Construction, 2018, 92: 297-311.

[24] Nerella V N, Krause M, Mechtcherine V. Direct printing test for buildability of 3D-printable concrete considering economic viability[J]. Automation in Construction, 2020, 109.

[25] Douba A, Badjatya P, Kawashima S. Enhancing carbonation and strength of MgO cement through 3D printing[J]. Construction and Building Materials, 2022, 328.

[26] Zhang J, Wang J, Dong S, et al. A review of the current progress and application of 3D printed concrete[J]. Composites Part A: Applied Science and Manufacturing, 2019, 125.

[27] Nodehi M, Ozbakkaloglu T, Gholampour A. Effect of supplementary cementitious materials on properties of 3D printed conventional and alkali-activated concrete: A review[J]. Automation in Construction, 2022, 138.

[28] Dey D, Srinivas D, Panda B, et al. Use of industrial waste materials for 3D printing of sustainable concrete: A review[J]. Journal of Cleaner Production, 2022, 340.

[29] Wang B, Zhai M, Yao X, et al. Printable and Mechanical Performance of 3D Printed Concrete Employing Multiple Industrial Wastes[J]. Buildings, 2022, 12(3).

[30] Melichar J, Žižková N, Brožovský J, et al. Study of the Interaction of Cement-Based Materials for 3D Printing with Fly Ash and Superabsorbent Polymers[J]. Buildings, 2022, 12(11).

[31] Muthukrishnan S, Kua H W, Yu L N, et al. Fresh Properties of Cementitious Materials Containing Rice Husk Ash for Construction 3D Printing[J]. Journal of Materials in Civil Engineering, 2020, 32(8).

[32] Li X-S, Li L, Zou S. Developing Low-pH 3D Printing Concrete Using Solid Wastes[J]. Buildings, 2023, 13(2).

[33] 朱伶俐, 杨章, 赵宇, 等. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023(12): 1-12.

[34] Zhu L, Yang Z, Zhao Y, et al. Printing performance of 3D printing cement-based materials containing steel slag[J]. Advances in concrete construction, 2022, 13(4): 281-289.

[35] Sithole N T, Tsotetsi N T, Mashifana T, et al. Alternative cleaner production of sustainable concrete from waste foundry sand and slag[J]. Journal of Cleaner Production, 2022, 336.

[36] Xue Y, Arulrajah A, Narsilio G A, et al. Washed recycled sand derived from construction and demolition wastes as engineering fill materials[J]. Construction and Building Materials, 2022, 358.

[37] Dong W, Li W, Tao Z. A comprehensive review on performance of cementitious and geopolymeric concretes with recycled waste glass as powder, sand or cullet[J]. Resources, Conservation and Recycling, 2021, 172.

[38] Srivastava A, Singh S K. Utilization of alternative sand for preparation of sustainable mortar: A review[J]. Journal of Cleaner Production, 2020, 253.

[39] Ma G, Li Z, Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing[J]. Construction and Building Materials, 2018, 162: 613-627.

[40] Bai G, Wang L, Ma G, et al. 3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates[J]. Cement and Concrete Composites, 2021, 120.

[41] Ding T, Xiao J, Zou S, et al. Hardened properties of layered 3D printed concrete with recycled sand[J]. Cement and Concrete Composites, 2020, 113.

[42] Zhang H, Xiao J. Plastic shrinkage and cracking of 3D printed mortar with recycled sand[J]. Construction and Building Materials, 2021, 302.

[43] Li X, Zhang N, Yuan J, et al. Preparation and microstructural characterization of a novel 3D printable building material composed of copper tailings and iron tailings[J]. Construction and Building Materials, 2020, 249.

[44] Liu H, Liu C, Wu Y, et al. Hardened properties of 3D printed concrete with recycled coarse aggregate[J]. Cement and Concrete Research, 2022, 159.

[45] Dai S, Zhu H, Zhai M, et al. Stability of steel slag as fine aggregate and its application in 3D printing materials[J]. Construction and Building Materials, 2021, 299.

[46] Christen H, Van Zijl G, De Villiers W. The incorporation of recycled brick aggregate in 3D printed concrete[J]. Cleaner Materials, 2022, 4.

[47] Ting G H A, Tay Y W D, Qian Y, et al. Utilization of recycled glass for 3D concrete printing: rheological and mechanical properties[J]. Journal of Material Cycles and Waste Management, 2019, 21(4): 994-1003.

[48] Ting G H A, Tay Y W D, Tan M J. Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing[J]. Journal of Cleaner Production, 2021, 300.

[49] Cuevas K, Chougan M, Martin F, et al. 3D printable lightweight cementitious composites with incorporated waste glass aggregates and expanded microspheres – Rheological, thermal and mechanical properties[J]. Journal of Building Engineering, 2021, 44.

[50] Liu J, Li S, Gunasekara C, et al. 3D-printed concrete with recycled glass: Effect of glass gradation on flexural strength and microstructure[J]. Construction and Building Materials, 2022, 314.

[51] Skibicki S, Pułtorak M, Kaszyńska M, et al. The effect of using recycled PET aggregates on mechanical and durability properties of 3D printed mortar[J]. Construction and Building Materials, 2022, 335.

[52] Davidovits J. Geopolymer Chemistry and Applications[M]. Geopolymer Chemistry and Applications, 2008.

[53] Bouguermouh K, Bouzidi N, Mahtout L, et al. Stabilization of flotation wastes resulting from the treatment of Pb/Zn ore based on geopolymers[J]. Materials Letters, 2018, 227: 221-224.

[54] Shubbar A A, Sadique M, Kot P, et al. Future of clay-based construction materials – A review[J]. Construction and Building Materials, 2019, 210: 172-187.

[55] Panda B, Paul S C, Hui L J, et al. Additive manufacturing of geopolymer for sustainable built environment[J]. Journal of Cleaner Production, 2017, 167: 281-288.

[56] Panda B, Paul S C, Mohamed N a N, et al. Measurement of tensile bond strength of 3D printed geopolymer mortar[J]. Measurement, 2018, 113: 108-116.

[57] Panda B, Chandra Paul S, Jen Tan M. Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material[J]. Materials Letters, 2017, 209: 146-149.

[58] 夏雨欣. 3D打印碱激发胶凝材料的制备及性能研究[D]. 重庆大学, 2019.

[59] Bong S H, Xia M, Nematollahi B, et al. Ambient temperature cured ‘just-add-water’ geopolymer for 3D concrete printing applications[J]. Cement and Concrete Composites, 2021, 121.

[60] 郭晓潞, 李树昊. 3D打印地聚合物层间黏结强度及力学各向异性研究[J]. 矿业科学学报, 2022, 7(05): 538-543.

[61] 郭晓潞, 杨君奕, 熊归砚. 硅酸镁铝及静置时间对3D打印地聚合物砂浆流变性能的影响[J]. 建筑材料学报, 2022, 25(01): 89-96.

[62] Muthukrishnan S, Ramakrishnan S, Sanjayan J. Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete[J]. Cement and Concrete Composites, 2021, 116.

[63] Ma G, Yan Y, Zhang M, et al. Effect of steel slag on 3D concrete printing of geopolymer with quaternary binders[J]. Ceramics International, 2022, 48(18): 26233-26247.

[64] Wang X, Zhang Z, Li J, et al. Quantification of CO2 emission from the preparation and utilization of solid waste-based sulphoaluminate cementitious materials[J]. Journal of Cleaner Production, 2022, 376.

[65] Li J, Jia A, Hou X, et al. Thermal co-treatment of aluminum dross and municipal solid waste incineration fly ash: Mineral transformation, crusting prevention, detoxification, and low-carbon cementitious material preparation[J]. J Environ Manage, 2023, 329: 117090.

[66] Ren C, Hua D, Bai Y, et al. Preparation and 3D printing building application of sulfoaluminate cementitious material using industrial solid waste[J]. Journal of Cleaner Production, 2022, 363.

[67] 任常在, 王文龙, 李国麟, 等. 固废基硫铝酸盐胶凝材料用于建筑3D打印的特性与过程仿真[J]. 化工学报, 2018, 69(07): 3270-3278.

[68] 吴含. 全工业固废制备硫铝酸盐基3D打印胶凝材料[D]. 山东大学, 2020.

[69] 皮江法炼镁[EB/OL]. [2019-01-09]. http://www.chinamagnesium.org/index.php?v=listing&cid=102.

[70] 李咏玲, 戈甜, 程芳琴. 不同处理方式对镁渣理化特性的影响[J]. 无机盐工业, 2016, 48(03): 52-55.

[71] 嵇鹰, 陈冠君, 李霞. 镁渣冷却速率对其物化性能的影响[J]. 硅酸盐通报, 2015, 34(01): 36-42.

[72] Ye J, Liu S, Zhao Y, et al. Development of Ultrafine Mineral Admixture from Magnesium Slag and Sequestration of CO2[J]. Buildings, 2023, 13(1).

[73] Xie G, Suo Y, Liu L, et al. Mechanical grinding activation of modified magnesium slag and its use as backfilling cementitious material[J]. Case Studies in Construction Materials, 2023, 18.

[74] Liu L, Ruan S, Qi C, et al. Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill[J]. Journal of Cleaner Production, 2021, 279.

[75] Yang P, Liu L, Suo Y, et al. Basic characteristics of magnesium-coal slag solid waste backfill material: Part I. preliminary study on flow, mechanics, hydration and leaching characteristics[J]. J Environ Manage, 2023, 329: 117016.

[76] 孙伟吉, 刘浪, 徐龙华, 等. 改性镁渣基矿用复合胶凝材料的水化性能[J]. 中南大学学报(自然科学版), 2022, 53(10): 4057-4070.

[77] Ji G, Peng X, Wang S, et al. Influence of magnesium slag as a mineral admixture on the performance of concrete[J]. Construction and Building Materials, 2021, 295.

[78] Omid A, Mojtaba G. Geotechnical properties of lime-magnesium slag stabilized clayey sand: experimental Study[J]. Arabian Journal for Science and Engineering, 2022, 47(10): 13673-13685.

[79] 张文生, 张江涛, 叶家元, 等. 硅酸二钙的结构与活性[J]. 硅酸盐学报, 2019, 47(11): 1663-1669.

[80] 韩飞, 贾里, 乔晓磊, 等. 镁渣晶体结构对脱硫活性影响实验[J]. 化工进展, 2019, 38(07): 3319-3325.

[81] 刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021, 46(12): 3833-3845.

[82] 崔自治, 倪晓, 孟秀莉. 镁渣膨胀性机理试验研究[J]. 粉煤灰综合利用, 2006(06): 8-11.

[83] Li H, Huang Y, Yang X, et al. Approach to the management of magnesium slag via the production of portland cement clinker[J]. Journal of Material Cycles and Waste Management, 2018, 20(3): 1701-1709.

[84] Lu F, Bai R Y, Cai J W. Study on clinker production using magnesium slag on a 4500tpd line[C]. Advanced Materials Research, 2013: 724-727.

[85] Cai J W, Gao G L, Bai R Y, et al. Research on slaked magnesium slag as a raw material and blend for portland cement[J]. Advanced Materials Research, 2011, 335-336: 1246-1249.

[86] 张旭. 金属镁渣在水泥生产中的应用实践[J]. 水泥技术, 2023(01): 62-67+73.

[87] 庞英会, 张振清, 王开山, 等. 镁渣配料煅烧水泥熟料的成功经验[J]. 水泥, 2022(04): 32-33.

[88] 强玉琴, 周应庆, 彭嘉选, 等. 镁渣大比例替代石灰石生产熟料的生产实践[J]. 水泥工程, 2020(5): 32-36.

[89] 方仁玉, 车蜀涛, 郑江涛, 等. 镁渣配料煅烧水泥熟料的性能研究[J]. 水泥, 2014(11): 26-28.

[90] 李宪军, 张树元, 王芳芳. 镁渣废弃物再利用的研究综述[J]. 混凝土, 2011(08): 97-100+124.

[91] 彭小芹, 王开宇, 龚明非, 等. 镁渣硅酸盐水泥的性能[J]. 土木建筑与环境工程, 2011, 33(06): 140-144.

[92] 邓军平, 陈新年, 郭一萍. 镁渣和矿渣对复合水泥性能的影响[J]. 西安科技大学学报, 2008, 28(04): 735-739.

[93] 崔自治, 张程, 陈东东. 镁渣复合掺合料混凝土的早期自缩特性[J]. 兰州理工大学学报, 2018, 44(01): 133-137.

[94] 赵述华, 陈志良, 张太平, 等. 重金属污染土壤的固化/稳定化处理技术研究进展[J]. 土壤通报, 2013, 44(06): 1531-1536.

[95] Amini O, Ghasemi M. Laboratory study of the effects of using magnesium slag on the geotechnical properties of cement stabilized soil[J]. Construction and Building Materials, 2019, 223: 409-420.

[96] 王金航, 刘家豪, 谭笑, 等. 镁渣对污染土壤中Cd、Pb的稳定化效果研究[J]. 北京化工大学学报(自然科学版), 2020, 47(2): 8-16.

[97] Chen Y, Han F, Liang Y, et al. stabilization/solidification treatment of cadmium-bearing-residue with magnesium slag[J]. Polish Journal of Environmental Studies, 2019, 29(1): 45-52.

[98] 陈玉洁. 利用镁渣及粉煤灰基地质聚合物固化/稳定重金属实验研究[D]. 北方民族大学, 2016.

[99] 陈玉洁, 韩凤兰, 罗钊. 镁渣固化/稳定污酸渣中重金属Pb[J]. 环境工程学报, 2016, 10(06): 3229-3234.

[100] 陈玉洁, 韩凤兰, 罗钊. 镁渣固化/稳定污酸渣中重金属铜和镉[J]. 无机盐工业, 2015, 47(07): 48-51.

[101] 李亚芳. 镁渣填充材料的制备及其性能研究[D]. 西安建筑科技大学, 2017.

[102] 韦寒波. 低品质固废高值化制备FS充填胶凝材料与应用研究[D]. 北京科技大学, 2021.

[103] 韦寒波, 巴蕾, 温震江, 等. 基于熵权多属性决策的镁渣胶结料开发及料浆配比优化[J]. 中国有色金属学报, 2022, 32(07): 2126-2137.

[104] Wei H, Xiao B, Gao Q. flow properties analysis and identification of a fly ash-waste rock mixed backfilling slurry[J]. Minerals, 2021, 11(6).

[105] 杨晓炳, 肖柏林, 温震江, 等. 镁渣危废固化处置以及协同尾砂全固废充填采矿法: CN113213868A[P]. 2021-04-01.

[106] Jing H, Zhang J, Gao M, et al. base performances of cement-stabilized magnesium slag-aeolian sand mixture[J]. Acta Montanistica Slovaca, 2021(26): 427-443.

[107] Jia L, Fan B, Huo R, et al. Study on quenching hydration reaction kinetics and desulfurization characteristics of magnesium slag[J]. Journal of Cleaner Production, 2018, 190: 12-23.

[108] Fan B, Jia L, Han F, et al. Study on magnesium slag desulfurizer modified by additives in quenching hydration[J]. Journal of Material Cycles and Waste Management, 2019, 21(5): 1211-1223.

[109] Fan B, Jia L, Li B, et al. Study on desulfurization performances of magnesium slag with different hydration modification[J]. Journal of Material Cycles and Waste Management, 2018, 20(3): 1771-1780.

[110] Jia L, Han F, Guo J, et al. Crystal structure of a new high-performance magnesium slag desulfurizer modified by quenching hydration[J]. Journal of Material Cycles and Waste Management, 2021, 24(1): 210-223.

[111] 冯乐. 多种形态镁渣用于湿法脱硫的研究[D]. 太原理工大学, 2018.

[112] 韩飞. 改性方式对镁渣晶体结构的影响研究[D]. 太原理工大学, 2019.

[113] 姬广祥. 碱—镁渣免蒸压加气混凝土的制备与性能研究[D]. 重庆大学, 2016.

[114] Hao J, Ma H, Feng X, et al. Low-temperature sintering of ceramic proppants by adding solid wastes[J]. International Journal of Applied Ceramic Technology, 2018, 15(2): 563-568.

[115] Hao J, Ma H, Feng X, et al. Microstructure and fracture mechanism of low density ceramic proppants[J]. Materials Letters, 2018, 213: 92-94.

[116] 周少鹏. 添加镁渣制备陶粒支撑剂及其性能研究[D]. 太原科技大学, 2014.

[117] 郝惠兰, 田玉明, 秦梅, 等. 烧结温度对添加镁渣制备陶粒支撑剂性能的影响[J]. 硅酸盐通报, 2019, 38(02): 367-370.

[118] 张耀斌, 李明照, 毛嘉, 等. 镁还原渣泡沫玻璃的制备及性能[J]. 新型建筑材料, 2016, 43(08): 22-25.

[119] Li Y, Cheng F. Synthesis of a novel slow-release potassium fertilizer from modified Pidgeon magnesium slag by potassium carbonate[J]. J Air Waste Manag Assoc, 2016, 66(8): 758-67.

[120] Zhang J, Wen X, Cheng F. Preparation, thermal stability and mechanical properties of inorganic continuous fibers produced from fly ash and magnesium slag[J]. Waste Manag, 2021, 120: 156-163.

[121] Zhou W, Du H, Kang L, et al. Microstructure evolution and improved permeability of ceramic waste-based bricks[J]. Materials (Basel), 2022, 15(3).

[122] 彭小芹, 王开宇, 李静, 等. 镁渣的活性激发及镁渣砖制备[J]. 重庆大学学报, 2013, 36(03): 48-52+58.

[123] 侯西平. 一种镁渣砖: CN102786277A[P]. 2012-07-18.

[124] 肖力光, 雒锋, 王思宇, 等. 镁渣节能墙体材料的研究[J]. 新型建筑材料, 2011(7): 21-23.

[125] 刘志超, 王发洲, 黄煌煌. 一种矿化基复合纤维水泥板及其制备方法和应用: CN114394808A[P]. 2022-02-07.

[126] 刘志超, 张志鹏, 王发洲. 一种水化碳化复合纤维水泥板及其制备方法和应用: CN114368940A[P]. 2022-02-07.

[127] 王发洲, 张运华, 刘志超. 一种镁渣制品及其制备方法和应用: CN113733303A[P]. 2021-10-21.

[128] Mu Y, Liu Z, Wang F, et al. Carbonation characteristics of γ-dicalcium silicate for low-carbon building material[J]. Construction and Building Materials, 2018, 177: 322-331.

[129] 穆元冬, 雪高瑞, 赵思雪, 等. γ型硅酸二钙的碳化研究进展[J]. 硅酸盐学报, 2017, 45(08): 1197-1203.

[130] Ashraf W, Olek J. Carbonation activated binders from pure calcium silicates: Reaction kinetics and performance controlling factors[J]. Cement and Concrete Composites, 2018, 93: 85-98.

[131] 王发洲, 钟旷楠, 刘志超, 等. 一种基于气体驱动的3D打印材料及其制备方法和应用: CN111268994A[P]. 2020-01-20.

[132] Moeini M A, Hosseinpoor M, Yahia A. Effectiveness of the rheometric methods to evaluate the build-up of cementitious mortars used for 3D printing[J]. Construction and Building Materials, 2020, 257.

[133] Paul S C, Tay Y W D, Panda B, et al. Fresh and hardened properties of 3D printable cementitious materials for building and construction[J]. Archives of Civil and Mechanical Engineering, 2018, 18(1): 311-319.

[134] Jiao D, Shi C, Yuan Q, et al. Effect of constituents on rheological properties of fresh concrete-A review[J]. Cement and Concrete Composites, 2017, 83: 146-159.

[135] Kovler K, Roussel N. Properties of fresh and hardened concrete[J]. Cement and Concrete Research, 2011, 41(7): 775-792.

[136] 马昆林, 龙广成, 谢友均, 等. 水泥-粉煤灰-石灰石粉复合浆体的流变性能[J]. 硅酸盐学报, 2013, 41(05): 582-587+596.

[137] 王岩. 壳聚糖应用于水泥基材料研究进展[J]. 广州化工, 2020, 48(22): 28-30.

[138] 雷西萍. 水溶性壳聚糖对水泥水化行为的影响[J]. 新型建筑材料, 2010, 37(05): 60-62+65.

[139] Lv S, Cao Q, Zhou Q, et al. Structure and characterization of sulfated chitosan superplasticizer[J]. Journal of the American Ceramic Society, 2013, 96(6): 1923-1929.

[140] Arslan H, Aytaç U S, Bilir T, et al. The synthesis of a new chitosan based superplasticizer and investigation of its effects on concrete properties[J]. Construction and Building Materials, 2019, 204: 541-549.

[141] Lv S, Liu J, Zhou Q, et al. Synthesis of modified mhitosan superplasticizer byamidation and sulfonation and its application performance and working mechanism[J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 3908-3916.

[142] Kashani A, Provis J L, Xu J, et al. Effect of molecular architecture of polycarboxylate ethers on plasticizing performance in alkali-activated slag paste[J]. Journal of Materials Science, 2014, 49(7): 2761-2772.

[143] Sawaki H U S H D. The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture[J]. Cement and Concrete Research, 1997, 27(1): 37-50.

[144] Ma B, Peng Y, Tan H, et al. Effect of hydroxypropyl-methyl cellulose ether on rheology of cement paste plasticized by polycarboxylate superplasticizer[J]. Construction and Building Materials, 2018, 160: 341-350.

[145] Ma B, Peng Y, Tan H, et al. Effect of polyacrylic acid on rheology of cement paste plasticized by polycarboxylate superplasticizer[J]. Materials (Basel), 2018, 11(7).

[146] Üzer E, Plank J. Impact of welan gum stabilizer on the dispersing performance of polycarboxylate superplasticizers[J]. Cement and Concrete Research, 2016, 82: 100-106.

[147] Rahman M K, Baluch M H, Malik M A. Thixotropic behavior of self compacting concrete with different mineral admixtures[J]. Construction and Building Materials, 2014, 50: 710-717.

[148] Ahari R S, Erdem T K, Ramyar K. Thixotropy and structural breakdown properties of self consolidating concrete containing various supplementary cementitious materials[J]. Cement and Concrete Composites, 2015, 59: 26-37.

[149] 张婉冰, 张付申. 3D打印技术在固体废弃物资源循环中的应用[J]. 中国环境科学, 2021, 41(5): 2299-2310.

[150] 史才军, 肖江帆, 曹张, 等. 材料组成对UHPC性能的影响[J]. 硅酸盐通报, 2013, 32(6): 1005-1011.

[151] 王雨利, 单俊鸿, 周明凯, 等. CMC和PAM对砂浆性能的影响[J]. 房材与应用(材料·结构), 2005(04): 36-37+49.

[152] 管学茂, 罗树琼, 杨雷, 等. 纤维素醚对加气混凝土用抹灰砂浆性能的影响研究[J]. 混凝土, 2006(10): 35-37.

[153] 王培铭, 赵国荣, 张国防. 纤维素醚在新拌砂浆中保水增稠作用及其机理[J]. 硅酸盐学报, 2017, 45(08): 1190-1196.

[154] Wallevik O H, Wallevik J E. Rheology as a tool in concrete science: The use of rheographs and workability boxes[J]. Cement and Concrete Research, 2011, 41(12): 1279-1288.

[155] González-Taboada I, González-Fonteboa B, Martínez-Abella F, et al. Self-compacting recycled concrete: Relationships between empirical and rheological parameters and proposal of a workability box[J]. Construction and Building Materials, 2017, 143: 537-546.

[156] 穆元冬. 硅酸钙矿物碳酸化固化机理及其材料性能提升机制研究[D]. 武汉理工大学, 2019.

[157] Zhan B J, Xuan D X, Poon C S, et al. Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates[J]. Cement and Concrete Composites, 2016, 71: 122-130.

[158] Zhang D, Shao Y. Early age carbonation curing for precast reinforced concretes[J]. Construction and Building Materials, 2016, 113: 134-143.

[159] J. Perić, Vučak M, Krstulović R, et al. Phase transformation of calcium carbonate polymorphs[J]. Thermochimica Acta, 1996, 277: 175-186.

[160] 刘松辉, 管学茂, 邱满, 等. 通过加速碳化激发γ-C2S 矿物的活性[J]. 硅酸盐学报, 2016, 44(5): 658-662.

[161] Farnam Y, Villani C, Washington T, et al. Performance of carbonated calcium silicate based cement pastes and mortars exposed to NaCl and MgCl2 deicing salt[J]. Construction and Building Materials, 2016, 111: 63-71.

[162] Wang X, Guo M, Ling T. Review on CO2 curing of non-hydraulic calcium silicates cements: Mechanism, carbonation and performance[J]. Cement and Concrete Composites, 2022, 133.

[163] 吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999.

[164] Zhang Y, Zhao Q, Liu C, et al. Properties comparison of mortars with welan gum or cellulose ether[J]. Construction and Building Materials, 2016, 102: 648-653.

[165] Jenni A, Zurbriggen R, Holzer L, et al. Changes in microstructures and physical properties of polymer-modified mortars during wet storage[J]. Cement and Concrete Research, 2006, 36(1): 79-90.

[166] Wang Z, Zhao Y, Zhou L, et al. Effects of hydroxyethyl methyl cellulose ether on the hydration and compressive strength of calcium aluminate cement[J]. Journal of Thermal Analysis and Calorimetry, 2019, 140(2): 545-553.

[167] Wang S, Wang Z, Huang T, et al. Mechanical strengths, drying shrinkage and pore structure of cement mortars with hydroxyethyl methyl cellulose[J]. Construction and Building Materials, 2022, 314.

[168] 王培铭, 赵国荣, 张国防. 聚合物水泥混凝土的微观结构的研究进展[J]. 硅酸盐学报, 2014, 42(05): 653-660.

[169] 张玉琳. 温轮胶对水泥熟料单矿水化行为的影响[D]. 武汉理工大学, 2015.

[170] Legodi Ma D W D, Potgieter Jh. Quantitative determination of CaCO3 in cement blends by FT-IR[J]. Applied Spectroscopy, 2001, 55(3): 361-365.

[171] 徐旭荣, 蔡安华, 刘睿, 等. 生物矿化中的无定形碳酸钙[J]. 化学进展, 2008(01): 54-59.

[172] Chen N, Wang P, Zhao L, et al. Water retention mechanism of HPMC in cement mortar[J]. Materials (Basel), 2020, 13(13).

[173] 欧志华, 马保国, 蹇守卫. 非离子纤维素醚改性水泥浆的孔结构[J]. 建筑材料学报, 2013, 16(01): 121-126+137.

[174] Zhu J, Qian Z, Eid M, et al. Foaming and rheological properties of hydroxypropyl methylcellulose and welan gum composite system: The stabilizing mechanism[J]. Food Hydrocolloids, 2021, 112.

[175] 张皓南. 威兰胶对水泥及混凝土基本性能的影响研究[D]. 湖南大学, 2019.

中图分类号:

  X705    

条码号:

 002000068971    

馆藏号:

 TD10056960    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式