- 无标题文档
查看论文信息

中文题名:

 

磁流变弹性体及其隔震支座的力磁耦合多尺度仿真

    

姓名:

 夏雷雷    

学号:

 104971180186    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081406    

学科名称:

 工学 - 土木工程 - 桥梁与隧道工程    

学生类型:

 博士    

学校:

 武汉理工大学    

院系:

 交通与物流工程学院    

专业:

 桥梁与隧道工程    

研究方向:

 磁流变弹性体及其隔震支座、桥梁减隔震    

第一导师姓名:

 胡志坚    

第一导师院系:

 交通与物流工程学院    

完成日期:

 2023-05-25    

答辩日期:

 2023-05-19    

中文关键词:

 

磁流变弹性体 ; 力磁耦合 ; 多尺度仿真 ; MRE隔震支座 ; 半主动控制算法

    

中文摘要:

磁流变弹性体(Magnetorheological elastomer,MRE)是一种铁磁颗粒增强复合材料,其刚度和阻尼特性可随外加磁场的变化而调节,在工程上具有广泛的应用前景。在土木工程中,MRE可应用于各种减隔震系统,常见的有MRE隔震支座,相比于传统的隔震支座,MRE隔震支座可以根据地震作用对其刚度和阻尼进行实时的调整从而起到对系统智能控制的目的。有效地获得MRE的磁力学性能是其应用的基础,通常通过实验来表征MRE及MRE隔震支座的磁力学性能,基于物理的定量建模和仿真却很少,此外将MRE隔震支座应用到桥梁隔震系统的控制算法研究也很少。基于此背景,本文提出了一种基于微观力磁耦合模型的有限元多尺度仿真方法来确定MRE及MRE隔震支座的磁力学特性,并且对MRE桥梁隔震支座控制算法进行了研究。本文主要研究内容如下:

(1)   本文首先构建了一种考虑铁磁颗粒退磁场效应的MRE微观力磁耦合模型。阐明了在MRE的代表性体积单元(RVE)中以考虑了退磁场效应的磁体力形式存在的磁相互作用,介绍了MRE中的多物理场耦合现象,推导了含有磁体力情况下的宏观均匀化应力表达式,为后续的MRE磁粘弹性和磁超弹性多尺度仿真提供了基本模型和理论。

(2)提出了小应变情况下基于微观力磁耦合模型的MRE磁粘弹性多尺度仿真方法。研究了外加磁场、退磁场、微观结构参数对MRE磁粘弹性的影响,结合MRE中的微观磁化、磁场以及磁体力的分布揭示了其中的微观机理。通过该方法对具有不同微观结构的MRE磁粘弹性力学特性进行仿真,将仿真结果与实验数据进行了定量比较,验证了所提模型和仿真方法的适用性和正确性。

(3)   提出了大应变情况下基于微观力磁耦合模型的MRE磁超弹性多尺度仿真方法。研究了大应变情况下,加载应变对磁致应力的影响,       同时也研究了退磁场、微观结构参数对大应变下MRE磁应力的影响。结合MRE中的微观磁化、磁场以及磁体力分布随剪切应变的变化揭示了其中的微观机理。通过该方法对具有不同微观结构的MRE大应变情况下的磁超弹性力学特性进行仿真,将仿真结果与实验数据进行了定量比较,验证了所提模型和仿真方法的适用性和正确性。

(4)提出了一种从RVE到宏观结构的力磁耦合多尺度仿真方法。通过该方法研究了MRE的微观结构和MRE隔震支座MRE层的厚度对MRE隔震支座侧向刚度的影响。对多组具有不同宏观结构的MRE隔震支座的磁力学性能进行仿真和分析,将仿真得到的MRE隔震支座磁力学性能结果与实验数据进行了定量比较,验证了所提模型和仿真方法的适用性和正确性。此外对一足尺MRE桥梁隔震支座进行了磁路的设计与优化,并通过提出的多尺度方法获得了其侧向刚度。

(5)提出了针对MRE桥梁混合隔震系统的基于瞬时最小输入能量的(IMIE)半主动控制算法。通过最小化地震传递给结构的总动能和最小化隔震系统在每个时间步的控制能量,确定隔震系统的最佳可控刚度,以减轻隔震结构的响应。通过对某一桥梁模型进行了不同输入地震波下的时程分析评估了所提半主动控制算法的控制效果。MRE桥梁隔震系统通过IMIE半主动控制,桥梁上部结构的加速度峰值、桥墩的位移峰值和支座的位移峰值减小,起到隔震的目的。为MRE隔震支座在桥梁工程中的应用提供理论指导。

参考文献:

[1] Sutrisno J, Purwanto A, Mazlan S A. Recent progress on magnetorheological solids: materials, fabrication, testing, and applications[J]. Advanced Engineering Materials, 2015, 17(5): 563-597.

[2] Cvek M, Kracalik M, Sedlacik M, et al. Reprocessing of injection-molded magnetorheological elastomers based on TPE matrix[J]. Composites Part B: Engineering, 2019, 172: 253-261.

[3] Song X, Wang W, Yang F, et al. The study of enhancement of magnetorheological effect based on natural rubber/thermoplastic elastomer SEBS hybrid matrix[J]. Journal of Intelligent Material Systems and Structures, 2020, 31(3): 339-348.

[4] Liao Z, Hossain M, Yao X, et al. A comprehensive thermo-viscoelastic experimental investigation of Ecoflex polymer[J]. Polymer Testing, 2020, 86: 106478.

[5] Kalina K A, Metsch P, Brummund J, et al. A macroscopic model for magnetorheological elastomers based on microscopic simulations[J]. International Journal of Solids and Structures, 2020, 193: 200-212.

[6] Yarra S, Gordaninejad F, Behrooz M, et al. Performance of natural rubber and silicone-based magnetorheological elastomers under large-strain combined axial and shear loading[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(2): 228-242.

[7] Chen L, Gong X L, Li W H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers[J]. Smart Materials and Structures, 2007, 16(6): 2645.

[8] Borbáth T, Günther S, Borin D Y, et al. XμCT analysis of magnetic field-induced phase transitions in magnetorheological elastomers[J]. Smart Materials and Structures, 2012, 21(10): 105018.

[9] Li W H, Zhou Y, Tian T F. Viscoelastic properties of MR elastomers under harmonic loading[J]. Rheologica Acta, 2010, 49: 733-740.

[10] Jolly M R, Carlson J D, Munoz B C. A model of the behaviour of magnetorheological materials[J]. Smart Materials and Structures, 1996, 5(5): 607-614.

[11] Krueger H, Vaezi M, Yang S. 3D Printing of Magnetorheological Elastomers (MREs) Smart Materials[C]. proceedings of The International Conference on Progress in Additive Manufacturing, 2014:213-218.

[12] BASTOLA A K, PAUDEL M, LI L. Development of hybrid magnetorheological elastomers by 3D printing [J]. Polymer, 2018, 149: 213-28.

[13] Kim Y, Yuk H, Zhao R, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558(7709): 274-279.

[14] Rigbi Z, Jilken L. The response of an elastomer filled with soft ferrite to mechanical and magnetic influences[J]. Journal of Magnetism and Magnetic Materials, 1983, 37(3): 267-276.

[15] Melenev P, Raikher Y, Stepanov G, et al. Modeling of the field-induced plasticity of soft magnetic elastomers[J]. Journal of intelligent material systems and structures, 2011, 22(6): 531-538.

[16] Bastola A K, Hossain M. A review on magneto-mechanical characterizations of magnetorheological elastomers[J]. Composites Part B: Engineering, 2020, 200: 108348.

[17] Li Y, Li J, Li W, et al. A state-of-the-art review on magnetorheological elastomer devices[J]. Smart Materials and Structures, 2014, 23(12): 123001.

[18] Bica I. Compressibility modulus and principal deformations in magneto-rheological elastomer: The effect of the magnetic field[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(6): 773-776.

[19] Ghafoorianfar N, Gordaninejad F. A magnetorheological elastomer compressive and shear sensor[C]. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015. SPIE, 2015, 9435: 427-433.

[20] Farshad M, Benine A. Magnetoactive elastomer composites[J]. Polymer testing, 2004, 23(3): 347-353.

[21] Bellan C, Bossis G. Field dependence of viscoelastic properties of MR elastomers[J]. International journal of modern physics B, 2002, 16(17n18): 2447-2453.

[22] Schubert G, Harrison P. Large-strain behaviour of magneto-rheological elastomers tested under uniaxial compression and tension, and pure shear deformations[J]. Polymer Testing, 2015, 42: 122-134.

[23] Reyne G, Sabonnadiere J, Coulomb J, et al. A survey of the main aspects of magnetic forces and mechanical behaviour of ferromagnetic materials under magnetisation[J]. IEEE Transactions on Magnetics, 1987, 23(5): 3765-3767.

[24] Hu G, Guo M, Li W, et al. Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic fields[J]. Smart Materials and Structures, 2011, 20(12): 127001.

[25] Shen Y, Golnaraghi M F, Heppler G R. Experimental research and modeling of magnetorheological elastomers[J]. Journal of Intelligent Material Systems and Structures, 2004, 15(1): 27-35.

[26] Zhou Y, Jerrams S, Chen L. Multi-axial fatigue in magnetorheological elastomers using bubble inflation[J]. Materials & Design, 2013, 50: 68-71.

[27] Gorman D, Murphy N, Ekins R, et al. The evaluation of the effect of strain limits on the physical properties of magnetorheological elastomers subjected to uniaxial and biaxial cyclic testing[J]. International Journal of Fatigue, 2017, 103: 1-4.

[28] Boczkowska A, Awietjan S F, Wroblewski R. Microstructure–property relationships of urethane magnetorheological elastomers[J]. Smart Materials and Structures, 2007, 16(5): 1924.

[29]Zhou Y F, Jerrams S, Chen L, et al. The Determination of Multi-Axial Fatigue in Magnetorheological Elastomers Using Bubble Inflation[C].Advanced Materials Research. Trans Tech Publications Ltd, 2014, 875: 507-511.

[30] Tao Y, Rui X, Yang F. Investigation of the impacts on magnetic permeability of MREs[J]. Journal of Magnetism and Magnetic Materials, 2019, 477: 269-274.

[31] Lokander M, Stenberg B. Performance of isotropic magnetorheological rubber materials[J]. Polymer Testing, 2003, 22(3): 245-251.

[32] Chen L, Gong X L, Li W H. Effect of carbon black on the mechanical performances of magnetorheological elastomers[J]. Polymer Testing, 2008, 27(3): 340-345.

[33] Li R, Sun L. Magnetorheological smart nanocomposites and their viscoelastic behavior[C]. Second International Conference on Smart Materials and Nanotechnology in Engineering. SPIE, 2009, 7493: 517-522.

[34] Chen L, Gong X, Jiang W, et al. Investigation on magnetorheological elastomers based on natural rubber[J]. Journal of Materials Science, 2007, 42: 5483-5489.

[35] Li R, Sun L Z. Dynamic mechanical behavior of magnetorheological nanocomposites filled with carbon nanotubes[J]. Applied Physics Letters, 2011, 99(13): 131912.

[36] Li R, Sun L Z. Viscoelastic responses of silicone-rubber-based magnetorheological elastomers under compressive and shear loadings[J]. Journal of Engineering Materials and Technology, 2013, 135(2): 021008.

[37] Damiani R, Sun L Z. Microstructural characterization and effective viscoelastic behavior of magnetorheological elastomers with varying acetone contents[J]. International Journal of Damage Mechanics, 2017, 26(1): 104-118.

[38] Anacleto-Lupianez S, Sun L Z. Effect of filler morphology on viscoelastic properties of PDMS-based magnetorheological elastomers[J]. MRS Advances, 2018, 3(62): 3695-3707.

[39] Dargahi A, Sedaghati R, Rakheja S. On the properties of magnetorheological elastomers in shear mode: Design, fabrication and characterization[J]. Composites Part B: Engineering, 2019, 159: 269-283.

[40] Danas K, Kankanala S V, Triantafyllidis N. Experiments and modeling of iron-particle-filled magnetorheological elastomers[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(1): 120-138.

[41] Yarra S, Gordaninejad F, Behrooz M, et al. Performance of natural rubber and silicone-based magnetorheological elastomers under large-strain combined axial and shear loading[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(2): 228-242.

[42] Gibson R F. Principles of composite material mechanics[M]. CRC Press, 2016.

[43] Norouzi M, Sajjadi Alehashem S M, Vatandoost H, et al. A new approach for modeling of magnetorheological elastomers[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(8): 1121-1135.

[44] Padovan J, Guo Y. General response of viscoelastic systems modelled by fractional operators[J]. Journal of the Franklin Institute, 1988, 325(2): 247-275.

[45] Wen Y K. Method for random vibration of hysteretic systems[J]. Journal of The Engineering Mechanics Division, 1976, 102(2): 249-263.

[46] Wang Q, Dong X, Li L, et al. A nonlinear model of magnetorheological elastomer with wide amplitude range and variable frequencies[J]. Smart Materials and Structures, 2017, 26(6): 065010.

[47] Al Janaideh M, Su C Y, Rakheja S. Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators[J]. Smart Materials and Structures, 2008, 17(3): 035026.

[48] Danas K, Kankanala S V, Triantafyllidis N. Experiments and modeling of iron-particle-filled magnetorheological elastomers[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(1): 120-138.

[49] Dorfmann A, Ogden R W. Nonlinear magnetoelastic deformations of elastomers[J]. Acta Mechanica, 2004, 167: 13-28.

[50] Lefèvre V, Danas K, Lopez-Pamies O. Two families of explicit models constructed from a homogenization solution for the magnetoelastic response of MREs containing iron and ferrofluid particles[J]. International Journal of Non-Linear Mechanics, 2020, 119: 103362.

[51] Kalina K A, Metsch P, Brummund J, et al. A macroscopic model for magnetorheological elastomers based on microscopic simulations[J]. International Journal of Solids and Structures, 2020, 193: 200-212.

[52] Ivaneyko D, Toshchevikov V P, Saphiannikova M, et al. Magneto‐sensitive Elastomers in a Homogeneous Magnetic Field: A Regular Rectangular Lattice Model[J]. Macromolecular Theory and Simulations, 2011, 20(6): 411-424.

[53] Ivaneyko D, Toshchevikov V, Saphiannikova M, et al. Effects of particle distribution on mechanical properties of magneto-sensitive elastomers in a homogeneous magnetic field[J]. Condensed Matter Physics 2012,15(3):33601.

[54] Khanouki M A, Sedaghati R, Hemmatian M. Experimental characterization and microscale modeling of isotropic and anisotropic magnetorheological elastomers[J]. Composites Part B: Engineering, 2019, 176: 107311.

[55] Garcia-Gonzalez D, Moreno M A, Valencia L, et al. Influence of elastomeric matrix and particle volume fraction on the mechanical response of magneto-active polymers[J]. Composites Part B: Engineering, 2021, 215: 108796.

[56] Garcia-Gonzalez D, Hossain M. A microstructural-based approach to model magneto-viscoelastic materials at finite strains[J]. International Journal of Solids and Structures, 2021, 208: 119-132.

[57] Garcia-Gonzalez D, Hossain M. Microstructural modelling of hard-magnetic soft materials: Dipole–dipole interactions versus Zeeman effect[J]. Extreme Mechanics Letters, 2021, 48: 101382.

[58] Biller A M, Stolbov O V, Raikher Y L. Modeling of particle interactions in magnetorheological elastomers[J]. Journal of Applied Physics, 2014, 116(11): 114904.

[59] Yin H M, Sun L Z. Magnetic properties of randomly dispersed magnetic particulate composites: A theoretical study[J]. Physical Review B, 2005, 72(5): 054409.

[60] Yin H M, Sun L Z. Elastic modelling of periodic composites with particle interactions[J]. Philosophical Magazine Letters, 2005, 85(4): 163-173.

[61] Yin H M, Sun L Z. Magnetoelasticity of chain-structured ferromagnetic composites[J]. Applied Physics Letters, 2005, 86(26): 261901.

[62] Castañeda P P, Galipeau E. Homogenization-based constitutive models for magnetorheological elastomers at finite strain[J]. Journal of the Mechanics and Physics of Solids, 2011, 59(2): 194-215.

[63] Galipeau E, Castañeda P P. The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites[J]. International Journal of Solids and Structures, 2012, 49(1): 1-17.

[64] Galipeau E, Castañeda P P. A finite-strain constitutive model for magnetorheological elastomers: magnetic torques and fiber rotations[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(4): 1065-1090.

[65] Galipeau E, Rudykh S, Debotton G, et al. Magnetoactive elastomers with periodic and random microstructures[J]. International journal of solids and structures, 2014, 51(18): 3012-3024.

[66] Goshkoderia A, Rudykh S. Stability of magnetoactive composites with periodic microstructures undergoing finite strains in the presence of a magnetic field[J]. Composites Part B: Engineering, 2017, 128: 19-29.

[67] Goshkoderia A, Chen V, Li J, et al. Instability-induced pattern formations in soft magnetoactive composites[J]. Physical Review Letters, 2020, 124(15): 158002.

[68] Metsch P, Kalina K A, Spieler C, et al. A numerical study on magnetostrictive phenomena in magnetorheological elastomers[J]. Computational Materials Science, 2016, 124: 364-374.

[69] Han Y, Hong W, Faidley L A E. Field-stiffening effect of magneto-rheological elastomers[J]. International Journal of Solids and Structures, 2013, 50(14-15): 2281-2288.

[70] Kalina K A, Metsch P, Kästner M. Microscale modeling and simulation of magnetorheological elastomers at finite strains: A study on the influence of mechanical preloads[J]. International Journal of Solids and Structures, 2016, 102: 286-296.

[71] Haldar K, Kiefer B, Menzel A. Finite element simulation of rate-dependent magneto-active polymer response[J]. Smart Materials and Structures, 2016, 25(10): 104003.

[72] Javili A, Chatzigeorgiou G, Steinmann P. Computational homogenization in magneto-mechanics[J]. International Journal of Solids and Structures, 2013, 50(25-26): 4197-4216.

[73] Metsch P, Kalina K A, Brummund J, et al. Two-and three-dimensional modeling approaches in magneto-mechanics: a quantitative comparison[J]. Archive of Applied Mechanics, 2019, 89: 47-62.

[74] Metsch P, Schmidt H, Sindersberger D, et al. Field-induced interactions in magneto-active elastomers-A comparison of experiments and simulations[J]. Smart Materials and Structures, 2020, 29(8): 085026.

[75] Mukherjee D, Rambausek M, Danas K. An explicit dissipative model for isotropic hard magnetorheological elastomers[J]. Journal of the Mechanics and Physics of Solids, 2021, 151: 104361.

[76] 孙书蕾. 磁流变体有限变形数值模拟及本构建模研究 [D]. 西北工业大学, 2015.

[77] Xia L, Hu Z, Sun L. Micromechanics-based simulation of anisotropic magneto-mechanical properties of magnetorheological elastomers with chained microstructures[J]. Smart Materials and Structures, 2021, 30(9): 095001.

[78] Xia L, Hu Z, Sun L. Multiscale numerical modeling of magneto-hyperelasticity of magnetorheological elastomeric composites[J]. Composites Science and Technology, 2022, 224: 109443.

[79] Watson J R. Method and apparatus for varying the stiffness of a suspension bushing: U.S. Patent 5,609,353[P]. 1997-3-11.

[80] Ginder J M, Schlotter W F, Nichols M E. Magnetorheological elastomers in tunable vibration absorbers[C]. Smart Structures and Materials 2001: Damping and Isolation. SPIE, 2001, 4331: 103-110.

[81] Lerner A A, Cunefare K A. Performance of MRE-based vibration absorbers[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(5): 551-563.

[82] Gao P, Xiang C, Liu H, et al. Design of the frequency tuning scheme for a semi-active vibration absorber[J]. Mechanism and Machine Theory, 2019, 140: 641-653.

[83] Lawrance G, Paul P S, Vasanth X A, et al. Influence of magnetorheological elastomer on tool vibration and cutting performance during boring of hardened AISI4340 steel[J]. Journal of Mechanical Science and Technology, 2019, 33: 1555-1561.

[84] Dano M L, Gakwaya M, Jullière B. Compensation of thermally induced distortion in composite structures using macro-fiber composites[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(2): 225-233.

[85] Li Y, Li J. A highly adjustable base isolator utilizing magnetorheological elastomer: experimental testing and modeling[J]. Journal of Vibration and Acoustics, 2015, 137(1): 011009.

[86] Mikhailov V P, Bazinenkov A M. Active vibration isolation platform on base of magnetorheological elastomers[J]. Journal of Magnetism and Magnetic Materials, 2017, 431: 266-268.

[87] Bastola A K, Li L. A new type of vibration isolator based on magnetorheological elastomer[J]. Materials & Design, 2018, 157: 431-436.

[88] Zhou G Y, Wang Q. Design of a smart piezoelectric actuator based on a magnetorheological elastomer[J]. Smart Materials and Structures, 2005, 14(4): 504.

[89] Kchit N, Bossis G. Electrical resistivity mechanism in magnetorheological elastomer[J]. Journal of Physics D: Applied Physics, 2009, 42(10): 105505.

[90] Bica I, Anitas E M, Chirigiu L. Magnetic field intensity effect on plane capacitors based on hybrid magnetorheological elastomers with graphene nanoparticles[J]. Journal of Industrial and Engineering Chemistry, 2017, 56: 407-412.

[91] Wang Y, Xuan S, Ge L, et al. Conductive magnetorheological elastomer: Fatigue dependent impedance-mechanic coupling properties[J]. Smart Materials and Structures, 2016, 26(1): 015004.

[92] Li W, Kostidis K, Zhang X, et al. Development of a force sensor working with MR elastomers[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE, 2009: 233-238.

[93] Bica I. Magnetoresistor sensor with magnetorheological elastomers[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(1): 83-89.

[94] Qi S, Guo H, Chen J, et al. Magnetorheological elastomers enabled high-sensitive self-powered tribo-sensor for magnetic field detection[J]. Nanoscale, 2018, 10(10): 4745-4752.

[95] Martins P, Gonçalves R, Lopes A C, et al. Novel hybrid multifunctional magnetoelectric porous composite films[J]. Journal of Magnetism and Magnetic Materials, 2015, 396: 237-241.

[96] Wang L, Cole M, Li J, et al. Polymer grafted recyclable magnetic nanoparticles[J]. Polymer Chemistry, 2015, 6(2): 248-255.

[97] Rodzinski A, Guduru R, Liang P, et al. Targeted and controlled anticancer drug delivery and release with magnetoelectric nanoparticles[J]. Scientific Reports, 2016, 6(1): 20867.

[98] Kim Y, Parada G A, Liu S, et al. Ferromagnetic soft continuum robots[J]. Science Robotics, 2019, 4(33): eaax7329.

[99] Eem S H, Jung H J, Koo J H. Application of MR elastomers for improving seismic protection of base-isolated structures[J]. IEEE Transactions on Magnetics, 2011, 47(10): 2901-2904.

[100] Jung H J, Eem S H, Jang D D, et al. Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(13): 1439-1450.

[101] Behrooz M, Yarra S, Mar D, et al. A self-sensing magnetorheological elastomer-based adaptive bridge bearing with a wireless data monitoring system[C]. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016. SPIE, 2016, 9803: 87-97.

[102] Yarra S, Gordaninejad F, Behrooz M, et al. Performance of a large-scale magnetorheological elastomer–based vibration isolator for highway bridges[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(20): 3890-3901.

[103] Yarra S, Behrooz M, Pekcan G, et al. A large-scale adaptive magnetorheological elastomer-based bridge bearing[C]. Active and Passive Smart Structures and Integrated Systems 2017. SPIE, 2017, 10164: 473-480.

[104] Li W, Zhang X, Du H. Development and simulation evaluation of a magnetorheological elastomer isolator for seat vibration control[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(9): 1041-1048.

[105] Li Y, Li J, Tian T, et al. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control[J]. Smart Materials and Structures, 2013, 22(9): 095020.

[106] Xing Z W, Yu M, Fu J, et al. A laminated magnetorheological elastomer bearing prototype for seismic mitigation of bridge superstructures[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(14): 1818-1825.

[107] Li R, Zhou M, Wang M, et al. Study on a new self-sensing magnetorheological elastomer bearing[J]. AIP Advances, 2018, 8(6): 065001.

[108] Li R, Mu W, Zhang L, et al. Design and testing performance of a magneto-rheological elastomer isolator for a scaled bridge system[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(2): 171-182.

[109] Li R, Zhou M, Wu M, et al. Semi-active predictive control of isolated bridge based on magnetorheological elastomer bearing[J]. Journal of Shanghai Jiaotong University (Science), 2019, 24: 64-70.

[110] Zhu M, Fu J, Li W, et al. Design and co-optimization of a laminated isolation bearing based on magnetorheological elastomer[J]. Mechanical Systems and Signal Processing, 2021, 159: 107843.

[111] Zhao L, Yu M, Fu J, et al. A miniature MRE isolator for lateral vibration suppression of bridge monitoring equipment: design and verification[J]. Smart Materials and Structures, 2017, 26(4): 047001.

[112] 涂建维,瞿伟廉. 自适应调节剪切性能的叠层型智能隔震支座: CN101586641B[P],2010-11-03.

[113] 任伟. 叠层型磁流变弹性体智能隔震支座控制算法研究[D].武汉理工大学,2011.

[114] 欧进萍,王奇,董旭峰. 一种组合式磁流变弹性体智能隔震支座:CN104879431B[P],2017-01-18.

[115] 王奇. 磁流变弹性体与变刚度支座及其智能隔震减振系统性能研究 [D]. 大连理工大学, 2018.

[116] 汪建晓,王世旺.挤压式磁流变弹性体阻尼器力学性能测试与分析[J].佛山科学技术学院学报(自然科学版),2008(02):12-15.

[117] 王世旺,汪建晓.剪切式磁流变弹性体阻尼器力学性能研究[J].佛山科学技术学院学报(自然科学版),2007(05):17-20.

[118] 李杰飞. 基于磁流变弹性体的阻尼器设计及性能研究[D].长安大学,2019.

[119] 张迎文. 磁流变弹性体在桥梁防船撞护舷中的应用[D].江苏大学,2019.

[120] 黄学功,刘涛,马伟佳,等.基于MRE隔振器的变刚度半主动隔振系统分析[J].湖南大学学报(自然科学版),2021,48(08):27-36.

[121] Behrooz M, Wang X, Gordaninejad F. Performance of a new magnetorheological elastomer isolation system[J]. Smart Materials and Structures, 2014, 23(4): 045014.

[122] Koo J H, Jang D D, Usman M, et al. A feasibility study on smart base isolation systems using magneto-rheological elastomers[J]. Struct. Eng. Mech, 2009, 32(6): 755-770.

[123] 朱秘. 面向柔性结构的磁流变弹性体隔震系统研究[D].重庆大学,2021.

[124] Gu X, Yu Y, Li Y, et al. Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control[J]. Mechanical Systems and Signal Processing, 2019, 119: 380-398.

[125] Jung H J, Eem S H, Jang D D, et al. Seismic performance analysis of a smart base-isolation system considering dynamics of MR elastomers[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(13): 1439-1450.

[126] Eem S H, Jung H J, Koo J H. Seismic performance evaluation of an MR elastomer-based smart base isolation system using real-time hybrid simulation[J]. Smart Materials and Structures, 2013, 22(5): 055003.

[127] Yang J, Sun S, Tian T, et al. Development of a novel multi-layer MRE isolator for suppression of building vibrations under seismic events[J]. Mechanical systems and signal processing, 2016, 70: 811-820.

[128] Sun S, Yang J, Du H, et al. Development of magnetorheological elastomers–based tuned mass damper for building protection from seismic events[J]. Journal of intelligent material systems and structures, 2018, 29(8): 1777-1789.

[129] Nguyen X B, Komatsuzaki T, Iwata Y, et al. Modeling and semi-active fuzzy control of magnetorheological elastomer-based isolator for seismic response reduction[J]. Mechanical Systems and Signal Processing, 2018, 101: 449-466.

[130] Li Z, Adeli H. Control methodologies for vibration control of smart civil and mechanical structures[J]. Expert systems, 2018, 35(6): e12354.

[131] Bathaei A, Zahrai S M. Improving semi-active vibration control of an 11-story structure with non-linear behavior and floating fuzzy logic algorithm [J]. Structures, 2022, 39: 132-146.

[132] Bozorgvar M, Zahrai S M. Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution[J]. Smart Structures and Systems, 2019, 23(1): 1-14.

[133] Casciati F, Rodellar J, Yildirim U. Active and semi-active control of structures–theory and applications: A review of recent advances[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(11): 1181-1195.

[134] Etedali S, Zamani A A. Semi-active control of nonlinear smart base-isolated structures using MR damper: sensitivity and reliability analyses[J]. Smart Materials and Structures, 2022, 31(6): 065021.

[135] Ma A C, Wang S L. Semi-active control of continuous girder bridges considering the coupling effect of earthquake and hydrodynamic pressure[J]. International Journal of Heat and Technology, 2019, 37(4): 1187-1194.

[136] Soto M G, Adeli H. Semi-active vibration control of smart isolated highway bridge structures using replicator dynamics[J]. Engineering structures, 2019, 186: 536-552.

[137] Javadinasab Hormozabad S, Ghorbani-Tanha A K. Semi-active fuzzy control of Lali Cable-Stayed Bridge using MR dampers under seismic excitation[J]. Frontiers of Structural and Civil Engineering, 2020, 14: 706-721.

[138] 陈水生. 高架桥梁地震响应模糊半主动控制[J]. 地震工程与工程振动, 2005, 25(6): 165-171.

[139] 李忠献, 岳福青, 周莉. 城市隔震高架桥梁地震反应的半主动控制[J]. 土木工程学报, 2007, 40(1): 42-48.

[140] 汪志昊, 陈政清. 基于磁流变阻尼器的隔震高架桥Skyhook控制 [J]. 振动与冲击, 2010, 29(12): 196-199.

[141] 徐彦青. 磁流变支座桥梁的减震控制研究[D].重庆大学,2016.

[142] Li Y, Li J, Li W, et al. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator[J]. Smart Materials and Structures, 2013, 22(3): 035005.

[143] Wang Q, Dong X, Li L, et al. Study on an improved variable stiffness tuned mass damper based on conical magnetorheological elastomer isolators[J]. Smart Materials and Structures, 2017, 26(10): 105028.

[144] Zhao L, Yu M, Fu J, et al. A miniature MRE isolator for lateral vibration suppression of bridge monitoring equipment: design and verification[J]. Smart Materials and Structures, 2017, 26(4): 047001.

[145] Yang J, Sun S S, Du H, et al. A novel magnetorheological elastomer isolator with negative changing stiffness for vibration reduction[J]. Smart Materials and Structures, 2014, 23(10): 105023.

[146] Yu G J, Wen X X, Du C B, et al. Design and performance study of a segmented intelligent isolation bearing[J]. International Journal of Smart and Nano Materials, 2021, 12(4): 511-532.

[147] Yang J, Du H, Li W, et al. Experimental study and modeling of a novel magnetorheological elastomer isolator[J]. Smart Materials and Structures, 2013, 22(11): 117001.

[148] Hwang Y, Lee J, Kye S, et al. Development of multi-layered electromagnetic system for improving base isolator using a magnetorheological elastomer[J]. Smart Materials and Structures, 2020, 29(11): 114002.

[149] Yu Y, Hoshyar A N, Li H, et al. Nonlinear characterization of magnetorheological elastomer-based smart device for structural seismic mitigation[J]. International Journal of Smart and Nano Materials, 2021, 12(4): 390-428.

[150] Li Y, Li J. A highly adjustable base isolator utilizing magnetorheological elastomer: experimental testing and modeling[J]. Journal of Vibration and Acoustics, 2015, 137(1): 011009.

[151] Gu X, Li J, Li Y. Experimental realisation of the real‐time controlled smart magnetorheological elastomer seismic isolation system with shake table[J]. Structural Control and Health Monitoring, 2020, 27(1): e2476.

[152] Maxwell J C. A treatise on electricity and magnetism: Pt. III. Magnetism. pt. IV. Electromagnetism[M]. Clarendon Press, 1881.

[153] Zheng X, Jin K. Magnetic force models for Magnetizable elastic bodies in the magnetic field[J]. From Waves in Complex Systems to Dynamics of Generalized Continua: Tributes to Professor Yih-Hsing Pao on His 80th Birthday, 2011: 353-383.

[154] Pao Y H. Electromagnetic forces in deformable continua[J]. Mechanics Today. Volume 4.(A78-35706 14-70) New York, 1978, 4: 209-305.

[155] Rinaldi C, Brenner H. Body versus surface forces in continuum mechanics: Is the Maxwell stress tensor a physically objective Cauchy stress?[J]. Physical Review E, 2002, 65(3): 036615.

[156] Brown Jr W F. Magnetic energy formulas and their relation to magnetization theory[J]. Reviews of Modern Physics, 1953, 25(1): 131-135.

[157] Brown W F. Magnetoelastic interactions[M]. Berlin: Springer, 1966.

[158] Hasanyan D J, Harutyunyan S. Magnetoelastic interactions in a soft ferromagnetic body with a nonlinear law of magnetization: Some applications[J]. International Journal of Solids and Structures, 2009, 46(10): 2172-2185.

[159] Landau L D, Bell J S, Kearsley M J, et al. Electrodynamics of continuous media[M]. Elsevier, 2013.

[160] Vandevelde L, Melkebeek J A A. Magnetic forces and magnetostriction in ferromagnetic material[J]. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2001, 20(1): 32-51.

[161] Yih-Hsing P, Chau-Shioung Y. A linear theory for soft ferromagnetic elastic solids[J]. International Journal of Engineering Science, 1973, 11(4): 415-436.

[162] Kittel C. Physical theory of ferromagnetic domains[J]. Reviews of modern Physics, 1949, 21(4): 541-583.

[163] Jackson J D. Classical electrodynamics[M]. John Wiley & Sons, 2021.

[164] 姜寿亭. 凝聚态磁性物理[M]. 科学出版社, 2003.

[165] 李伟. 钕铁硼永磁材料的微磁学模拟与退磁场分析 [D]; 华南理工大学, 2019.

[166] Aharoni A. Introduction to the Theory of Ferromagnetism[M]. Clarendon Press, 2000.

[167] Rosensweig R E. Ferrohydrodynamics[M]. Courier Corporation, 2013.

[168] Mehdizadeh A, Mei R, Klausner J F, et al. Interaction forces between soft magnetic particles in uniform and non-uniform magnetic fields[J]. Acta Mechanica Sinica, 2010, 26: 921-929.

[169] Wang L, Kim Y, Guo C F, et al. Hard-magnetic elastica[J]. Journal of the Mechanics and Physics of Solids, 2020, 142: 104045.

[170] Luo Q, Liu D, Qiao P, et al. Micro-CT-based micromechanics and numerical homogenization for effective elastic property of ultra-high performance concrete[J]. International Journal of Damage Mechanics, 2020, 29(1): 45-66.

[171] Metsch P, Kalina K A, Spieler C, et al. A numerical study on magnetostrictive phenomena in magnetorheological elastomers[J]. Computational Materials Science, 2016, 124: 364-374.

[172] Hill R. On constitutive macro-variables for heterogeneous solids at finite strain[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1972, 326(1565): 131-147.

[173] Mandel J. Plasticité classique et viscoplasticité[M]. Springer; 1971.

[174] Drugan W J, Willis J R. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(4): 497-524.

[175] Diguet G, Beaugnon E, Cavaillé J Y. Shape effect in the magnetostriction of ferromagnetic composite[J]. Journal of Magnetism and Magnetic Materials, 2010, 322(21): 3337-3341.

[176] 王奇,董旭峰,李芦钰.磁流变弹性体在工程结构减隔震中的应用研究进展[J].智能建筑与智慧城市,2020(04):18-22.

[177] Li W H, Nakano M. Fabrication and characterization of PDMS based magnetorheological elastomers[J]. Smart Materials and Structures, 2013, 22(5): 055035.

[178] Steinmann P, Hossain M, Possart G. Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data[J]. Archive of Applied Mechanics, 2012, 82: 1183-1217.

[179] Alimardani M, Razzaghi-Kashani M, Ghoreishy M H R. Prediction of mechanical and fracture properties of rubber composites by microstructural modeling of polymer-filler interfacial effects[J]. Materials & Design, 2017, 115: 348-354.

[180] Li M, Chen J, Zhu R, et al. Dynamic stiffness and damping characteristics of a shaft damping ring: A combined hyperelastic and viscoelastic constitutive model[J]. Shock and Vibration, 2020, 2020: 1-13.

[181] Beda T. An approach for hyperelastic model-building and parameters estimation a review of constitutive models[J]. European Polymer Journal, 2014, 50: 97-108.

[182] Nunes L C S. Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test[J]. Materials Science and Engineering: A, 2011, 528(3): 1799-1804.

[183] Bazkiaei A K, Shirazi K H, Shishesaz M. A framework for model base hyper-elastic material simulation[J]. Journal of Rubber Research, 2020, 23: 287-299.

[184] Danas K. Effective response of classical, auxetic and chiral magnetoelastic materials by use of a new variational principle[J]. Journal of the Mechanics and Physics of Solids, 2017, 105: 25-53.

[185] Zhao R, Kim Y, Chester S A, et al. Mechanics of hard-magnetic soft materials[J]. Journal of the Mechanics and Physics of Solids, 2019, 124: 244-263.

[186] Keip M A, Rambausek M. A multiscale approach to the computational characterization of magnetorheological elastomers[J]. International Journal for Numerical Methods in Engineering, 2016, 107(4): 338-360.

[187] Kankanala S V, Triantafyllidis N. On finitely strained magnetorheological elastomers[J]. Journal of the Mechanics and Physics of Solids, 2004, 52(12): 2869-2908.

[188] Yin H M, Sun L Z. Magnetoelasticity of chain-structured ferromagnetic composites[J]. Applied Physics Letters, 2005, 86(26): 261901.

[189] Yarali E, Farajzadeh M A, Noroozi R, et al. Magnetorheological elastomer composites: Modeling and dynamic finite element analysis[J]. Composite Structures, 2020, 254: 112881.

[190] Li Y, Li J. Finite element design and analysis of adaptive base isolator utilizing laminated multiple magnetorheological elastomer layers[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(14): 1861-1870.

[191] Przybylski M, Sun S, Li W. Development and characterization of a multi-layer magnetorheological elastomer isolator based on a Halbach array[J]. Smart Materials and Structures, 2016, 25(10): 105015.

[192] Borbáth T, Günther S, Borin D Y, et al. XμCT analysis of magnetic field-induced phase transitions in magnetorheological elastomers[J]. Smart materials and structures, 2012, 21(10): 105018.

[193] Li S, Watterson P A, Li Y, et al. Improved magnetic circuit analysis of a laminated magnetorheological elastomer device featuring both permanent magnets and electromagnets[J]. Smart Materials and Structures, 2020, 29(8): 085054.

[194] Erkus B, Abé M, Fujino Y. Investigation of semi-active control for seismic protection of elevated highway bridges[J]. Engineering Structures, 2002, 24(3): 281-293.

[195] Lu L Y, Chu S Y, Yeh S W, et al. Seismic test of least-input-energy control with ground velocity feedback for variable-stiffness isolation systems[J]. Journal of Sound and Vibration, 2012, 331(4): 767-784.

[196] Kori J G, Jangid R S. Semiactive control of seismically isolated bridges[J]. International Journal of Structural Stability and Dynamics, 2008, 8(04): 547-568.

[197] Sahasrabudhe S S, Nagarajaiah S. Semi‐active control of sliding isolated bridges using MR dampers: an experimental and numerical study[J]. Earthquake engineering & structural dynamics, 2005, 34(8): 965-983.

[198] 金建敏,谭平,周福霖,等.天然橡胶支座(LNR)的等效阻尼比试验研究[J].西安建筑科技大学学报(自然科学版),2009,41(05):663-667.

[299] Wu J, Gong X, Chen L, et al. Preparation and characterization of isotropic polyurethane magnetorheological elastomer through in situ polymerization[J]. Journal of Applied Polymer Science, 2009, 114(2): 901-910.

[200] Pössinger T, Bolzmacher C, Bodelot L, et al. Influence of interfacial adhesion on the mechanical response of magneto-rheological elastomers at high strain[J]. Microsystem Technologies, 2014, 20: 803-814.

[201] Bodelot L, Voropaieff J P, Pössinger T. Experimental investigation of the coupled magneto-mechanical response in magnetorheological elastomers[J]. Experimental Mechanics, 2018, 58: 207-221.

[202] De Francqueville F, Gilormini P, Diani J, et al. Relationship between local damage and macroscopic response of soft materials highly reinforced by monodispersed particles[J]. Mechanics of Materials, 2020, 146: 103408.

中图分类号:

 U443.36    

条码号:

 002000074368    

馆藏号:

 YD10002634    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式