- 无标题文档
查看论文信息

中文题名:

 柴油机选择性催化还原系统可变阻容特性研究与应用     

姓名:

 冯坦    

学号:

 104971120194    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082402    

学科名称:

 轮机工程    

学生类型:

 博士    

学位:

 工学博士    

学校:

 武汉理工大学    

获奖论文:

 校优秀博士学位论文    

院系:

 能源与动力工程学院    

专业:

 轮机工程    

研究方向:

 柴油机性能优化与排放控制    

第一导师姓名:

 吕林    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-05-05    

答辩日期:

 2015-05-15    

中文关键词:

 

柴油机 ; 选择性催化还原 ; 阻容特性 ; 控制策略 ; 沉积物

    

中文摘要:

随着我国汽车保有量的不断增加,机动车带来的污染问题也越来越突出。在机动车持续增长和能源紧缺的形势下,发展和完善柴油机NOX控制技术对减少我国NOX排放具有十分重要的意义。Urea-SCR技术被认为是目前最有效的柴油机NOX控制技术。然而,由于SCR系统催化器出口NOX浓度随添蓝流量的变化规律具有阻容模型的特征,导致拟降低的NOX和可用的NH3难以实时地维持等摩尔的关系,NOX转化效率受到抑制。柴油机实际运行中工况复杂,添蓝流量频繁变化,易造成NOX排放偏高、NH3泄漏,并伴随着大量沉积物生成,加剧了大气质量的恶化。为进一步提高NOX转化效率并防止二次污染形成,本文通过仿真与试验相结合的方法,对Urea-SCR系统阻容特性的影响因素、描述及应用方法展开研究,最终得到了一种基于模型的控制策略。

本文的主要研究内容包括:

(1) 本文首先基于系统级SCR催化剂模型,从催化剂微孔结构的角度出发,确定了影响SCR系统NOX转化效率的关键因素。而后,本文对SCR系统的阻容特性进行描述,给出了“带时滞环节的多元可变阻容模型”时间常数和比例常数的求解方式。最后,本文使用三款不同催化剂进行ESC和ETC循环试验,通过试验结果与阻容模型的仿真结果对比可知,该模型可以准确描述Urea-SCR系统的阻容特性。该模型作为可嵌入式模型,可用于实时指导添蓝喷射量,在降低NOX的同时减少二次污染的产生。同时,该模型作为可嵌入式模型,可用于实时指导添蓝喷射量,在降低NOX的同时减少NH3泄漏的产生。

(2) 随着当今社会对柴油机NOX排放要求越来越严格,优化添蓝控制策略以进一步提高SCR系统NOX转化效率并防止NH3泄漏的产生始终是一项艰巨的挑战。对催化剂储氨量的精确控制是SCR控制系统的核心,也是进一步提高SCR系统NOX转化效率的方向。因此,本文通过台架试验,对全尺寸催化剂的储氨特性进行研究,并通过非线性储氨模型对催化剂储氨特性进行描述。而后,本文提出了基于储氨模型的模糊储氨量控制方法,ETC瞬态循环试验结果表明,该方法可在保证高NOX转化效率的同时降低NH3的泄漏量。同时,为了应对SCR系统在实际应用中由于一致性所带来的影响,提高SCR系统的鲁棒性,本文提出了基于“带时滞环节的多元可变阻容模型”的闭环控制策略,实车路试试验结果表明,本文提出的闭环控制策略在实际运行中工作稳定,显著提高了SCR系统的鲁棒性。

(3) 除了NOX和NH3排放,沉积物生成量同样是衡量控制策略优劣的重要指标。因此,本文从Urea-SCR系统的设计开发、沉积物的生成机理和基于沉积物生成模型的添蓝流量修正策略三个方面对Urea-SCR系统沉积物的问题进行研究。首先,本文建立了部件级的Urea-SCR系统物理结晶模型,由台架结晶试验和模型仿真结果的对比可知,使用该模型可以准确描述添蓝喷射、雾化、蒸发、分解以及壁膜的生长过程,并可定性预估固体尿素沉积物的生成位置。将本文建立的物理结晶模型应用于Urea-SCR系统开发阶段可为管路及混合器的结构设计提供指导,以减少系统的沉积物生成量。同时,本文建立了系统级的沉积物生成机理模型,由热重试验和模型仿真结果的对比可知,使用该模型可以准确描述尿素、氰尿酸(CYA)、缩二脲(Biuret)和氰尿酰胺(Ammelide)的生成和分解过程。基于该模型,本文得到了不同边界下的残余比例、沉积率和沉积物组分,为Urea-SCR系统沉积物的控制提供了理论支持。此外,本文建立了一种可嵌入式沉积物生成模型,并提出了基于该模型的添蓝修正策略。实车路试试验的结果表明,使用该策略后Urea-SCR系统沉积物的生成量降低54%。因此,本文提出的基于模型的添蓝修正策略可以有效减少沉积物的生成。进而,在基于阻容模型的添蓝控制策略基础上,匹配使用基于沉积物生成模型的添蓝流量修正策略,可以同时实现高NOX转化效率、低NH3泄漏量和低沉积物生成量。

参考文献:

[1] 中国机动车污染防治年报(2013年度)[R]. 中华人民共和国环境保护部. 2013.

[2] 王长会. 我国氮氧化物的污染现状和治理技术的发展及标准介绍[J]. 机械工业标准化与质量, 2008(3)

[3] 车用压燃式、气体燃料点燃式发动机与汽车排气污染物限值及测量方法.DB11/964-2013 [S]. 北京市环境保护局、北京市质量技术监督局. 2013.

[4] 张建锐. 重型柴油机SCR尿素喷射控制策略研究[D]. 吉林大学, 2011.

[5] James W. Girard, Clifford Montreuil, Jeong Kim, Giovanni Cavataio, Christine Lambert. Technical Advantages of Vanadium SCR Systems for Diesel NOX Control in Emerging Markets. SAE. 2008-01-1029.

[6] Xiaobo Song, Jeffrey Naber, John H. Johnson. Nonuniformity and NO2/NOX Ratio Effects on the SCR Performance under Transient Engine Conditions. SAE. 2014-01-1556.

[7] Keld Johansen, Henrik Bentzer, Arkady Kustov, Kenneth Larsen, Ton V.W. Janssens, Rasmus G. Barfod. Integration of Vanadium and Zeolite Type SCR Functionality into DPF in Exhaust Aftertreatment Systems - Advantages and Challenges. SAE. 2014-01-1523.

[8] Ioannis Gekas, Andreas Vressner, Keld Johansen. NOX Reduction Potential of V-SCR Catalyst in SCR/DOC/DPF Configuration Targeting Euro VI Limits from High Engine NOX Levels. SAE. 2009-01-0626.

[9] Matthieu Lecompte, Stephane Raux, Arnaud Frobert. Experimental Characterization of SCR DeNOX-Systems: Visualization of Urea-Water-Solution and Exhaust Gas Mixture. SAE. 2014-01-1524.

[10] Giovanni Cavataio, James W. Girard, Christine K. Lambert. Cu/Zeolite SCR on High Porosity Filters: Laboratory and Engine Performance Evaluations. SAE. 2009-01-0897.

[11] Kihyung Joo, Ji-Ho Jo, ChangDae Kim, Jin-ha Lee, Hong-jip Kim. The Study of NOX Reduction using Urea- SCR System with CPF and DOC for Light Duty Vehicle; the Diesel NOX Reduction System. SAE. 2008-01-1183.

[12] Youngjin Cho, JaeAu Ha, Taewoo Lee, Hyun Sik Han. Deactivation of Urea SCR Catalyst for Heavy Duty Diesel Engine. SAE. 2012-01-1956.

[13] 廖世勇,蒋德明. 柴油机排气后处理技术的研究进展及存在的问题[J]. 内燃机, 2002.

[14] Rasmus Cordtz, Anders Ivarsson, Jesper Schramm. Steady State Investigations of DPF Soot Burn Rates and DPF Modeling. SAE. 2011-24-0181.

[15] Jianwen Li, Rahul Mital. Effect of DPF Design Parameters on Fuel Economy and Thermal Durability. SAE. 2012-01-0847.

[16] Johnson T V. Diesel Emission Control Technology 2003 in Review. SAE. 2004-01-0070.

[17] Johnson T V. Diesel Emission Control in Review-The last 12 months. US Department of Energy Directions in Engine Efficiency and Emissions Research (DEER), Detroit, 2007.

[18] Johnson T V. Diesel Emission Control in Review. SAE. 2009-01-0121.

[19] Johnson T V. Review of Diesel Emissions and Control. SAE. 2010-01-0301.

[20] Johnson T V. Diesel Emissions in Review. SAE. 2011 -01-0304.

[21] M. Khair, J. Lemaire and S. Fischer. Integration of EGR, SCR, DPF and Fuel-borne Catalyst for NOX/PM Reduction. SAE. 2000-01-1933.

[22] 谭丕强, 杜加振, 胡志远, 楼狄明. 关键运行参数对柴油机SCR系统性能的影响[J]. 化工学报. 2014, (10), Vol.65, 4063-4070.

[23] 李孟良, 聂彦鑫, 徐俊芳, 秦孔健, 景晓军. 装配SCR系统的城市公交车NOx排放特性[J]. 江苏大学学报(自然科学版). 2011, 32(1), 38-42.

[24] 辛喆, 王顺喜, 张寅, 李钊婧, 张云龙, 云峰. Urea-SCR催化器压力损失及其对柴油机性能的影响[J]. 农业工程学报. 2011, 27(8), 169-173.

[25] 高岩. 栾涛. 彭吉伟. XU Hongming. V2O5-WO3-MoO3/TiO2催化剂在柴油机NH3-SCR系统中的性能[J]. 化工学报. 2013, 64(9). 3356-3366.

[26] Müller W, ?lschlegel H, Sch?fer A, et al. Selective Catalytic Reduction-Europe's NOX Reduction Technology. SAE. 2003-01-2304.

[27] Koebel M, Elsener M, Kleemann M. Urea-SCR: A Promising Technique to Reduce NOX Emissions from Automotive Diesel Engines. Catalysis Today, 2000, 59(3-4):335-345.

[28] Nova I, Ciardelli C, Tronconi E, et al. Unifying Redox Kinetics for Standard and Fast NH3-SCR over a V2O5-WO3/TiO2 Catalyst. AIChE Journal, 2009, 55(6):1514-1529.

[29] Tronconi E, Nova I, Ciardelli C, et al. Redox Features in the Catalytic Mechanism of the "Standard" and "Fast" NH3-SCR of NOX over a V-based Catalyst Investigated by Dynamic Methods. Journal of Catalysis, 2007, 245(1):1-10.

[30] Shuai Shijin, Wang Jianxin, Li Rulong, et al. Performance Evaluation and Application of Diesel NOX-SCR Catalyst by Ethanol Reductant. SAE. 2005-01-1089.

[31] Inomata M, Miyamoto A, Murakami Y. Mechanism of the Reaction of NO and NH3 on Vanadium Oxide Catalyst in the Presence of Oxygen under Dilute Gas Condition. J Catal. 1980, 62:140–148.

[32] Miyamoto A, Kobayashi K, Inomata M, Murakami Y. Nitrogen-15 Tracer nvestigation of the Mechanism of the Reaction of NO with NH3 on Vanadium Oxide atalysts. J Phys Chem. 1982, 86:2945–2950.

[33] Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B. NH3-SCR of NO over a V-based Catalyst: Low-T Redox Kinetics with NH3 Inhibition. AIChE J. 2006, 52(9):3222–3233.

[34] Nova I, Ciardelli C, Tronconi E, Chatterjee D, Weibel M. Unifying Redox Kinetics for Standard and Fast NH3-SCR over a V2O5-WO3/TiO2 Catalyst. AIChE J. 2009, 55(6):1514–1529.

[35] Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B. A ‘‘Nitrate Route’’ for the low temperature ‘‘Fast SCR’’ reaction over a V2O5–WO3/TiO2 commercial catalyst. Chem Commun. 2004, 2004:2718–2719.

[36] Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B. NH3–NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the Fast SCR reaction. Catal Today. 2006, 114:3–12.

[37] Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B, Weibel M, Krutzsch B. Reactivity of NO/NO2–NH3 SCR system for diesel exhaust aftertreatment: Identification of the reaction network as a function of temperature and NO2 feed content. Appl Catal B. 2007, 70:80–90.

[38] Walker, A. Current and Future Trends in Catalyst-Based Emission Control System Design’’, presentation at the SAE Heavy-Duty Diesel Emission Control Symposium, September 2012, Gothenburg.

[39] Kurnia Wijayanti, Stanislava Andonova, Ashok Kumar, Junhui Li, Krishna Kamasamudram, Neal W. Currier, Aleksey Yezerets, Louise Olsson. Impact of sulfur oxide on NH3-SCR over Cu-SAPO-34. Applied Catalysis B: Environmental. 2015. 166:568-579.

[40] Chapman, D.M., Fu, G., Augustine S., Crouse, J., Zavalij, L., Watson, M., Perkins-Banks, D. New Titania Materials with Improved Stability and Activity for Vanadia-Based Selective Catalytic Reduction of NOx, SAE. 2010-01-1179, doi:10.4271/2010-01-1179.

[41] Walker, A. Optimising Future Catalyst Systems, presentation at SAE Heavy-Duty Diesel Emissions Control Symposium, Gothenburg, September 2010.

[42] Narula, C., Yang, X., Bonnesen, P., and Hagaman, E., High Performance NH3 SCR Zeolite Catalysts for Treatment of NOx in Emissions from Off-Road Diesel Engine, SAE. 2011-01-1330, doi:10.4271/2011-01-1330.

[43] Yang, X., Narula, C. Simple Approach to Tuning Catalytic Activity of MFI-Zeolites for Low Temperature SCR of NOx, poster at US Department of Energy Directions in Engine Efficiency and Emissions Research (DEER) Conference, September 27–30, 2010, Detroit.

[44] Prikhodko, V., Pihl, J., Lewis, S. and Parks, J. Hydrocarbon Fouling of SCR During PCCI Combustion, SAE Int. J. Engines 5(3):2012, doi:10.4271/2012-01-1080.

[45] Luo, J-Y, Yezerets, A., Henry, C., Hess, H., Kamasamudram, K., Chen, H-Y, Epling, W. S. Hydrocarbon Poisoning of Cu-Zeolite SCR Catalysts, SAE. 2012-01-1096, doi:10.4271/2012-01-1096.

[46] Han, J., Kim, E., Lee, T., Kim, J., Ahn, N, and Han, H.-S. Urea-SCR Catalysts with Improved Low Temperature Activity, SAE. 2011-01-1315, doi:10.4271/2011-01-1315.

[47] Tang, W., Huang, X., and Kumar, S. Sulfur Effect and Performance Recovery of a DOC+ CSF +Cu-Zeolite SCR System, presentation at US Department of Energy, Directions in Engine Efficiency and Emissions Research (DEER) Conference, October 3–6, 2011, Detroit.

[48] Bartley, G. J., Chadwell, C. J., Kostek, T. W., Zhan, R. (2012) SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications, SAE. 2012-01-1077,Published 04/16/2012, SAE International, doi:10.4271/2012-01-1077.

[49] Ostertag, M. Urea Reservoir Systems for Off-Highway and Heavy Duty Market, presentation at CTI NOx Reduction Forum, December 2008, Detroit.

[50] Needham, D., Spadafora, P., Schiffgens, H. J., Kirwan, J. E., Cabush, D. D., Kalina, A. Delphi SCR Dosing System – An Alternative Approach for Close-Coupled SCR Catalyst Systems, proceedings of 21st Aachen Colloquium Automobile and Engine Technology October 2012, Aachen, Germany.

[51] Denoxtronic 2.2 – Urea Dosing System for SCR systems. Robert Bosch GmbH. 292000P18Z-C/CCA-201404-En.

[52] EcoFitTM DEF Dosing System. Cummins Emission Solution (China) Co., Ltd. Bulletion 4973772-a Printed in China Rev 10/2011.

[53] Zhan, R., Li, W., Eakle S. T., Weber, P. A. Development of a Novel Device to Improve Urea Evaporation, Mixing and Distribution to Enhance SCR Performance, SAE. 2010-01-1185, doi:10.4271/2010-01-1185.

[54] Alano, E., Jean, E., Perrot, Y., Brunel, J.-P., Ferrand, N., Ferhan, M., Chapel, J., and Pajot, K. Compact SCR for Passenger Cars, SAE. 2011-01-1318, doi:10.4271/2011-01-1318.

[55] Ryan Floyd, Levin Michael and Zafar Shaikh. DEF Systems and Aftertreatment Architecture Considerations. Fundamental and Applied Catalysis. doi: 10.1007/978-1-4899-8071-7_15.

[56] Dong, Hongyi, Shuai, Shijin and Wang. Effect of Urea Thermal Decomposition on Diesel NOx-SCR Aftertreatment Systems. SAE Internation Powertrains, 2008.

[57] Schaber PA, Colson J, Higgins S et al. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim Acta. 2004, 424(1–2):131–142.

[58] Nishioka et al, ‘‘A Study of a New Aftertreatment System (2): Control of Urea Solution Spray for Urea-SCR’’, SAE. 2006-01-0644

[59] Lundstr?m A, Snelling T, Morsing P et al. Urea Decomposition and HNCO Hydrolysis Studied over Titanium dioxide, Fe-Beta and c-Alumina. Appl Catal B. 2011, 106:273–279.

[60] Eichelbaum M, Farrauto RJ, Castaldi MJ. The Impact of Urea on the Performance of Metal Exchanged Zeolites for the Selective Catalytic Reduction of NOX: Part I. Pyrolysis and Hydrolysis of Urea over Zeolite Catalysts. Appl Catal B. 2010, 97(1–2):90–97.

[61] Bernhard AM, Peitz D, Elsener M et al. Hydrolysis and Thermolysis of Urea and its Decomposition Byproducts Biuret, Cyanuric Acid and Melamine over Anatase TiO2. Appl Catal B. 2012, 115–116:129–137.

[62] Hauck P, Jentys A, Lercher JA. Surface chemistry and kinetics of the hydrolysis of isocyanic acid on anatase. Appl Catal B. 2007, 70(1–4):91–99.

[63] Piazzesi G, Kr?cher O, Elsener M et al. Adsorption and Hydrolysis of Isocyanic Acid on TiO2. Appl Catal B. 2006, 65(1–2):55–61.

[64] Czekaj I, Kr?cher O. Decomposition of Urea in the SCR Process: Combination of DFT Calculations and Experimental Results on the Catalytic Hydrolysis of Isocyanic Acid on TiO2 and Al2O3. Top Catal. 2009, 52(13):1740–1745.

[65] Vadim O., et al. Deposit Formation in Urea-SCR Systems. SAE International, 2009, Vol. 2.

[66] Guanyu, Zheng, et al. Investigation of Urea Deposits in Urea SCR Systems for Medium and Heavy Duty Trucks. SAE International, 2010.

[67] “Bypass purge for protecting against formation of reductant deposits’’, US Patent #2010/0107614 A1.

[68] Nic van Vuuren and Hamid Sayar. High Speed Video Measurements of a Heated Tip Urea Injector Spray. SAE. 2012-01-1747. doi:10.4271/2012-01-1747.

[69] Vardi J, Biller WF. Thermal Behavior of Exhaust Gas Catalytic Convertor. Industrial & Engineering Chemistry Process Desing and Development. 1968, 7:83–90.

[70] Kuo JC, Morgan CR, Lassen HGMathematical Modeling of CO and HC Catalytic Converter Systems. SAE, 1971 710289.

[71] Harned JL. Analytical Evaluation of a Catalytic Converter System. SAE, 1972, 720520.

[72] Oh SH, Cavendish JC. Transients of Monolithic Catalytic Converters: Response to Step Changes in Feedstream Temperature as Related to Controlling Automobile Emissions. Industrial & Engineering Chemistry Research. 1982, 37:21–29.

[73] Tops?e N-Y, Tops?e H. Mechanism of the Selective Catalytic Reduction of Nitric-oxide by Ammonia Elucidated by in-situ Online Fourier-transform Infrared-spectroscopy. Science. 1994;265:1217.

[74] Felix Birkhold, Ulrich Meingast, Peter Wassermann, Olaf Deutschmann. Modeling and simulation of the injection of Urea-water-solution for automotive SCR De NOX-systems. Applied Catalysis B: Environmental 70 (2007) 119–127.

[75] Vahid Ebrahimian, Andre Nicolle, and Chawki Habchi. Detailed Modeling of the Evaporation and Thermal Decomposition of Urea-Water Solution in SCR Systems. AIChE Journal. July 2012 Vol. 58, No. 7.

[76] Ehab Abu-Ramadan, Kaushik Saha, and Xianguo Li. Modeling the Depleting Mechanism of Urea-Water-Solution Droplet for Automotive Selective Catalytic Reduction Systems. AIChE Journal. November 2011 Vol. 57, No. 11. doi:10.1002/aic.12523.

[77] Wang TJ, Baek SW, Lee SY, Kang DH, Yeo GK. Experimental investigation on evaporation of urea-water-solution droplet for SCR applications. AIChE J. 2009;55:3267–3276.

[78] M. Arienti, L. Wang, M. Corn, X. Li, M.C. Soteriou, T. A. Shedd, M. Herrmann. Modeling Wall film Formation and Breakup Using an Integrated Interface-tracking/discrete-phase Approach. Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air. June 14-18, 2010, Glasgow, UK.

[79] Johann C. Wurzenberger, Rolad Wanker. Multi-Scale SCR Modeling, 1D Kinetic Analysis and 3D System Simulation. SAE. 2005-01-0948.

[80] 张文娟, 帅石金, 董红义, 王志, 王建昕. 尿素SCR-NOX催化器流动、还原剂喷雾及表面化学反应三维数值模拟[J]. 内燃机学报. Vo.l 25 (2007) No. 5. 433-438.

[81] 温苗苗. 尿素选择性催化还原系统的仿真与优化[D]. 武汉理工大学.2009.

[82] Cristian Ciardelli, Isabella Nova, Enrico Tronconia, Daniel Chatterjee, Thomas Burkhardt, MichelWeibel. NH3 SCR of NOX for Diesel Exhausts Aftertreatment: Role of NO2 in Catalytic Mechanism, Unsteady Kinetics and Monolith Converter Modelling. Chemical Engineering Science 62 (2007) 5001 – 5006.

[83] Hanna Sjovall, Richard J. Blint, Louise Olsson. Detailed Kinetic Modeling of NH3 SCR over Cu-ZSM-5. Applied Catalysis B: Environmental 92 (2009) 138–153.

[84] Antonio Grossale, Isabella Nova, Enrico Tronconi, Daniel Chatterjee, Michel Weibel. The Chemistry of the NO/NO2–NH3 “Fast” SCR Reaction over Fe-ZSM5 Investigated by Transient Reaction Analysis. Journal of Catalysis 256 (2008) 312–322.

[85] S.R. Dhanushkodi, N. Mahinpeya, M. Wilson. Kinetic and 2D Reactor Modeling for Simulation of the Catalytic Reduction of NOX in the Monolith Honeycomb Reactor. Process Safety and Environment Protection 86 (2008) 303–309.

[86] John N. Chi and Herbert F. M. DaCosta. Modeling and Control of a Urea-SCR Aftertreatment System. SAE. 2005-01-0966.

[87] Chun Y. Ong, Anuradha M. Annaswamy, Ilya V. Kolmanovsky, Paul Laing and Dennis Reed. An Adaptive Proportional Integral Control of a Urea Selective Catalytic Reduction System based on System Identification Models. SAE. 2010-01-1174.

[88] L. Lü, L. Wang. Model-based Optimization of Parameters for a Diesel Engine SCR System, International Journal of Automotive Technology, 2013, doi:10.1007/s12239-013-0002-6.

[89] Ehsan Majd Faghihi, Amir H. Shamekhi. Development of a Neural Network Model for Selective Catalytic Reduction (SCR) Catalytic Converter and Ammonia Dosing Optimization Using Multi Objective Genetic Algorithm. Chemical Engineering Journal. 165 (2010) 508–516.

[90] S. M. Zhang, F. Tian, G. F. Ren and L. Yang. SCR Control Strategy Based on ANNs and Fuzzy PID in a Heavy-duty Diesel Engine. International Journal of Automotive Technology, Vol. 13, No. 5, pp. 693?699 (2012).

[91] Ming-Feng Hsieh, Junmin Wang. Adaptive and Efficient Ammonia Storage Distribution Control for a Two-Catalyst Selective Catalytic Reduction System. Journal of Dynamic Systems, Measurement, and Control. JANUARY 2012, Vol. 134 / 011012-1.

[92] M. Devarakonda, G. Parker, J. H. Johnson and V. Strots. Model-based Control System Design in a Urea-SCR Aftertreatment System Based on NH3 Sensor Feedback. International Journal of Automotive Technology, Vol. 10, No. 6, pp. 653?662 (2009).

[93] Feng Tan, Lv Lin. Modeling and Weight Analysis of Urea-SCR System. Applied Mechanics and Materials. 2014 2nd International Conference on Energy Engineering and Environment Engineering, ICEEEE 2014.

[94] Seher D H E, Reichelt M, Wickert S. Control Strategy for NOX - Emission Reduction with SCR. SAE. 2003-01-3362.

[95] Mckinley T L, Alleyne A G. Model Predictive Control: A Unified Approach for Urea-Based SCR Systems. SAE. 2010-01-1184.

[96] Ong C, Annaswamy A, Kolmanovsky I V, et al. An Adaptive Proportional Integral Control of a Urea Selective Catalytic Reduction System based on System Identification Models. SAE. 2010-01-1174.

[97] Sch?r C M, Onder C H, Geering H P, et al. Control of a Urea SCR Catalytic Converter System for a Mobile Heavy Duty Diesel Engine. SAE. 2003-01-0776.

[98] Devarakonda M, Parker G, Johnson J H, et al. Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System. SAE. 2008-01-1324.

[99] Nakayama R, Watanabe T, Takada K, et al. Control Strategy for Urea-SCR System in Single Step Load Transition. SAE. 2006-01-3308.

[100] Yuhang Su, Jun Li, Ying Gao and Dawei Qu. Applying Matlab/Simulink to Study Calculation of NOx Efficiency of the SCR. Procedia Environmental Sciences. 11(2011) 996-1000.

[101] Andrew Herman, Ming-Cheng Wu, David Cabush and Mark Shost. Model Based Control of SCR Dosing and OBD Strategies with Feedback from NH3 Sensors. SAE. 2009-01-0911.

[102] Harsha K. Nanjundaswamy, Dean Tomazic, Mufaddel Dahodwala and Erik Koehler. Road Map for Addressing Future On-Board-Diagnostic Challenges in Light and Heavy-Duty Diesel Engines. SAE. 2012-01-0895.

[103] 赵彦光. 柴油机SCR技术尿素喷雾热分解及氨存储特性的试验研究[D]. 清华大学. 2012.

[104] 刘传宝. 柴油机氨基SCR系统控制策略与匹配研究[D]. 武汉理工大学. 2013.

[105] 张建锐. 重型柴油机SCR尿素喷射控制策略研究[D]. 吉林大学. 2011

[106] Schar CM et al. Control-oriented Model of an SCR Catalytic Converter System, 2004. SAE World Congress, SAE. 2004-01-0153.

[107] Upadhyay D, Van Nieuwstadt M. Model Based Analysis and Control Design of a Urea-SCR DeNOX Aftertreatment system, ASME, Journal of Dynamic Systems, Measurement, and Control, 2006, 128:737–741.

[108] Seher DHE et al. Control strategy for NOX - emission reduction with SCR, Proceedings of the International Truck & Bus Meeting & Exhibition, 2003.

[109] Ming-Feng Hsieh and Junmin Wang. Diesel Engine SCR Systems: Modeling, Measurements, and Control. Fundamental and Applied Catalysis, 2014. DOI: 10.1007/978-1-4899-8071-7_14.

[110] Frank Willems, Robert Cloudt, Edwin van den Eijnden, Marcel van Genderen, Ruud Verbeek, Bram de Jager, Wiebe Boomsma, Ignace van den Heuvel. Is closed-loop SCR control required to meet future emission targets? SAE. 2007-01-1574.

[111] Michel Weibel, Volker Schmei?er and Frank Hofmann. Model-Based Approaches to Exhaust Aftertreatment System Development. Fundamental and Applied Catalysis. 2014. DOI: 10.1007/978-1-4899-8071-7_22

[112] Henry, C., Langenderfer, D., Yezerets, A., Ruth, M., Chen, H.-Y., Hess, H., and Naseri, M. Passive Catalytic Approach to Low Temperature NOX Emission Abatement, presentation at US Department of Energy, Directions in Engine Efficiency and Emissions Research (DEER) Conference, October 3–6, 2011, Detroit.

[113] Henry, C., Gupta, A., Currier, N., Ruth, M., Hess, H., Naseri, M., Cumaranatunge, L., Chen. Advanced Technology Light Duty Diesel Aftertreatment System, presentation at the US Department of Energy Directions in Engine Efficiency and Emissions Research (DEER), Dearborn, MI, October 2012.

[114] Folic′, M., Johansen, K. SCR-DPF Integrations for Diesel Exhaust Performance and Perspectives for High SCR Loadings, presentation at the US Department of Energy Directions in Engine Efficiency and Emissions Research (DEER), Dearborn, MI, October 2012.

[115] Tan, J., Solbrig, C., and Schmieg, S. J. The Development of Advanced Two-Way SCR/DPF Systems to Meet Future Heavy-Duty Diesel Emissions, SAE. 2011-01-1140, doi:10.4271/2011-01-1140.

[116] Schrade, F., Brammer, M., Schaeffner, J., Langeheinecke, K., Kraemer, L. Physico-Chemical Modeling of an Integrated SCR on DPF (SCR/DPF) System, SAE Int. J. Engines 5(3):2012, doi:10.4271/2012-01-1083.

[117] Yasui, Y., Matsunaga, H., Hashimoto, E., Satoh, N., Hardam, H., Balland, J., Yamada, M., Takahashi, T. A New Clean Diesel Concept for US LEV-III SULEV - First Report – A New Emission Strategy and Aftertreatment Management Control, presentation at the IAV MinNOX Conference, June 2012, Berlin.

[118] F. A. L. Dullien, Porous Media–Fluid Transport and Pore Structure (Academic, New York, 1979).

[119] Hayes, R.E. and Kolackowski, S. “Introduction to Catalytic Combustion”. Gordon and Breach Science Publishers, Amsterdam, 1997.

[120] B. Opitz. M. Bendrich. A. Drochner. H. Vogel. R.E. Hayes. J.F. Forbes. M. Votsmeier. Simulation study of SCR catalysts with individually adjusted ammonia dosing strategies. Chemical Engineering Journal. Volume 264, 15 March 2015, Pages 936–944.

[121] 辛喆, 王顺喜, 张寅, 李钊婧, 张云龙, 云峰. Urea-SCR催化器压力损失及其对柴油机性能的影响[J]. 农业工程学报. Vol 27. NO.8 2011, pp. 169-173.

[122] 王静, 沈伯雄, 刘亭, 田晓娟. 钒钛基SCR催化剂中毒及再生研究进展[J]. Vol. 33, No.9 2010, pp. 97-101,196

[123] Wakao W, Smith J M. Diffusion in catalyst pel-lets. Chemical Engineering Science, 1962, 17(1962): 825 -834.

[124] Mears D E. Tests for Transport Limitations in Experimental Catalytic Reactors. Ind Eng Chem Process Des Dec, 1971, 10(4): 542-546.

[125] Lietti L, Nova I, Camurri S, et al. Dynamics of the SCR-deNOx Reaction by the Transient-Response Method. AIChE J, 1997, 43(10): 2559 -2570.

[126] Hui Zhang. Junmin Wang. Ammonia Coverage Ratio and Input Simultaneous Estimation in Ground Vehicle Selective Catalytic Reduction (SCR) Systems. Journal of the Franklin Institute. Volume 352, Issue 2, February 2015, Pages 708–723.

[127] Mario Castagnola, Jonathan Caserta, Sougato Chatterjee, Hai-Ying Chen, Raymond Conway,Joseph Fedeyko, Wassim Klink, Penelope Markatou, Sandip Shah and Andrew Walker. Engine Performance of Cu- and Fe-Based SCR Emission Control Systems for Heavy Duty Diesel Applications. 2011-01-1329.

[128] Jean Balland, Michael Parmentier, and Julien Schmitt. Control of a Combined SCR on Filter and Under-Floor SCR System for Low Emission Passenger Cars. 2014-01-1522.

[129] Xiaobo Song, Gordon Parker, John Johnson, Jeffrey Naber, Josh Pihl. A Modeling Study of SCR Reaction Kinetics from Reactor Experiments. 2013-01-1576.

[130] Praveen Chavannavar. Development and Implementation of a Mapless, Model Based SCR Control System. 2014-01-9050.

[131] Schiller, L. and Naumann, A. Z., VDI 77, 318-320 (1933).

[132] Cunningham, E., "On the velocity of steady fall of spherical particles through fluid medium," Proc. Roy. Soc. A 83(1910)357.

[133] Frolov, S.M., Frolov, F.S. and Basara, B. “Simple Model of Transient Drop Vaporization”, Journal of Russian Laser Research, Volume 27, Number 6, 2006.

[134] Huh, K.Y. and Gosman, A.D. “A Phenomenological Model of Diesel Spray Atomisation”, Proceedings of the International Conference on Multiphase Flows, Sept. 24-27, 1991, Tsukuba, Japan.

[135] Huh, K.Y., Lee, E. and Koo, J.Y. “Diesel Spray Atomization Model Considering Nozzle Exit Turbulence Conditions”, Atomization and Sprays, Vol.8 pp 453-469, 1998.

[136] Brenn, G., Deviprasath, L.J. and Durst, F. “Computations and Experiments on the Evaporation of Multi-Component Droplets”, Proc.9th Int.Conf.Liquid Atomiz.Spray Syst. (ICLASS), Sorrento (Italy), July 2003

[137] Abramzon, B. and Sirignano, W. A. "Droplet Vaporization Model for Spray Combustion Calculations", AIAA 26th Aerospace Sciences Meeting, 1988.

[138] Prausnitz, J.M. and Gmehling, J. “Thermodynamik der Phasengleichgewichte I/II/III”, Verfahrenstechnik 13, 1979

[139] Reid, R.C., Prausnitz, J.M. and Poling B.E. “The Properties of Gases and Liquids”, 4th edition, McGraw-Hill Book Company, 1986

[140] L. Stradella, M. Argentero, A study of the thermal decomposition of Urea, of related compounds and thioUrea using DSC and TG-EGA, Thermochimica Acta 219 (1993) 315–323.

[141] Birkhold, F. “Selektive katalytische Reduktion von Stickoxiden in Kraftfahrzeugen: Untersuchung der Einspritzung von Harnstoffwasserl?sung”. Dissertation Universit?t Karlsruhe, 2007.

[142] D.S. Yim, S.J. Kim, J.H. Baik, I. Nam, Y.S. Mok, J.W. Lee, B.K. Cho, S.H.Oh, Decomposition of Urea into NH3 for the SCR Process, Ind.Eng.-Chem.Res. 43 (1) (2004) 4856–4863.

[143] Kuhnke, D. "Spray Wall Interaction Modeling by dimensionless Data Analysis",PhD Thesis, Darmstadt 2004.

[144] Wruck N. "Transientes Sieden von Tropfen beim Wandaufprall ", PhD-Thesis RWTH Aachen, 1999.

[145] Schadel, S.A., Hanratty, T.J. "Interpretation of Atomisation Rates of the Liquid Film in Gas-Liquid Annular Flow", Int.J. Multiphase Flow, Vol. 15, No. 6, pp. 893-900, 1989.

[146] van Rossum, J.J. "Experimental Investigation of Horizontal Liquid Films – Wave Formation, Atomisation, Film Thickness", ChemEng Science, Vol. 11, pp. 35-52, 1959.

[147] Yan, W.M. and Lin, T.F. "Combined heat and mass transfer in natural convection between vertical parallel plates with film evaporation", Int.J.Heat Mass Transfer, Vol. 33, No. 3, pp. 529-541, 1990.

[148] Kim, J. Y., Ryu, S. H. and Ha, J. S. “Numerical Prediction of the Characteristics of Spray-induced Mixing and Thermal Decomposition of Urea solution in SCR-systems”, Proccedings of ICEF04, October 24-27. Long Beach, California USA.

[149] Henrik Smith, Thomas Lauer, Mattias Mayer, Steven Pierson. Optical and Numerical Investigations on the Mechanisms of Deposit Formation in SCR Systems. 2014-01-1563.

[150] Jungmin Seo. Aftertreatment Package Design for SCR Performance Optimization. 2011-01-1135.

[151] KONTIN S., H?FLER A., KOCH R. and BAUER H.-J., Heat and Mass Transfer Accompanied by Crystallisation of Single Particles Containing Urea-water Solution, ILASSEurope 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, 2010.

[152] SCHMIDT A., Verfahrenstechnische Probleme bei der Herstellung von Melamin aus Harnstoff bei Atmospharendruck, ?sterr Chemiker-Ztg, 68, pp.175-179, 1967.

[153] Vahid Ebrahimian, Development of Multi-component Evaporation Models and 3D Modeling of NOX-SCR Reduction System. PHD Thesis. 2011.

[154] Wolfgang Bracka, Barbara Heine, Felix Birkhold, Matthias Kruse, Günter Schoch, Steffen Tischer, Olaf Deutschmann. Kinetic modeling of Urea Decomposition Based on Systematic Thermogravimetric Analyses of Urea and its Most Important by-products. Chemical Engineering Science. Volume 106, 17 March 2014, Pages 1–8.

中图分类号:

 TK42    

馆藏号:

 TK42/B194/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式