- 无标题文档
查看论文信息

中文题名:

 

露天矿山下覆溶洞稳定性分析及爆破处治研究

    

姓名:

 陶智杰    

学号:

 1049732005575    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085218    

学科名称:

 工学 - 工程 - 矿业工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 资源与环境工程学院    

专业:

 矿业工程    

研究方向:

 爆破工程    

第一导师姓名:

 雷涛    

第一导师院系:

 资源与环境工程学院    

第二导师姓名:

 郭利杰    

完成日期:

 2023-04-01    

答辩日期:

 2023-05-19    

中文关键词:

 

爆破治理 ; 分形理论 ; 理论稳定性分析 ; 可爆性分级

    

中文摘要:

石灰石矿山因岩溶作用存在溶洞,并且随着矿山平台的不断开采,各台阶与地下溶洞的距离越来越小,随时危及作业人员及机械设备的安全。岩溶地区地质条件复杂,溶洞构造不稳定,爆破难度大,因此加强爆区地质构造探测、稳定性评估、岩体可爆性评价的分析与研究,对矿山安全生产具有重要的实际意义和理论指导。 针对露天石灰石矿山下覆溶洞潜在的安全事故,为明确溶洞顶板稳定性并制定经济、高效的爆破治理技术方案,依托横向课题“云南省鹤庆县凤凰山石灰矿溶洞上方危岩处治爆破技术研究”,以华润水泥(鹤庆)凤凰山石灰岩矿山为例,综合理论分析、数值模拟及室内实验等手段,开展了露天矿山下溶洞三维探测、空间特征获取,顶板围岩形态结构分析、稳定性分析以及矿区岩石可爆性分级等研究,并以上述研究成果为依据制定爆破治理方案,主要研究成果如下: (1)针对溶洞空区对安全生产所形成的威胁,探究三维激光扫描技术工作原理并运用,探测生成点云数据精确溶洞空间形态;研究复杂地质体三维可视化建模技术,并运用数据处理软件生成与真实形态一致的三维模型,可对溶洞复杂关系进行三维描述。 (2)结合矿山开采资料和三维激光扫描成果,借助分形理论分析方法,开展溶洞空间分布形态、几何分布形态以及空间结构模式研究,总结溶洞空区形态与空间分布的分形规律与特征。 (3)在获得溶洞三维模型基础上,研究FLAC3D模型耦合技术,建立合理实际的数值计算模型,结合围岩物理力学参数,对溶洞进行稳定性计算分析,计算得到动态开挖下顶板安全厚度;利用ANSYS软件,模拟矿山上部台阶爆破作用下应力波传播,结合破坏判据,根据数值计算结果评估溶洞顶板围岩稳定性。 (4)通过分析岩体可爆性影响因素,选取岩石密度、抗拉强度、波阻抗共五种指标,采用博弈论对指标综合赋权,建立岩体可爆性分级模型确定矿区岩石可爆性等级。 (5)依据溶洞形态结构特征、稳定性分析、可爆性分级研究成果,针对矿山地质赋存条件和岩石物理参数,提出高效、可行的爆破治理方案。

参考文献:

[1] GOLDSCHEIDER.N, CHEN.Z, AULER.A.S, et al. Global distribution of carbonate rocks and karst water resources[J]. Hydrogeology Journal, 2020, 28: 1661-1677.

[2] 刘动,林沛元,陈贤颖,等.深圳岩溶空间发育规律统计分析[J].岩土力学,2022,43(07):1899-1912.

[3] XIANG.R, RONG.Z, QIUJING.L, et al. Study on blasting safety technology applied in Karst Limestone Mine [J]. Procedia Engineering, 2014, 84: 873-878.

[4] XUE.G, YAN.Y, CHENG.J. Researches on detection of 3-D underground cave based on TEM technique[J]. Environmental Earth Sciences, 2011, 64: 425-430.

[5] JIANJUN.G, ZHANG.Y, XIAO.L. An application of the high-density electrical resistivity method for detecting slide zones in deep-seated landslides in limestone areas[J]. Journal of Applied Geophysics, 2020, 177: 104-117.

[6] JIN.Y, DUAN.Y. A new method for abnormal underground rocks identification using ground penetrating radar[J]. Measurement, 2020, 149: 106-115.

[7] 张达,陈凯,马志.地下空间三维激光扫描智能化成像系统[J].中国矿业,2014,23(S1):207-212+224.

[8] LUPTON.J.D. Cavity monitoring system and stope analysis[J]. Proceedings of Mass Mine Chile, 2004: 56-62.

[9] 刘博,于洋,姜朔.激光雷达探测及三维成像研究进展[J].光电工程,2019,46(07):21-33.

[10] 刘兴权,阎曼,杨厚波.三维激光扫描技术在溶洞探测中的应用[J].测绘工程,2010,19(05):125-126+137.

[11] JAROSZ.A, SHEPHERD.L. Open stope cavity monitoring for the control of dilution and ore loss[M]. Mine Planning and Equipment Selection 2000. Routledge. 2018: 63-69.

[12] 刘希灵,李夕兵,刘科伟,等.地下空区激光三维探测应用研究[J].金属矿山,2008,(11):168-172.

[13] LI.C, QIN.H. A new ore pass repair method based on cavity auto scanning laser system accurate detection technology[J]. International Journal of Mining and Mineral Engineering, 2016, 7(1): 37-50.

[14] GALLAY.M, KAŇUK.J, HOCHMUTH.Z, et al. Large-scale and high-resolution 3-D cave mapping by terrestrial laser scanning: a case study of the Domica Cave, Slovakia[J]. International Journal of Speleology, 2015, 44(3): 6.

[15] TANG.P, HUBER.D, AKINCI.B, et al. Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques[J]. Automation in construction, 2010, 19(7): 829-843.

[16] 王少宾,倪彬,刘晓明,等.多矿区复杂空区三维建模与处理技术研究[J].采矿技术,2016,16(03):43-45.

[17] 陈立新,郑攻关,韦章能,等.基于CMS实测的采空区三维建模技术及应用[J].中国矿山工程,2012,41(06):1-3+54.

[18] 罗周全,冯福康,沈玉众,等.基于CMS实测的采空区三维建模与回采可视化计算[J].中国钼业,2010,34(02):19-23.

[19] 陈鑫,王李管,毕林,等.基于点云数据的采空区三维建模算法[J].中南大学学报(自然科学版),2015,46(08):3047-3053.

[20] WANG.R, PEETHAMBARAN.J, CHEN.D. Lidar point clouds to 3-D urban models[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 606-633.

[21] 孙保燕,翁裕育,贾巧志,等.影像建模和激光扫描技术融合在溶洞建模的研究与实践[J].长江科学院院报,2018,35(10):153-157.

[22] 何原荣,潘火平,郑渊茂,等.地面三维激光扫描仪在溶洞建模与测量中的应用[J].激光杂志,2016,37(02):90-93.

[23] 肖厚藻,刘晓明,代碧波,等.基于C-ALS的特大溶洞三维探测及其安全分析[J].矿冶工程,2015,35(04):12-16+20.

[24] YAO.Q, SHABAZ.M, LOHANI.T.K, et al. 3D modelling and visualization for vision-based vibration signal processing and measurement[J]. Journal of intelligent systems, 2021, 30(1): 541-553.

[25] MOSTAFAEI.K, RAMAZI.H. Compiling and verifying 3D models of 2D induced polarization and resistivity data by geostatistical methods[J]. Acta Geophysica, 2018, 66: 959-971.

[26] WANG.J, WANG.L, JIA.M, et al. Construction and optimization method of the open-pit mine DEM based on the oblique photogrammetry generated DSM[J]. Measurement, 2020, 152: 107-122.

[27] 许欣雨,陈清华,冀东生,等.湖南慈利龙王洞岩溶发育特征及模式[J].新疆石油地质,2022,43(02):145-152.

[28] 周文龙,高占冬,吴克华,等.河北阜平神仙洞探测研究及开发建议[J].中国岩溶,2020,39(01):110-118.

[29] 郭雨,夏永华,杨明龙.融合多源测量数据的钟乳石三维建模方法[J].测绘通报,2019,(02):49-53.

[30] MANDELBROT B.B, MANDELBROT.B.B. The fractal geometry of nature[M]. WH freeman New York, 1982.

[31] 付建新,宋卫东,谭玉叶.采空区复杂顶板的三维分形特性及曲面模拟[J].中南大学学报(自然科学版),2018,49(02):431-438.

[32] 胡建军.金属矿山采空区形状分形特征探索[J] .中国矿业,2018.27(04):113-117.

[33] 何标庆.基于FLAC~(3D)的大型采空区群稳定性数值模拟分析[J].中国矿业,2018,27(07):99-102.

[34] 李群,李占金,李力.空区三维激光探测技术及稳定性分析[J].金属矿山,2014,(12):181-184.

[35] 冯远建,李子龙.矿山采空区稳定性分析及安全治理方法研究[J].煤炭与化工,2014,37(06):28-30.

[36] XIE.P, DUAN.H, WEN.H, et al. Study on a quantitative indicator for surface stability evaluation of limestone strata with a shallowly buried spherical karst cave[J]. Mathematics, 2022, 10(12): 21-49.

[37] ALEMDAG.S, ZEYBEK.H.I, KULEKCI.G. Stability evaluation of the Gümüşhane-Akçakale cave by numerical analysis method[J]. Journal of Mountain Science, 2019, 16(9): 2150-2158.

[38] DENG.H.L, WU.S.L, GUO.S.X, et al. The Dynamic Response of Tunnel through the Karst Cave under Impact Load[J]. Applied Mechanics and Materials, 2015, 777: 135-142.

[39] MAHMOUDI.M, RAJABI.A.M. A numerical simulation using FLAC3D to analyze the impact of concealed karstic caves on the behavior of adjacent tunnels[J]. Natural Hazards, 2023: 1-23.

[40] 王永增,王心泉,王润,等.基于CDEM的采空区稳定性及临界顶板厚度分析[J].金属矿山,2021,(05):50-55.

[41] 贾瀚文,刘洪磊,张忠政,等.基于现场监测与数值模拟的浅层采空区稳定性分析[J].金属矿山,2020,(01):179-185.

[42] XU.H, LIU.K, LIU.W, et al. Genesis Analysis and Stability Evaluation of Karst Area in the Mudengdong Village Based on the Geological Investigation and Numerical Simulation Methods[J]. Shock & Vibration, 2022.

[43] WANG.X, WANG.S, PENG.X, et al. Equivalent numerical simulation method and application in karst-induced collapse of overlying sandy stratum[J]. Engineering Failure Analysis, 2022, 137: 106-128.

[44] 张驰,彭张,冀虎,等.基于BLSS-PE与FLAC~(3D)耦合建模技术的采区溜井稳定性分析[J].有色金属工程,2020,10(02):92-99.

[45] 白欣,朱鹏瑞,万飞,等.大冶铁矿实测空区Surpac-FLAC~(3D)耦合稳定性评价[J].金属矿山,2019,(01):158-162.

[46] 余永强,梁严午,褚怀保,等.MIDAS GTS NX与FLAC~(3D)模型转换方法及应用[J].河南理工大学学报(自然科学版),2018,37(05):128-133.

[47] 罗广强,雷阳,于正兴,等.复杂形态井巷工程三维激光扫描与MIDAS-FLAC~(3D)耦合建模稳定性分析研究[J].中国安全生产科学技术,2016,12(11):31-35.

[48] DUAN.Y, ZHANG.X, ZHOU.X, et al. Research on the Mechanism and Safe Thickness of Karst Tunnel-Induced Water Inrush under the Coupling Action of Blasting Load and Water Pressure[J]. Applied Sciences, 2022, 12(23): 118-129.

[49] LI.Z, HUANG.H. The calculation of stability of tunnels under the effects of seismic wave of explosions; proceedings of the Proceedings of 26th Department of Defence Explosives Safety Seminar, F, 1994 [C].

[50] 程平,王林峰,郑志伟,等.隐伏岩溶区小净距隧道爆破振动规律[J].科学技术与工程,2020,20(24):10017-10024.

[51] 余红兵,刘强,陶铁军,等.喀斯特溶洞对爆破施工影响的数值模拟研究[J].矿业研究与开发,2017,37(02):4-8.

[52] 王军,邱敬格,杨凡,等.隧道掘进爆破对某巨型干溶洞洞壁危岩体的扰动作用研究[J].隧道建设(中英文),2018,38(01):41-49.

[53] 陈学军,余思喆,宋宇,等.采矿爆破振动波在岩溶区的传播影响因素分析[J].地质力学学报,2018,24(05):692-698.

[54] 李新平,郑青青,罗忆,等.溶洞规模对深埋隧道爆破围岩稳定性的影响[J].爆破,2020,37(01):40-45+140.

[55] SHURAN.L, SHUJIN.L. Research on governance of potential safety hazard in Da’an mine goaf[J]. Procedia Engineering, 2011, 26: 351-357.

[56] CAO.B, WANG.J, DU.H, et al. Research on comprehensive detection and visualize of hidden cavity goaf[J]. Scientific Reports, 2022, 12(1): 223-232.

[57] 史爱国,刘会景,罗恩祥.基于采空区模拟的错层位外错式巷道位置选择研究[J].煤炭工程,2019,51(09):28-32.

[58] 谭国钊,王湖鑫,许文远,等.井下移动式充填系统在兴隆磷矿采空区处理中的应用[J].中国矿业,2018,27(S2):121-125.

[59] 贺小庆.矿柱抽采与采空区综合治理技术研究[J] .矿业研究与开发,2016,36(11):12-17.

[60] 刘希灵,罗克冰,李夕兵,等.露天台阶面下伏空区顶板的爆破崩落处理(英文)[J].Transactions of Nonferrous Metals Society of China, 2017, 27(03): 648-655.

[61] 费鸿禄,郭玉新,基于LS-DYNA的交错扇形深孔崩落法排间间隔时间优化研究[J].中国安全生产科学技术,2022,18(04):127-134.

[62] 牛小明,潘懿.大型空间受限盲采空区深孔爆破处理技术[J].爆破,2021,38(02):100-104.

[63] 任凤玉,刘洋,张东杰,等.萤石矿近主井采空区治理方法研究[J].矿业研究与开发,2017,37(11):21-25.

[64] 王利岗,胡建军,陈凯,等.基于三维激光扫描技术的某磷矿充填回采应用[J].中国矿业,2018,27(S1):216-221.

[65] 解治宇,李翰林,房洪亮,等.露天采场高陡边坡下深部采空区的爆破处理研究[J].金属矿山,2020,(01):49-55.

[66] 李春辉,高垠,刘天鹏,等.喀斯特地区台阶松动爆破中溶洞的控制与处理[J].工程爆破,2021,27(01):121-126.

[67] 杨森林,徐英,张红照.三道庄矿区单层采空区处理研究[J].现代矿业,2014,30(04):75-78.

[68] 莫麟.大孔径垂直深孔掏槽爆破处理露天矿下部采空区顶板技术[J].爆破,2019,36(03):56-59+136.

[69] 瞿登星,杨晨,朱新铖,等.露天矿下伏采空区爆破振动预测研究[J].金属矿山,2016,(06):32-36.

[70] 宋子岭,庞湃,范军富,等.露天矿采空区深孔台阶爆破的合理参数确定[J].爆破,2016,33(03):47-52.

[71] LATHAM.J-P, LU.P. Development of an assessment system for the blastability of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(1): 41-55.

[72] XIAO.S, LI.K, DING.X, et al. Rock mass blastability classification using fuzzy pattern recognition and the combination weight method[J]. Mathematical Problems in Engineering, 2015, 2-15.

[73] PROTODYAKONOV.M. Mechanical properties and drillability of rocks; proceedings of the Proceedings of the 5th Symposium on Rock Mechanics, F, 1962 [C]. University of Minnesota Minneapolis, Minnesota, USA.

[74] ZOU.D, ZOU.D. Mechanisms of rock breakage by blasting[J]. Theory and technology of rock excavation for civil engineering, 2017: 205-238.

[75] 金旭浩,卢文波.爆破漏斗理论探讨[J].岩土力学,2002,23(S1):205-208+219.

[76] BOND.F.C. Crushing tests by pressure and impact[J]. Trans AIME, 1947, 169: 58-66.

[77] DEERE.D.U, DEERE D W. Rock Quality Designation (RQD) after Twenty Years[R]: DEERE (DON U) CONSULTANT GAINESVILLE FL, 1989.

[78] GAO.L, LI.X-B. Utilizing partial least square and support vector machine for TBM penetration rate prediction in hard rock conditions[J]. Journal of Central South University, 2015, 22(1): 290-295.

[79] 邓红卫,陈超群,张亚南.岩体可爆性等级判别的随机森林模型及R实现[J].世界科技研究与发展,2016,38(05):946-949.

[80] 彭亚雄,程瑶,吴立,等.基于AHP-TOPSIS法的矿岩可爆性评价[J].爆破,2017,34(04):80-84+105.

[81] 葛树高.矿岩可爆性评价与合理炸药单耗的确定[J].有色金属,1995,(02):11-15+10.

[82] 严荣富,黄温钢,王清亚,等.基于脆性指标与物元理论的可爆性分级技术与应用[J].中国矿业,2018,27(01):154-159.

[83] 马红贝,赵国彦,路凡.岩体可爆性分级评价的集对分析模型[J].爆破,2016,33(02):28-31+38.

[84] 周楠,王德胜,常建平,等.基于综合赋权聚类分析的岩石爆破性分区评价[J].岩石力学与工程学报,2013,32(S1):2817-2824.

[85] 丁小华,原文杰,解祯,等.基于综合赋权云模型的露天矿岩体可爆性分级识别[J].煤炭科学技术,2019,47(10):96-101.

[86] KIM.B.H, LARSON.M.K. Assessment of floor heave associated with bumps in a longwall mine using the discrete element metho [J]. Mining, Metallurgy & Exploration, 2022, 39(5): 53-61.

[87] OSINGA.S, PIZZOCOLO.F, VAN.DER.VEER.E, et al. Implicit fracture modelling in FLAC3D: Assessing the behaviour of fractured shales, carbonates and other fractured rock types; proceedings of the EAGE/SPE Workshop on Integrated Geomechanics in Exploration and Production, F, 2016 [C]. EAGE Publications BV.

[88] 黄健丰,吴璋,张振振,等.基于Rhino~(3D)-FLAC~(3D)耦合技术的库区下伏综放采煤沉陷区稳定性分析[J].煤矿安全,2021,52(04):212-217+225.

[89] CHANG.C, ZOBACK.M.D, KHAKSAR.A. Empirical relations between rock strength and physical properties in sedimentary rocks[J]. Journal of Petroleum Science and Engineering, 2006, 51(3-4): 223-237.

[90] 李俊平,张浩,李鹏伟.毕机沟露天矿岩体力学参数折减系数的数值模拟确定[J].安全与环境学报,2016,16(05):140-145.

[91] WANG.Z, ZENG.Q, LU.Z, et al. Numerical simulation of conical pick cutting arc rock plate fracture based on ANSYS/LS-DYNA[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-16.

[92] PERSSON.P-A. The relationship between strain energy, rock damage, fragmentation, and throw in rock blasting.[J]. Fragblast, 1997, 1(1): 99-110.

[93] WANG.B, LI.H, SHAO.Z, et al. Investigating the mechanism of rock fracturing induced by high-pressure gas blasting with a hybrid continuum-discontinuum method [J]. Computers and Geotechnics, 2021, 140: 34-45.

[94] 牟春梅,吴浩杰,黄少染,等.基于数字图像测量的三轴土样变形测量方法综述[J].桂林理工大学学报,2021,41(04):823-830.

[95] AZIMI.Y, OSANLOO.M, AAKBARPOUR-SHIRAZI.M, et al. Prediction of the blastability designation of rock masses using fuzzy sets[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 26-40.

[96] SAATY.T.L. Decision making with the analytic hierarchy process[J]. International journal of services sciences, 2008, 1(1): 83-98.

[97] VAIDYA.O.S, KUMAR.S. Analytic hierarchy process: An overview of applications[J]. European Journal of operational research, 2006, 169(1): 1-29.

[98] DE.BOER.P-T, KROESE.D.P, MANNOR.S, et al. A tutorial on the cross-entropy method [J]. Annals of operations research, 2005, 134: 59-67.

[99] ZAGARE.F.C. Game theory: Concepts and applications[J]. 1984.

中图分类号:

 TD235    

条码号:

 002000072621    

馆藏号:

 TD10059080    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式