- 无标题文档
查看论文信息

中文题名:

 

木醋杆菌利用食物废料合成细菌纤维素的研究

    

姓名:

 吴柏承    

学号:

 1049721900006    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081703    

学科名称:

 工学 - 化学工程与技术 - 生物化工    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 艾克思马赛学院    

专业:

 化学工程与技术    

研究方向:

 微生物合成    

第一导师姓名:

 Pier-Luc Tremblay    

第一导师院系:

 艾克斯马赛学院    

完成日期:

 2022-07-14    

答辩日期:

 2022-09-18    

中文关键词:

 

木醋杆菌 ; 食物废料 ; 细菌纤维素 ; 性能 ; 生物相容性

    

中文摘要:

细菌纤维素(Bacterial Cellulose,BC)是一种由微生物合成的高分子聚合 物,由葡萄糖分子以 β-1, 4 糖苷键连接而成,具有高纯度、高持水率、良好的 抗拉强度及良好的生物相容性等优异特性。因此,BC 被广泛应用于造纸、食 品 以 及 生 物 医 学 等 领 域 。 在 所 有 能 合 成 BC 的 微 生 物 中 , 木 醋 杆 菌 (Komagataeibacter xylinum)能较为有效地利用各种碳源作为底物合成 BC。目 前,用作培养木醋杆菌的碳源成本偏高,合成的 BC 产量也不理想,从而限制 了 BC 的应用。全球每年会产生大量的食物废料,这些食物废料中含有丰富的 营养物质,其有望成为木醋杆菌合成 BC 的原料。本研究将橘子皮、西瓜皮、 香蕉皮、米饭、面条以及馒头共 6 种食物废料经过处理后制成木醋杆菌培养基, 用于合成 BC,然后对合成的 BC 膜进行表征测试及产率计算。 本研究将橘子皮、西瓜皮以及香蕉皮分别经过超纯水煮沸、过滤、离心以 及灭菌作为培养木醋杆菌的橘子皮培养基、西瓜皮培养基及香蕉皮培养基,并 将上述三种果皮培养基以 1:1:1 的体积比混合得到混合果皮培养基。将米饭、 面条以及馒头经过超纯水煮沸以及灭菌后分别作为米饭培养基、面条培养基及 馒头培养基,并将米饭、面条及馒头以 1:1:1 的质量比混合后再经超纯水煮 沸及灭菌后得到混合主食废料培养基。将活化后的木醋杆菌接种于橘子皮培养 基、西瓜皮培养基、香蕉皮培养基、米饭培养基、面条培养基、馒头培养基、 混合果皮培养基以及混合主食废料培养基中,在 30℃下静置培养 7 天。主要结 果如下: (1)BC 产率:每 100 g 西瓜皮培养基、橘子皮培养基、混合果皮培养基、 香蕉皮培养基、米饭培养基、面条培养基、馒头培养基以及混合主食废料培养 基中合成的 BC 产率分别为 1.054±0.009 g、0.937±0.008 g、0.827±0.025 g、 0.151±0.008 g、1.203±0.056 g、0.741±0.061 g、0.824±0.153 g 以及 1.03±0.056 g。 (2)利用傅里叶红外光谱表征及 X 射线衍射表征本研究中 BC 膜的官能团 结构及晶型,结果证实了其特征官能团为高纯度的纤维素所拥有的官能团,且 属于 I 型纤维素,并包括 Iα型纤维素以及 Iβ型纤维素。 (3)利用扫描电镜观察 BC 膜微观形貌,结果显示所有 BC 膜均呈现网状 结构,并拥有直径小于 100 nm 的纤维素丝。(4)利用 BET(Brunauer、Emmett、Teller)比表面积分析法测量了 BC 膜的比表面积、孔体积以及孔径。其中,从西瓜皮培养基、橘子皮培养基以及 米饭培养基中合成的 BC 含有孔径大于 50 nm 的大孔,其余培养基合成的 BC 孔径相差不大。 (5)利用电子万能材料试验机测试 BC 膜的机械性能,包括抗拉强度、断 裂伸长率以及杨氏模量,结果显示本研究合成的 BC 均具有较为良好的机械性 能。其中从米饭培养基及西瓜皮培养基中合成的 BC 拥有较高的抗拉强度,其 值依次为 66.03±5.71 Mpa、54.29±4.83 Mpa。 (6)生物相容性实验结果表明,以上各种培养基中合成的 BC 均无细胞毒 性,且不存在明显的溶血现象。 综上,本研究利用食物废料橘子皮、西瓜皮、香蕉皮、米饭、面条及馒头 作为木醋杆菌合成 BC 的碳源,合成的 BC 性能良好。这对 BC 合成成本的降低、 食物废料中营养价值的利用以及环境保护具有重要意义。

参考文献:

[1] Brown A J. XLIII.—On an acetic ferment which forms cellulose[J]. Journal of the Chemical Society, Transactions, 1886, 49: 432-439.

[2] Jahn C E, Selimi D A, Barak J D, et al. The Dickeya dadantii biofilm matrix consists of cellulose nanofibres, and is an emergent property dependent upon the type III secretion system and the cellulose synthesis operon[J]. Microbiology, 2011, 157(10): 2733-2744.

[3] 卯海龙, 韩永和, 王珊珊, 等. 细菌纤维素的合成原料多样性及其合成机制研究概况[J]. 纤维素科学与技术, 2019, 27(3): 68-76.

[4] 孙东平, 徐军, 周伶俐, 等. 醋酸杆菌发酵生产细菌纤维素的研究进展[J]. 生物学杂志, 2004, 21(1): 12-14.

[5] Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, et al. Factors affecting the yield and properties of bacterial cellulose[J]. Journal of Industrial Microbiology and Biotechnology,

2002, 29(4): 189-195.

[6] 马霞, 王瑞明, 关凤梅, 等. 发酵生产细菌纤维素菌株的特点[J]. 四川食品与发酵, 2005, 41(1): 20-22.

[7] Brown Jr R M, Willison J H, Richardson C L. Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process[J]. Proceedings of the National Academy of Sciences, 1976, 73(12): 4565-4569.

[8] Zaar K. Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum[J]. The Journal of cell biology, 1979, 80(3): 773-777.

[9] Brown Jr R M. The biosynthesis of cellulose[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 1996, 33(10): 1345-1373.

[10] Hirai A, Tsuji M, Yamamoto H, et al. In situ crystallization of bacterial cellulose III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy[J]. Cellulose, 1998, 5(3): 201-213.

[11] Embuscado M E, Marks J S, Bemiller J N. Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum[J]. Food Hydrocolloids, 1994, 8(5): 407-418.

[12] Yoshinaga F, Tonouchi N, Watanabe K. Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material[J]. Bioscience, biotechnology, and biochemistry, 1997, 61(2): 219-224.

[13] Kamide K, Matsuda Y, Iijima H, et al. Effect of culture conditions of acetic acid bacteria on cellulose biosynthesis[J]. British polymer journal, 1990, 22(2): 167-171.

[14] 黄丹, 蔡勇, 王云飞. 不同培养方式生产细菌纤维素的结构与性质分析[J]. 中国酿造, 2008(7):3.

[15] 任建晓, 林涛, 殷学风. 细菌纤维素在工业中的研究现状与前景[J]. 黑龙江造纸, 2013, 41(1):26-28.

[16] 谭玉静. 细菌纤维素的发酵生产及其物理化学性质初探[D]. 上海: 东华大学, 2007.

[17] Moon S H , Park J M , Chun H Y , et al. Comparisons of physical properties of bacterial celluloses produced in different culture conditions using saccharified food wastes[J]. Biotechnology & Bioprocess Engineering, 2006, 11(1):26-31.

[18] Johnsy, George, V, et al. Enhancement of thermal stability associated with the chemical treatment of bacterial (Gluconacetobacter xylinus) cellulose[J]. Journal of Applied Polymer Science, 2008, 108(3):1845-1851.

[19] George J , Ramana K V , Sabapathy S N , et al. Physico-Mechanical Properties of Chemically Treated Bacterial (Acetobacter xylinum) Cellulose Membrane[J]. World Journal of Microbiology & Biotechnology, 2005, 21(8-9):1323-1327.

[20] Soykeabkaew N , Sian C , Gea S , et al. All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose[J]. Cellulose, 2009, 16(3):435-444.

[21] Maneerung T , Tokura S , Rujiravanit R . Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing[J]. Carbohydrate Polymers, 2008, 72(1):43-51.

[22] Yano S , Maeda H , Nakajima M , et al. Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles[J]. Cellulose, 2008, 15(1):111-120.

[23] Feng J , Shi Q S , Li W R , et al. Effects of Different Drying Processes on Physical Properties of Bacterial Cellulose Membranes[J]. Modern Food ence and Technology, 2013, 29(9):2225-2229+2101.

[24] Udhardt U, Hesse S, Klemm D. Analytical investigations of bacterial cellulose[C].Macromolecular Symposia. Weinheim: WILEY‐VCH Verlag, 2005, 223(1): 201-212.

[25] Wan Y Z , Huang Y , Yuan C D , et al. Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications[J]. Materials Science & Engineering C, 2007, 27(4):855-864.

[26] Oshima T , Kondo K , Ohto K , et al. Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions[J]. Reactive & Functional Polymers, 2008, 68(1):376-383.

[27] Kim D Y , Nishiyama Y , Kuga S . Surface acetylation of bacterial cellulose[J]. Cellulose,

2002, 9(3-4):361-367.

[28] 赵晓霞, 朱平, 王敏,等. 细菌纤维素再生前后结构与性质上的差异[J]. 合成纤维, 2009(1):5.

[29] B Z S A , B Y Z A , D G O P C , et al. Utilization of bacterial cellulose in food[J]. Food Hydrocolloids, 2014, 35(1):539-545.

[30] Dl A , Zhe L A , Rui S A , et al. Bacterial cellulose in food industry: Current research and future prospects[J]. International Journal of Biological Macromolecules, 2020, 158:1007-1019.

[31] Iguchi M , Yamanaka S , Budhiono A . Bacterial cellulose-a masterpiece of nature's arts[J]. Journal of Materials Science, 2000, 35(2):261-270.

[32] Okiyama A , Motoki M , Yamanaka S . Bacterial cellulose IV. Application to processed foods[J]. Food Hydrocolloids, 1993, 6(6):503-511.

[33] 陈彬洁, 车安然, 胡露露,等. 一种含有细菌纤维素的乳化稳定剂及其在高钙可可乳饮料中的应用: CN201810371448.2 [P]. 2018.

[34] None. 4960763 Method of using bacterial cellulose as a dietary fiber component : R Scott Stephens, John A Westland, Amar N Neogi assigned to Weyerhaeuser Company[J]. Biotechnology Advances, 1991, 9(1):116.

[35] Nguyen V T , Gidley M J , Dykes G A . Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meat[J]. Food Microbiology, 2008, 25(3):471-478.

[36] Fontana J D , Souza A M D , Fontana C K , et al. Acetobacter cellulose pellicle as a temporary skin substitute[J]. Applied Biochemistry & Biotechnology, 1990, 24-25(1):253-264.

[37] 贾卉, 贾原媛, 王娇,等. 细菌纤维素构建组织工程角膜基质的方法及其评价[J]. 吉林大学学报:医学版, 2010, 36(2):6.

[38] Sanchavanakit N , Sangrungraungroj W , Kaomongkolgit R , et al. Growth of Human Keratinocytes and Fibroblasts on Bacterial Cellulose Film[J]. Biotechnology Progress, 2006, 22(4).

[39] Ma X , Zhang H , Chen S W . Effect of bacterial cellulose on the wound healing of deep second-degree burn in rats[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009.

[40] Klemm D , Schumann D , Udhardt U , et al. Bacterial synthesized cellulose-artificial blood vessels for microsurgery[J]. 2001, 26(9):1561-1603.

[41] Helenius G , Bckdahl H , Bodin A , et al. In vivo biocompatibility of bacterial cellulose. J

Biomed Mater Res A 76A(2):431-438[J]. Journal of Biomedical Materials Research Part A, 2006, 76(2):431-438.

[42] 马霞, 王瑞明, 关凤梅,等. 细菌纤维素及其在造纸工业中的应用[J]. 黑龙江造纸, 2003, 31(3):2.

[43] Miskiel F J . Utilizing cellulon cellulosic fiber for binding in nonwoven applications[J]. Tappi Journal, 1998, 81(3):183-186.

[44] 周丹丹, 范俊, 王立军,等. 乙酰化细菌纤维素在纸张表面施胶中的应用[J]. 造纸科学与技术, 2018, 37(5):5.

[45] 刘正伟, 修慧娟, 孙丽红. 细菌纤维素用于改善纸页强度的研究[J]. 华东纸业, 2009, 40(1):7-12.

[46] 宋冰, 石勇, 陆海龙,等. 细菌纤维素纸质复合微滤膜的开发[J]. 中国造纸学报, 2015(4):6.

[47] 刘忠, 龚关. 细菌纤维素改善纸质振膜性能的研究[J]. 中国造纸, 2010(12):3.

[48] Jr. B R M , Yuyu S , Robert W . Compositions, methods and systems for making and using electronic paper:, WO2007100353A3[P]. 2007.

[49] Shah J , Jr R M B . Towards electronic paper displays made from microbial cellulose[J]. Applied Microbiology and Biotechnology, 2005, 66(4):352-355.

[50] Iguchi M, Mitsuhashi S, Ichimura K, et al. Bacterial cellulose-containing molding material having high dynamic strength: U.S. Patent 4,742,164[P]. 1988-5-3.

[51] 宋海农, 张远秋, 郭华清. 细菌纤维素在造纸工业中的应用和展望[J]. 广西大学学报: 自然科学版, 2004, 29(1): 73-76.

[52] Santos S M, Carbajo J M, Villar J C. The effect of carbon and nitrogen sources on bacterial cellulose production and properties from Gluconacetobacter sucrofermentans CECT 7291 focused on its use in degraded paper restoration[J]. BioResources, 2013, 8(3): 3630-3645.

[53] Hestrin S, Schramm M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose[J]. Biochemical Journal, 1954, 58(2): 345.

[54] Tokoh C, Takabe K, Fujita M, et al. Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan[J]. Cellulose, 1998, 5(4): 249-261.

[55] Liu Sr D, Yao K, Li J, et al. The effect of ultraviolet modification of Acetobacter xylinum

(CGMCC No. 7431) and the use of coconut milk on the yield and quality of bacterial

cellulose[J]. International Journal of Food Science & Technology, 2019, 54(11): 3099-3108.

[56] 陆胜民, 贾静静, 杨颖. 细菌纤维素发酵工艺与应用研究进展[J]. 食品与发酵科技, 2011,

47(1): 27-31.

[57] 王艳梅, 贾佳, 胡淇淞, 等. 椰子水的自然预发酵条件对细菌纤维素合成的促进性影响[J].

热带作物学报, 2018, 39(1): 151.

[58] Cao Y, Lu S, Yang Y. Production of bacterial cellulose from byproduct of citrus juice

processing (citrus pulp) by Gluconacetobacter hansenii[J]. Cellulose, 2018, 25(12): 6977-

6988.

[59] Zhao H, Xia J, Wang J, et al. Production of bacterial cellulose using polysaccharide

fermentation wastewater as inexpensive nutrient sources[J]. Biotechnology &

Biotechnological Equipment, 2018, 32(2): 350-356.

[60] Salari M, Khiabani M S, Mokarram R R, et al. Preparation and characterization of cellulose

nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey

media[J]. International Journal of Biological Macromolecules, 2019, 122: 280-288.

[61] Costa A F S, Almeida F C G, Vinhas G M, et al. Production of bacterial cellulose by

Gluconacetobacter hansenii using corn steep liquor as nutrient sources[J]. Frontiers in

microbiology, 2017, 8: 2027.

[62] Revin V, Liyaskina E, Nazarkina M, et al. Cost-effective production of bacterial cellulose

using acidic food industry by-products[J]. brazilian journal of microbiology, 2018, 49: 151-

159.

[63] Ye J, Zheng S, Zhang Z, et al. Bacterial cellulose production by Acetobacter xylinum ATCC

23767 using tobacco waste extract as culture medium[J]. Bioresource technology, 2019, 274:

518-524.

[64] Gayathri G, Srinikethan G. Bacterial Cellulose production by K. saccharivorans BC1 strain

using crude distillery effluent as cheap and cost effective nutrient medium[J]. International

journal of biological macromolecules, 2019, 138: 950-957.

[65] Qiao N, Fan X, Zhang X, et al. Soybean oil refinery effluent treatment and its utilization for

bacterial cellulose production by Gluconacetobacter xylinus[J]. Food Hydrocolloids, 2019,

97: 105185.

[66] Saowapark T, Chaichana E, Jaturapiree A. Properties of natural rubber latex filled with

bacterial cellulose produced from pineapple peels[J]. Journal of Metals, Materials and

Minerals, 2017, 27(2).

[67] Luo M T, Zhao C, Huang C, et al. Efficient using durian shell hydrolysate as low-cost

substrate for bacterial cellulose production by Gluconacetobacter xylinus[J]. Indian journal

of microbiology, 2017, 57(4): 393-399.

[68] Dórame-Miranda R F, Gámez-Meza N, Medina-Juárez L Á, et al. Bacterial cellulose

production by Gluconacetobacter entanii using pecan nutshell as carbon source and its

chemical functionalization[J]. Carbohydrate polymers, 2019, 207: 91-99.

[69] Souza E F, Furtado M R, Carvalho C W P, et al. Production and characterization of

Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean

molasses[J]. International journal of biological macromolecules, 2020, 146: 285-289.

[70] Kuo C H, Huang C Y, Shieh C J, et al. Hydrolysis of orange peel with cellulase and pectinase

to produce bacterial cellulose using Gluconacetobacter xylinus. Waste Biomass Valoriz 10:

85–93[J]. 2019.

[71] 尹园, 马佳歌, 倪春蕾, 等. 居间驹形氏杆菌发酵大豆糖蜜生产细菌纤维素条件的优化[J].

食品科学, 2017, 38(18): 8-16.

[72] García-Sánchez M E, Robledo-Ortiz J R, Jiménez-Palomar I, et al. Production of bacterial

cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium[J].

Revista Mexicana de Ingeniería Química, 2020, 19(2): 851-865.

[73] Güzel M, Akpınar Ö. Production and characterization of bacterial cellulose from citrus

peels[J]. Waste and Biomass Valorization, 2019, 10(8): 2165-2175.

[74] Andritsou V, De Melo E M, Tsouko E. Synthesis and characterization of bacterial cellulose

from citrus-based sustainable resources. ACS Omega 3: 10365–10373[J]. 2018.

[75] 高媛, 邹小周, 洪枫,等. 大豆渣制备细菌纤维素的研究[J]. 纤维素科学与技术, 2018,

26(2):8.

[76] Abdelraof M, Hasanin M S, El-Saied H. Ecofriendly green conversion of potato peel wastes

to high productivity bacterial cellulose[J]. Carbohydrate polymers, 2019, 211: 75-83.

[77] Xie K , Yang Q , Yang H , et al. Nourishment Value and Comprehensive Exploitation of

Watermelon Peel[J]. Farm Products Processing, 2015.

[78] 李仁茂, 陈蓉, 萧志成. 粤西地区四种香蕉皮的成份分析[J]. 湛江师范学院学报, 2001.

[79] Mohapatra D, Mishra S, Sutar N. Banana and its by-product utilisation: an overview[J].

2010.

[80] Faturoti B O, Emah G N, Isife B I, et al. Prospects and determinants of adoption of IITA

plantain and banana based technologies in three Niger Delta States of Nigeria[J]. African

Journal of Biotechnology, 2006, 5(14).

[81] Tewari H K, Marwaha S S, Rupal K. Ethanol from banana peels[J]. Agricultural wastes,

1986, 16(2): 135-146.

[82] Tewari H K, Marwaha S S, Rupal K, et al. Production of ethyl alcohol from banana peels[J].

Journal of Research, Punjab Agricultural University, 1985, 22(4): 703-711.

[83] 乔海鸥, 丁晓雯, 张庆祝. 柑橘皮的综合利用[J]. 浙江柑橘, 2003, 20(2): 31-35.

[84] Martín M A, Siles J A, Chica A F, et al. Biomethanization of orange peel waste[J].

Bioresource technology, 2010, 101(23): 8993-8999.

[85] Zhang Y M , Han W F , Qiu P , et al. Comprehensive Utilization of Watermelon Skin[J].

Storage & Process, 2009.

[86] Hasanin M S , Hosny A . Eco-friendly, economic fungal universal medium from watermelon

peel waste[J]. Journal of microbiological methods, 2019.

[87] Ho L H , Che Dahri N . Effect of watermelon rind powder on physicochemical, textural, and

sensory properties of wet yellow noodles[J]. Cyta Journal of Food, 2016:1-8.

[88] Hang T V , Scarlett C J , Quan V V . Phenolic compounds within banana peel and their

potential uses: A review[J]. Journal of Functional Foods, 2018, 40:238-248.

[89] Randy, C, Ploetz, et al. The Future of GlobalBanana Production[J]. Horticultural Reviews,

2015.

[90] Juliano B O . Rice Starch: Production, Properties, and Uses[M]. 1984.

[91] Mccall E R , Jurgens J F , Hoffpauir C L , et al. Composition of Rice, Influence of Variety

and Environment on Physical and Chemical Composition[J]. Journal of Agricultural & Food

Chemistry, 1953, 1(16):988-993.

[92] Jia C , Lu P , Zhang M . Preparation and Characterization of Environmentally Friendly

Controlled Release Fertilizers Coated by Leftovers-Based Polymer[J]. Processes, 2020,

8(4):417.

[93] Cheng-Yun H E , Xiao-Hong G E , Sun J L , et al. Research progress of noodles as traditional

staple food in China[J]. Science and Technology of Cereals,Oils and Foods, 2017.

[94] Šramková Z, Gregová E, Šturdík E. Chemical composition and nutritional quality of wheat

grain[J]. Acta chimica slovaca, 2009, 2(1): 115-138.

[95] Konik-Rose C, Thistleton J, Chanvrier H, et al. Effects of starch synthase IIa gene dosage on

grain, protein and starch in endosperm of wheat[J]. Theoretical and Applied Genetics, 2007,

115(8): 1053-1065.

[96] He Z H, Liu A H, Javier Peña R, et al. Suitability of Chinese wheat cultivars for production

of northern style Chinese steamed bread[J]. Euphytica, 2003, 131(2): 155-163.

[97] Rubenthaler G L, Huang M L, Pomeranz Y. Steamed bread. I. Chinese steamed bread

formulation and interactions[J]. Cereal Chem, 1990, 67(5): 471-475.

[98] Sakaguchi L, Pak N, Potts M D. Tackling the issue of food waste in restaurants: Options for

measurement method, reduction and behavioral change[J]. Journal of Cleaner Production,

2018, 180: 430-436.

[99] Tsang Y F, Kumar V, Samadar P, et al. Production of bioplastic through food waste

valorization[J]. Environment international, 2019, 127: 625-644.

[100] Sattar A, Arslan C, Ji C, et al. Optimizing the physical parameters for bio-hydrogen

production from food waste co-digested with mixed consortia of clostridium[J]. Journal of

Renewable and Sustainable Energy, 2016, 8(1): 013107.

[101] Shiwei X. Analysis of China food consumption and waste[J]. Food and Nutrition in China,

2005, 11(74): 4-8.

[102] Singh A, Gill A, Lim D L K, et al. Feasibility of Bio-Coal Production from Hydrothermal

Carbonization (HTC) Technology Using Food Waste in Malaysia[J]. Sustainability, 2022,

14(8): 4534.

[103] Westendorf, Michael L . Food Waste as Animal Feed: an Introduction[M]. Iowa State

University Press, 2000.

[104] Kunwar P , Kushwaha S K , Monika Y , et al. Food Waste to Energy: An Overview of

Sustainable Approaches for Food Waste Management and Nutrient Recycling[J]. BioMed

Research International,2017,(2017-02-14), 2017, 2017:1-19.

[105] Koch K , Helmreich B , Drewes J E . Co-digestion of food waste in municipal wastewater

treatment plants: Effect of different mixtures on methane yield and hydrolysis rate

constant[J]. Applied Energy, 2015, 137(jan.1):250-255.

[106] Dahiya, Shikha, Kumar, et al. Food waste biorefinery: Sustainable strategy for circular

bioeconomy[J]. Bioresource Technology Biomass Bioenergy Biowastes Conversion

Technologies Biotransformations Production Technologies, 2018.

[107] Lin C , Pfaltzgraff L A , Herrero-Davila L , et al. Food waste as a valuable resource for the

production of chemicals, materials and fuels. Current situation and global perspective[J].

Energy & Environmental Science, 2013, 6(2):426-464.

[108] Abdullah, Gudo, Adam, et al. Global biomethanation potential from food waste - a

review.[J]. Agricultural Engineering International Cigr Journal, 2014.

[109] 孙红彦. 橘子皮提取物的制备工艺及抗肿瘤作用研究[D]. 天津科技大学, 2016.

[110] Kumbhar J V , Rajwade J M , Paknikar K M . Fruit peels support higher yield and superior

quality bacterial cellulose production[J]. Applied Microbiology and Biotechnology, 2015,

99(16):6677-6691.

[111] Khami S , Khamwichit W , Suwannahong K , et al. Characteristics of Bacterial Cellulose

Production from Agricultural Wastes[J]. Advanced Materials Research, 2014, 931-932:693-

697.

[112] PETER F. STANBURY B.Sc., M.Sc., D.I.C, ALLAN WHITAKER M.Sc., Ph.D., A.R.C.S.,

D.I.C, Sc. S J H B . Media for Industrial Fermentations - ScienceDirect[J]. Principles of

Fermentation Technology (Second Edition), 1995:93-122.

[113] Keshk, Mas S . Bacterial Cellulose Production and its Industrial Applications[J]. Journal of

Bioprocessing & Biotechniques, 2014, 4(02).

[114] Ul-Islam M , Shah N , Ha J H , et al. Effect of chitosan penetration on physico-chemical and

mechanical properties of bacterial cellulose[J]. Korean Journal of Chemical Engineering,

2011, 28(8):1736-1743.

[115] Gayathry G , Gopalaswamy G . Production and characterisation of microbial cellulosic fibre

from Acetobacter xylinum[J]. Indian Journal of Fibre and Textile Research, 2014, 39(1):93-

96.

[116] Ul-Islam M , Khan T , Park J K . Nanoreinforced bacterial cellulose-montmorillonite

composites for biomedical applications[J]. Carbohydrate Polymers, 2012, 89(4):1189-1197.

[117] Sun D , Zhou L , Wu Q , et al. Preliminary research on structure and properties of nanocellulose[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2007, 22(004):677-

680.

[118] Sara S , C José, Nuria G , et al. Modification of Bacterial Cellulose Biofilms with Xylan

Polyelectrolytes[J]. Bioengineering, 2017, 4(4):93.

[119] M Szymańska-Chargot, Cybulska J , Zdunek A . Sensing the Structural Differences in

Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR

Spectroscopy[J]. Sensors (Basel, Switzerland), 2011, 11(6).

[120] Shezad O , Khan S , Khan T , et al. Physicochemical and mechanical characterization of

bacterial cellulose produced with an excellent productivity in static conditions using a simple

fed-batch cultivation strategy[J]. CARBOHYDRATE POLYMERS, 2010.

[121] Gladvin G, Sudhaakr G, Swathi V, et al. Mineral and vitamin compositions contents in

watermelon peel (Rind)[J]. International Journal of Current Microbiology and Applied

Sciences, 2017, 5(5): 129-133.

[122] Angel Siles López, José, Li Q , Thompson I P . Biorefinery of waste orange peel.[J]. Critical

Reviews in Biotechnology, 2010, 30(1):63-69.

[123] Said K , Yakub I , Alipah N . Effects of Solvent/Solid Ratio and Temperature on the

Kinetics of Vitamin C Extraction from Musa Acuminata[J]. Journal of Applied Science &

Process Engineering, 1970, 2(2).

[124] Keshk S M A S . Vitamin C enhances bacterial cellulose production in Gluconacetobacter

xylinus[J]. CARBOHYDRATE POLYMERS, 2014.

[125] Pereira, M A F, Monteiro, et al. Deconstruction of banana peel for carbohydrate

fractionation[J]. Bioprocess and Biosystems Engineering, 2021, 44(2):297-306.

[126] Kassim M A , Hussin A H , Meng T K , et al. Valorisation of watermelon (Citrullus lanatus)

rind waste into bioethanol: an optimization and kinetic studies[J]. International Journal of

Environmental Science and Technology, 2021:1-14.

[127] Uhlin K I , Atalla R H , Thompson N S . Influence of hemicelluloses on the aggregation

patterns of bacterial cellulose[J]. 1995, 2(2):129-144.

[128] Gea S , Reynolds C T , Roohpour N , et al. Investigation into the structural, morphological,

mechanical and thermal behaviour of bacterial cellulose after a two-step purification

process[J]. Bioresource Technology, 2011, 102(19):9105-9110.

[129] A U I , B T K A , A J K P . Water holding and release properties of bacterial cellulose

obtained by in situ and ex situ modification[J]. Carbohydrate Polymers, 2012, 88( 2):596-

603.

[130] Yang W , Chen G J , CF Lü, et al. Micropore characteristics of the organic-rich shale in the

7th member of the Yanchang Formation in the southeast of Ordos Basin[J]. Natural Gas

Geoscience, 2015, 26(3):418-426 and 591.

[131] Maneerung T , Tokura S , Rujiravanit R . Impregnation of silver nanoparticles into bacterial

cellulose for antimicrobial wound dressing[J]. Carbohydrate Polymers, 2008, 72(1):43-51.

[132] Okiyama A , Motoki M , Yamanaka S . Bacterial cellulose IV. Application to processed

foods[J]. Food Hydrocolloids, 1993, 6(6):503-511.

[133] Kaewnopparat S , Sansernluk K , Faroongsarng D . Behavior of Freezable Bound Water in

the Bacterial Cellulose Produced by Acetobacter xylinum: An Approach Using

Thermoporosimetry[J]. Aaps Pharmscitech, 2008, 9(2):701-707.

[134] Tang W , Jia S , Jia Y , et al. The influence of fermentation conditions and post-treatment

methods on porosity of bacterial cellulose membrane[J]. World Journal of Microbiology &

Biotechnology, 2010, 26(1):125-131.

[135] Hesse S , Kondo T . Behavior of cellulose production of Acetobacter xylinum in 13Cenriched cultivation media including movements on nematic ordered cellulose templates[J].

Carbohydrate Polymers, 2005, 60(4):457-465.

[136] B?Ckdahl H , Helenius G , Bodin A , et al. Mechanical properties of bacterial cellulose and

interactions with smooth muscle cells.[J]. Biomaterials, 2006, 27(9):2141-2149.

[137] Watanabe K , Yamanaka S . Effects of Oxygen Tension in the Gaseous Phase on Production

and Physical Properties of Bacterial Cellulose Formed under Static Culture Conditions[J].

Journal of the Agricultural Chemical Society of Japan, 1995, 59(1):65-68.

[138] Nishi Y , Uryu M , Yamanaka S , et al. The structure and mechanical properties of sheets

prepared from bacterial cellulose[J]. Journal of Materials Science, 1990, 25(6):2997-3001.

[139] Keshk S . Physical properties of bacterial cellulose sheets produced in presence of

lignosulfonate[J]. Enzyme & Microbial Technology, 2006, 40(1):9-12.

[140] Luddee M , Pivsa-Art S , Sirisansaneeyakul S , et al. Particle Size of Ground Bacterial

Cellulose Affecting Mechanical, Thermal, and Moisture Barrier Properties of PLA/BC

Biocomposites[J]. Energy Procedia, 2014, 56(56):211-218.

[141] Grohmann K , Baldwin E A . Hydrolysis of orange peel with pectinase and cellulase

enzymes[J]. Biotechnology Letters, 1992, 14(12):1169-1174.

[142] Tureck B C , Hackbarth H G , Neves E Z , et al. Obtaining and characterization of bacterial

cellulose synthesized by Komagataeibacter hansenii from alternative sources of nitrogen and

carbon[J]. 2021(4).

[143] Cheng, Zhong, Gui-Cai, et al. Metabolic flux analysis of Gluconacetobacter xylinus for

bacterial cellulose production[J]. Applied Microbiology & Biotechnology, 2013.

[144] Keshk, Sameshima. Influence of lignosulfonate on crystal structure and productivity of

bacterial cellulose in a static culture[J]. ENZYME MICROB TECHNOL, 2006, 2006,40(1)(-

):4-8.

[145] Krystynowicz A , Czaja W , Wiktorowska-Jezierska A , et al. Factors affecting the yield and

properties of bacterial cellulose[J]. Journal of Industrial Microbiology and Biotechnology,

2002, 29(4):189-195.

[146] 万学闪, 刘文革, 阎志红,等. 无籽西瓜果实不同部位糖含量测定[J]. 中国瓜菜, 2009,

22(5):5.

[147] Wan M , Saad M , Shafinaz N , et al. Identification and quantification of fructose, glucose

and sucrose in watermelon peel juice (Pengenalan dan Pengkuantitian Fruktosa, Glukosa dan

Sukrosa di dalam Jus Kulit Tembikai)[J]. Malaysian Journal of Analytical Sciences, 2020,

24(3):382-389.

[148] Keshk S . Evaluation of different carbon sources for bacterial cellulose production[J].

African Journal of Biotechnology, 2005, 4.

[149] Chen X D , Wei G Y , Zhang J L , et al. Efficient production of glutathione using

hydrolyzate of banana peel as novel substrate[J]. Korean Journal of Chemical Engineering,

2011, 28(7):1566-1572.

[150] Yang X Y , Huang C , Guo H J , et al. Beneficial Effect of Acetic Acid on the Xylose

Utilization and Bacterial Cellulose Production by Gluconacetobacter xylinus[J]. Indian

Journal of Microbiology, 2014, 54(3):268-73.

[151] Oyeyinka B O , Afolayan A J . Comparative Evaluation of the Nutritive, Mineral, and

Antinutritive Composition of Musa sinensis L. (Banana) and Musa paradisiaca L. (Plantain)

Fruit Compartments[J]. Plants, 2019, 8(12).

[152] Wuytswinkel O V , Reiser V , Siderius M , et al. Response of Saccharomyces cerevisiae to

severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase

pathway[J]. Molecular Microbiology, 2010, 37(2):382-397.

[153] Chuku E C, Agbagwa S S, Wekhe O E, et al. Evaluation of nutrient anti-nutrient and acids

compositions of citrus peels[J]. EVALUATION OF NUTRIENT, ANTI-NUTRIENT AND

ACIDS COMPOSITIONS OF CITRUS PEELS.2020.

[154] Fuller, Mark E , Andaya, et al. Evaluation of ATR-FTIR for analysis of bacterial cellulose

impurities[J]. JOURNAL OF MICROBIOLOGICAL METHODS, 2018.

[155] Yang J , Lv X , Chen S , et al. In situ fabrication of a microporous bacterial cellulose/potato

starch composite scaffold with enhanced cell compatibility[J]. Cellulose, 2014, 21(3):1823-

1835.

[156] Cátia Regina Storck, Silva L P D , Fagundes C A A . Categorizing rice cultivars based on

differences in chemical composition[J]. Journal of Food Composition & Analysis, 2005,

18(4):333-341.

[157] Hizukuri S , Takeda Y , Maruta N , et al. Molecular structures of rice starch[J].

Carbohydrate Research, 1989, 189(none):227-235.

[158] Tester R F , Karkalas J , Xin Q . Starch-composition, fine structure and architecture[J].

Journal of Cereal Science, 2004, 39(2):151-165.

[159] Wang S S , Han Y H , Chen J L , et al. Insights into Bacterial Cellulose Biosynthesis from

Different Carbon Sources and the Associated Biochemical Transformation Pathways in

Komagataeibacter sp. W1[J]. Polymers, 2018, 10(9):963.

[160] Hickman B E , Janaswamy S , Yao Y . Autoclave and β-Amylolysis Lead to Reduced in

Vitro Digestibility of Starch[J]. Journal of Agricultural and Food Chemistry, 2009,

57(15):7005-7012.

中图分类号:

 O636.1    

条码号:

 002000072749    

馆藏号:

 TD10058898    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式