- 无标题文档
查看论文信息

中文题名:

 

质子交换膜燃料电池供氢系统优化设计及控制策略研究

    

姓名:

 刘冬    

学号:

 1049732003893    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080200    

学科名称:

 工学 - 机械工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 船海与能源动力工程学院    

专业:

 机械    

研究方向:

 系统建模;控制策略    

第一导师姓名:

 杨祥国    

第一导师院系:

 船海与能源动力工程学院    

完成日期:

 2023-03-05    

答辩日期:

 2023-05-15    

中文关键词:

 

质子交换膜燃料电池 ; 参数辨识 ; 优化设计 ; 系统建模 ; 控制策略

    

中文摘要:

随着我国“碳达峰”和“碳中和”目标的提出,构建以可再生能源为主导、多能互补的绿色能源体系是未来社会的发展趋势。质子交换膜燃料电池作为一种绿色能源,具有良好的应用前景。但目前尚存在一些影响质子交换膜燃料电池系统可靠性和鲁棒性的关键技术问题亟待解决。

本文围绕解决“电堆模型参数辨识不易、燃料电池供氢系统氢气利用率低及压强差控制难度大”等问题开展研究工作,以质子交换膜燃料电池系统为研究对象,着重对多喷嘴喷射泵的优化设计进行了研究,并构建了燃料电池系统的仿真模型,基于该模型重点对阳极供氢系统的控制策略进行了研究,主要研究内容如下:

首先,本文提出了一种基于莱维飞行的差分粒子群联合优化算法解决传统燃料电池仿真模型存在模型参数不准确、参数不能动态调节、模型求解收敛性差的问题。基于该方法构建了燃料电池系统动态仿真模型,该模型主要由电堆和辅助系统(主要为空压机、加湿器、比例阀、喷射泵和供氢管道等组成),并利用实测数据验证了模型的准确性。

其次,本文为解决传统单喷嘴喷射泵存在的负载变化窗口窄、难以适应低负载工况的问题,提出了一种高精度多喷嘴组合喷射泵优化设计方案。该优化方案采用4个不同口径的喷嘴组合而成,可实现多达15种流量控制效果,最高精度可达3%。通过Pro/E构建了该高精度多喷嘴组合喷射泵的三维模型,在CFD软件中进行了喷射泵网格建立和性能分析,验证了该高精度多喷嘴组合喷射泵在在全负载区间,尤其是低负载条件下具有良好的引射性能。

最后,本文研究了一种适用于高精度多喷嘴组合喷射泵的控制策略。在多喷嘴喷射泵组合控制方案的基础上,通过仿真对比研究PID控制、模糊PID控制和模型预测控制三种控制算法在质子交换膜燃料电池中的实际控制效果,研究结果表明模型预测控制算法,相较于PID算法动态响应特性提升了4%,证明本方法具有较好的动态响应特性和鲁棒性。

参考文献:

[1]衣宝廉.燃料电池的原理、技术状态与展望[J].电池工业,2003,(01):16-22.

[2]罗瑞琼,朱利香,彭卫韶,et al.氢燃料电池能量转换效率测试研究[J].机械工程与自动化,2022,(06):7-9.

[3]常雪嵩,周瑶,田萌,et al.燃料电池的发展与应用[J].小型内燃机与车辆技术,2019 48(03): 71-4.

[4]侯绪凯,赵田田,孙荣峰,et al.中国氢燃料电池技术发展及应用现状研究[J].当代化工研究,2022,(17):112-7.

[5]陈雅丽,苏华莺.燃料电池汽车研究现状及发展[J].内燃机与配件,2021,(03):170-1.

[6]洪晏忠,邓波.我国氢燃料电池汽车发展现状及前景分析[J].科技风,2021,(04):5-6.

[7]高助威,李小高,刘钟馨,et al.氢燃料电池汽车的研究现状及发展趋势[J].材料导报,2022,36(14):74-81.

[8]李志强,王侃,王会杰.我国氢燃料电池汽车的现状及发展策略[J].汽车实用技术,2023,48(02):200-4.

[9]王小迪,宋珂.车用质子交换膜燃料电池控制策略综述[J].佳木斯大学学报(自然科学版), 2019,37(06):992-5.

[10]李彩芳.高分子电解质型燃料电池的工作原理及改进方法——评《图解化学电池》[J].电池,2022, 52(03):355-6.

[11]Grew K N, Chiu W. A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell[J].Journal of Power Sources, 2012,199(1):1-13.

[12]丛炜,丁燕,廖盛祝,et al.射流泵在主燃油控制系统中的应用及优化设计[J].航空发动机,2020,46(01):27-31.

[13]Hwang J J. Effect of hydrogen delivery schemes on fuel efficiency[J].Journal of Power Sources,2013,239(10):54-63.

[14]Xin K, Khambadkone A M. Modeling of a PEM Fuel-Cell Stack for Dynamic and Steady-State Operation Using ANN-Based Submodels[J].Ieee Transactions on Industrial Electronics,2009,56(12):4903-14.

[15]南泽群,许思传,章道彪,et al.车用PEMFC系统氢气供应系统发展现状及展望[J].电源技术,2016,40(08):1726-30.

[16]Zeuner G, Klein J F.Fundamental laws of thermodynamics theory of gases[M]. Fundamental laws of thermodynamics theory of gases,1908.

[17]Keenan J H , Neumann E P , Lustwerk F. An Investigation of Ejector Design by Analysis and Experiment [J].Journal of Applied Mechanics,1950,17.

[18]B. J. HuangJ. M. ChangC. P. WangV. A. Petrenko. A 1-D analysis of ejector performance [J]. International Journal of Refrigeration,1999,22(5).

[19] Besagni G,Mereu R, Chiesa P, et al. An Integrated Lumped Parameter-CFD approach for off-design ejector performance evaluation [J]. Energy Conversion and Management, 2015, 105: 697-715.

[20]Desevaux P,Marynowski T, Khan M. CFD prediction of supersonic ejectors performance [J].International Journal of Turbo & Jet-Engines,2006,23(3):173-81.

[21]Jeong H M,Utomo T, Jin Z H,et al. A CFD Analysis on the Gas-Liquid Ejector[J].Journal of Power System Engineering,2008,12(1):28-34.

[22] Rusly E, Lu A,Charters W,et al. CFD analysis of ejector in a combined ejector cooling system[J]. International Journal of Refrigeration-Revue Internationale Du Froid,2005,28(7): 1092-101.

[23]Yan J,Li S,Liu Z.Numerical investigation on optimization of ejector primary nozzle geometries with fixed/varied nozzle exit position[J].Applied Thermal Engineering, 2020,175 :115426.

[24]Xla B,Jwa B,Jz C,et al. Experimental investigation of the cavitation characteristics of jet pump cavitation reactors with special emphasis on negative flow ratios[J].Experimental Thermal and Fluid Science,2018,96:33-42.

[25]Dadvar M, Afshari E.Analysis of design parameters in anodic recirculation system based on ejector technology for PEM fuel cells: A new approach in designing[J].International Journal of Hydrogen Energy,2014,39(23):12061-73.

[26]Cheng B,Ouyang M ,Yi B. Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system - I. Control-oriented modeling [J]. International Journal of Hydrogen Energy,2006,31(13):1879-96.

[27]Mallela R,Chatterjee D.Numerical investigation of the effect of geometry on the performance of a jet pump[J].ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 2011, 225(7):1614-1625.

[28]He J,Choe S Y, Hong C O. Analysis and control of a hybrid fuel delivery system for a polymer electrolyte membrane fuel cell[J]. Journal of Power Sources,2008,185(2):973-84.

[29]Ziogou C,Papadopoulou S,Georgiadis M C,et al.On-line nonlinear model predictive control of a PEM fuel cell system[J].Journal of Process Control,2013,23(4): 483-92.

[30]郑前钢,金崇文,项德威.基于非线性模型预测的航空发动机性能寻优控制[J].航空动力学报,2023,38:1-12.

[31]宋昱,韩恺,李小龙.基于规则的能量管理策略对燃料电池汽车整车经济性影响研究; 2019中国汽车工程学会年会论文集[C].上海:机械工业出版社,2019:217-224.

[32]Wang Y,Sun Z, Chen Z. Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine [J].Applied Energy,2019,254:113707.

[33]Essoufi M, Hajji B,Rabhi A. Fuzzy Logic based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicle[C].2020 International Conference on Electrical and Information Technologies (ICEIT). 2020.

[34]Zhao Z,Wang T, Li M, et al.Optimization of fuzzy control energy management strategy for fuel cell vehicle power system using a multi-islandgenetic algorithm[J].Energy Science & Engineering,2021,9(4): 548-64.

[35]洪凌.车用燃料电池发电系统氢气回路控制[D];浙江大学,2017.

[36]Matraji I,Laghrouche S,Wack M. Pressure control in a PEM fuel cell via second order sliding mode[J].International Journal of Hydrogen Energy,2012,37(21):16104-16.

[37]Matraji I,Laghrouche S,Jemei S,et al. Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode[J]. Applied Energy,2013,104(4):945-957.

[38]Wu W,Pai C C. Modeling and Control of a Proton Exchange Membrane Fuel Cell System with Alternative Fuel Sources [J].Industrial & Engineering Chemistry Research,2009,48(19): 8999-9005.

[39]Luna J,Ocampo-Martinez C, Serra M. Nonlinear predictive control for the concentrations profile regulation under unknown reaction disturbances in a fuel cell anode gas channel[J]. Journal of Power Sources,2015,282:129-139.

[40]李奇,陈维荣,刘述奎,et al.基于H∞鲁棒控制的质子交换膜燃料电池空气供应系统设计[J].中国电机工程学报,2009,(5):8.

[41]邵庆龙.质子交换膜燃料电池的建模与鲁棒控制[D];上海交通大学,2004.

[42]王永富,马冰心,柴天佑,et al. PEMFC空气供给系统的二型自适应模糊建模与过氧比控制[J].自动化学报,2019,45(5):13.

[43]Huang L,Chen J,Liu Z,et al.Adaptive thermal control for PEMFC systems with guaranteed performance☆[J].International Journal of Hydrogen Energy,2018,43(25):11550-11558.

[44]Laghrouche S,Harmouche M,Ahmed F S,et al. Control of PEMFC Air-Feed System using Lyapunov-based Robust and Adaptive Higher Order Sliding ModeControl[J].IEEE Transactions on Control Systems Technology,2015,23(4):1594-1601.

[45]马冰心,王永富. PEMFC系统过氧比的自适应高阶滑模控制[J].控制理论与应用, 2020,37(2):12.

[46]卫东,曹广益,朱新坚.基于一种改进自适应模糊神经技术的PEMFC系统建模和控制 [J].上海交通大学学报,2004,38(9):6.

[47]夏世远,苏建徽,杜燕,et al.基于贝叶斯正则化BP神经网络的PEMFC电堆建模[J].合肥工业大学学报自然科学版, 2021, 44(7): 5.

[48]Khan S S,Shareef H,Ibrahim A A. Improved Semi-empirical Model of Proton Exchange Membrane Fuel Cell Incorporating Fault Diagnostic Feature[J].Journal of Modern Power Systems and Clean Energy,2021,9(6):1566-73.

[49]徐晓丽,沈炯,李益国.面向控制的质子交换膜燃料电池机理建模及仿真[J].华东电力, 2012,40(03):488-93.

[50]刘华洋.质子交换膜燃料电池氢气进气系统建模与控制[D];吉林大学, 2022.

[51]汪淼.燃料电池发动机氢气供给系统仿真及控制策略研究[D];山东大学, 2022.

[52]马冰心.质子交换膜燃料电池建模与供气系统控制方法的研究[D];东北大学, 2017.

[53]胡捷.质子交换膜燃料电池建模与控制研究[D];合肥工业大学, 2019.

[54]贾玉茹.氢燃料电池发动机进气系统建模与控制策略研究[D];太原理工大学, 2021.

[55]Miao D,Chen W,Zhao W,et al. Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method[J].Energy,2020,193:571-82.

[56]Ariza H E,Correcher A,C Sanchez,et al. Thermal and Electrical Parameter Identification of a Proton Exchange Membrane Fuel Cell Using Genetic Algorithm [J]. Energies,2018,11(8).

[57]Askarzadeh A,Rezazadeh A. Optimization of PEMFC model parameters with a modified particle swarm optimization[J].International Journal of Energy Research,2011,35(14):1258-65.

[58]Hasanien H M,El-Fergany A A,Agwa A M.Semi-empirical PEM fuel cells model using whale optimization algorithm[J].Energy Conversion and Management,2019,201(112197):1-11.

[59]Salim R,Nabag M,Noura H,et al. The parameter identification of the Nexa 1.2 kW PEMFC's model using particle swarm optimization [J]. Renewable Energy,2015,82(10):26-34.

[60]莫志军,朱新坚.质子交换膜燃料电池建模与动态仿真[J].计算机仿真,2006,23(2):5.

[61]莫志军,朱新坚,曹广益.质子交换膜燃料电池建模与稳态分析[J].系统仿真学报, 2005,17(9):5.

[62]Yang Z,Zhu W,Dong R,et al.Multi-scale dimensionless prediction model of PEMFC sealing interface leakage rate based on fractal geometry[J]. International Journal of Hydrogen Energy,2023,48(13):5276-87.

[63]Chu T,Tang Q,Wang Q,et al. Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism[J].Energy, 2023,264.

[64]Tan J,Hu H,Liu S,et al. Optimization of PEMFC system operating conditions based on neural network and PSO to achieve the best system performance[J].International Journal of Hydrogen Energy,2022,47(84):35790-809.

[65]Hachana O,Elfergany A A,Lund H,et al.Efficient PEM fuel cells parameters identification using hybrid artificial bee colony differential evolution optimizer[J].Energy,2022,250:123830.

[66]Abdel-Basset M,Mohamed R,Abdek-Fatah L,et al.Improved Metaheuristic Algorithms for Optimal Parameters Selection of Proton Exchange Membrane Fuel Cells: A Comparative Study[J].Ieee Access,2023,11:7369-97.

[67]Aoa B,Ys A,Hz A,et al.Observer-based interval type-2 fuzzy PID controller for PEMFC air feeding system using novel hybrid neural network algorithm-differential evolution optimizer[J].Alexandria Engineering Journal,2022,61(9):7353-75.

[68]丁瑞成,周玉成.引入莱维飞行与动态权重的改进灰狼算法[J].计算机工程与应用, 2022,58(23):74-82.

[69]付华,许桐,邵靖宇.基于水波进化和动态莱维飞行的爬行动物搜索算法[J].控制与决策,2022,1-9.

[70]马卫,朱娴.基于莱维飞行扰动策略的麻雀搜索算法[J].应用科学学报,2022,40(01): 116-30.

[71]张大明,赵彦清,徐嘉庆.基于均衡池和莱维飞行的饥饿游戏搜索算法[J].计算机应用研究,2023,1-9.

[72]沈鑫,邹德旋,张强.采用双变异策略的自适应差分进化算法及应用[J].计算机工程与应用,2020,56(04):146-57.

[73]江林升.基于转向变异策略的差分进化算法及应用研究[D];云南大学,2021.

[74]乔康加.多目标差分进化变异策略的研究及其应用[D];郑州大学,2021.

[75]汪慎文,谢承旺,郭肇禄,et al.集成两变异策略的差分进化算法[J].武汉大学学报(理学版), 2019,65(03):238-42.

[76]王丽颖,帅真浩.基于双种群两阶段变异策略的差分进化算法[J].计算机系统应用, 2022,31(04):288-95.

[77]王泽旭,文斌,罗自强.差分进化变异策略rand/3/bin求解0-1背包问题[J].计算机与数字工程, 2021, 49(07):1383-8.

[78]邓先瑞.质子交换膜燃料电池加湿器的建模与仿真[J].四川大学学报(工程科学版), 2006,(04):86-91.

[79]于娜.蝶阀开度电液比例控制系统研究[D];江苏大学, 2016.

[80]江浩斌,周泽磊,钱洋,et al.ECHPS旁通流量比例电磁阀开度模糊PID控制[J].机床与液压, 2014, 42(19): 131-5.

[81]刘国平,于见雨,胡瑢华, et al.具有压力补偿器的比例流量阀开度控制算法研究[J]. 机床与液压, 2012,40(18):79-81.

[82]庞子卉,韩济泉,陈平,et al.170 kW燃料电池系统引射器关键结构参数影响研究[J]. 汽车工程,2022,44(12):1889-95+909.

[83]陈秋霖.可调式燃料电池引射器的性能计算分析与结构优化设计[D];山东大学,2021.

[84]刘展睿.燃料电池阳极引射器的数值模拟与新型蜗壳式设计[D];天津大学,2019.

[85]Yin Y,Fan M,Jiao K,et al.Numerical investigation of an ejector for anode recirculation in proton exchange membrane fuel cell system [J].Energy Conversion and Management, 2016, 126:1106-17.

[86]Xue H,Wang L,Zhang H,et al.Design and investigation of multi-nozzle ejector for PEMFC hydrogen recirculation[J].International Journal of Hydrogen Energy,2020,45(28): 14500-16.

[87]Zhu Y,Jiang P.Theoretical model of transcritical CO2 ejector with non-equilibrium phase change correlation[J].International Journal of Refrigeration,2018,86:218-27.

[88]Zhu Y,Li Y.New theoretical model for convergent nozzle ejector in the proton exchange membrane fuel cell system[J].Journal of Power Sources, 2009,191(2):510-9.

[89]Yapici R,Ersoy H K. Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model[J].Energy Conversion and Management,2005, 46(18/19):3117-3135

[90]Liu J,Wang L,Jia L. A predictive model for the performance of the ejector in refrigeration system[J].Energy Conversion and Management,2017,150:269-76.

[91]张志鹏,纪少波,张世强,et al.运行条件对氢燃料电池引射器性能影响规律研究[J]. 汽车文摘, 2022, (08): 37-42.

[92]宋亚杰.质子交换膜燃料电池阳极氢循环共焦双喷嘴引射器研制[D];山东大学,2022.

[93]贠海涛,胡帅,李正辉,et al.车用燃料电池发动机引射器优化设计[J].哈尔滨理工大学学报, 2020, 25(04):19-26.

[94]张恒.质子交换膜燃料电池氢气引射器设计及性能研究[D];武汉理工大学, 2018.

[95]刘子伟.燃料电池供氢系统建模与控制策略研究[D];北京交通大学, 2021.

[96]白帅峰.质子交换膜燃料电池阳极喷射器优化设计[D];山东大学, 2019.

[97]张心悦.燃料电池氢循环喷射器性能分析与结构优化[D];山东大学, 2021.

[98]周苏,胡哲,王凯凯,et al.质子交换膜燃料电池系统引射器的氢气循环特性[J].同济大学学报(自然科学版),2018,46(08):1115-21+30.

[99]Han J, Feng J, Hou T, et al. Performance investigation of a multi-nozzle ejector for proton exchange membrane fuel cell system[J].International Journal of Energy Research,2021,45(2): 3031-48.

中图分类号:

 TM911.4    

条码号:

 002000073770    

馆藏号:

 YD10001959    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式