- 无标题文档
查看论文信息

中文题名:

 

离散制造车间数字孪生模型构建方法研究

    

姓名:

 罗瑞平    

学号:

 104971190170    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080201    

学科名称:

 工学 - 机械工程 - 机械制造及其自动化    

学生类型:

 博士    

学校:

 武汉理工大学    

院系:

 机电工程学院    

专业:

 机械工程    

研究方向:

 数字孪生    

第一导师姓名:

 盛步云    

第一导师院系:

 机电工程学院    

完成日期:

 2023-03-14    

答辩日期:

 2023-09-22    

中文关键词:

 

数字孪生模型 ; 生产系统建模与仿真 ; 离散制造车间 ; 几何模型 ; 知识更新

    

中文摘要:

随着设计和制造过程的智能化进程不断推进,生产系统建模与仿真技术正朝着信息系统和物理系统深度融合和高效协同的方向发展。数字孪生技术,作为物理对象和数字孪生模型双向映射实时交互的使能技术,正在成为未来生产系统建模与仿真的重要研究方向。为了实现数字孪生技术在生产系统建模与仿真中的应用,需要构建多维数字孪生模型,能够准确反映物理实体对象的几何、物理、行为和规则。然而,目前的生产系统仿真软件在数字孪生模型构建方面还存在一定的不足:一方面,由于缺乏有效的模型管理,导致模型难以统一表达和重用;另一方面,智能化和规范化建模仍然有待提升,高度的人工参与程度使得数字孪生模型构建周期长,并限制了生产系统仿真软件推广应用。因此,针对现有数字孪生模型构建的不足之处,本文对离散制造车间数字孪生模型构建方法展开研究,并将其开发部署于自主研发的生产系统仿真软件中,以降低模型构建门槛,提升模型构建过程的人机交互友好性,加速从几何模型到数字孪生模型的转化。主要的研究内容包括:

(1)构建了离散制造车间数字孪生模型构建体系框架。分析了目前离散制造车间数字孪生模型构建存在的问题和技术需求,构建了离散制造车间数字孪生模型构建体系框架,并详细阐述了涉及的核心研究内容及相互间逻辑关系。

(2)提出了一种基于本体和模型特征的车间要素组件模型匹配方法,解决了新导入的三维几何模型难准确获取车间要素组件模型库中相似模型的问题。首先,定义了车间要素组件模型,该模型用以描述已构建单元级数字孪生模型中多维模型信息。该模型能通过单元级至零部件级的几何模型及其特征点,将模型中的物理、行为和规则等多维模型信息映射到新导入的三维几何模型中,以构建新的单元级数字孪生模型;然后,通过本体建立车间要素的车间要素组件模型库,提出了基于本体语义和模型特征的分层匹配方法,能为新导入的三维几何模型匹配出合适的车间要素组件模型。实验结果表明,该方法在模型构建方面相较于对比的传统建模方式,可将人工操作次数缩短超过一半,并在匹配方面能准确匹配出合适的车间要素组件模型。

(3)提出了一种基于车间要素组件模型信息映射的单元级数字孪生模型构建方法,解决了车间要素组件模型中多维模型信息难以高效映射到新导入的三维几何模型的问题。首先,基于第2点研究所匹配出的车间要素组件模型,设计了基于车间要素组件的几何模块划分方法,能将车间要素组件模型中单元级至零部件级的多维模型映射到新导入的三维几何模型;接着,为了进一步实现车间要素组件模型中多维模型映射到新导入的几何模型的局部特征上,设计了基于车间要素组件的几何模型特征点标定方法,自动标定几何模型的特征点,这些标定出的特征点能准确关联物料流动控制、物料生成等行为对应的多维模型;基于上述建立的映射结果,并修改关键参数,从而实现新的单元级数字孪生模型构建。实验结果表明,应用该方法的模型构建流程在操作次数、特征点添加数量以及模型质量值方面均优于传统模型构建流程。

(4)提出了车间级数字孪生模型构建、模型知识更新以及模型质量管控方法,解决了车间级数字孪生模型构建缺乏详细构建路径、数字孪生模型的知识难以有效更新和数字孪生模型质量难以管控问题。首先,通过几何模型组装、多层级信息融合、行为事件建立和逻辑模型构建,实现将单元级数字孪生模型构建成车间级数字孪生模型;然后,建立了一致性度量模型和功能组件的可靠性、可维护性和质量评价指标,研究了基于功能组件的数字孪生模型知识更新方法,以实现模型知识的迭代更新。其次,研究了基于工作流管理的数字孪生模型质量管控方法,将工作流、模型评价和设计过程相结合,确保在单元级数字孪生模型构建、车间级数字孪生模型构建和模型知识更新等操作后模型的质量。实验结果表明,模型知识更新方法能够对车间级数字孪生模型中的各单元级数字孪生模型知识进行迭代更新,而模型质量管控方法能有效为多尺度数字孪生模型构建的各阶段提供模型质量管控。

(5)以本文提出的模型匹配、单元级数字孪生模型构建、车间级数字孪生模型构建、模型质量管控和模型知识更新方法为基础,在自主研发的生产系统仿真软件中开发了模型构建功能模块。详细说明了该软件及所开发的模型构建功能的开发背景和运行环境,并通过实例展示了模型构建功能的应用效果,论证了本文工作的可行性和有效性。

参考文献:

[1]邵珠峰, 赵云, 王晨, 等. 新时期我国工业软件产业发展路径研究[J]. 中国工程科学, 2022, 24(02): 86-95.

[2]刘检华, 孙连胜, 张旭, 等. 三维数字化设计制造技术内涵及关键问题[J]. 计算机集成制造系统, 2014, 20(3): 494-504.

[3]朱雪忠, 胡成. 中国工业软件创新:驱动机制与路径选择[J]. 中国软科学, 2022, 379(07): 38-47.

[4]刘春, 魏亚飞, 张洪瑞. 生产线仿真技术发展及在航空制造中的应用[J]. 航空制造技术, 2016, 59(16): 57-62.

[5]朱海平. 生产系统建模与仿真[M]. 清华大学出版社, 2022.

[6]周金平. 生产系统仿真[M]. 电子工业出版社, 2011.

[7]李涛. 基于离散事件仿真的飞机总装装配线数字化设计方法初步研究[J]. 航空制造技术, 2015, 58(21): 158-162.

[8]王长伟. 生产线快速建模与仿真系统关键技术研究[D]. 南京: 南京航空航天大学, 2007.

[9]田孝林. 船舶分段生产线快速建模与仿真[D]. 武汉: 华中科技大学, 2015.

[10]张丽. 基于 QUEST 的某工厂钣金生产线仿真与二次开发[D]. 沈阳: 沈阳航空航天大学, 2011.

[11]师玮谦. 基于 Flexsim 的 J 公司生产物流仿真研究[D]. 厦门: 厦门大学, 2014.

[12]Poloczek R, Oleksiak B. Modeling and simulating production processes with the use of the FLEXSIM method[J]. Metalurgija, 2023, 62(3-4): 484-487.

[13]Mohammad F A, Ismail S Z. Product-service system (PSS) for inventory control: analysis using Delmia QUEST simulation modelling based on the production line[C]//Recent Trends in Manufacturing and Materials Towards Industry 4.0: Selected Articles from iM3F 2020, Malaysia. Springer Singapore, 2021: 527-536.

[14]张小亚. 港口散货矿石码头物流系统的仿真研究[D]. 武汉: 武汉理工大学, 2010.

[15]宁艳亭,张姗姗,葛卫京.基于PDPS软件的汽车侧围内板焊装线仿真研究[J]. 汽车工艺与材料, 2023(05): 19-24.

[16]杨思. 生产线仿真平台逻辑控制研究[D]. 武汉: 华中科技大学, 2019.

[17]田永利, 颜云辉. 多领域系统可视化建模仿真平台集成开发[J]. 计算机辅助设计与图形学学报, 2008, 20(4): 526-531.

[18]陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统, 2021, 27(1): 1-15.

[19]刘晓鹏, 陈炫锐, 席少辉, 等. 基于分解协调机制的多层单元流水式车间布局优化方法[J]. 计算机集成制造系统, 2022: 1-21.

[20]汤洪涛, 梁佳炯, 陈青丰. 柔性车间的多工艺路线与布局联合优化[J]. 计算机集成制造系统, 2022, 28(2): 495-506.

[21]周健, 付康, 郭可馨. 考虑员工移动成本的车缝生产线平衡问题[J]. 同济大学学报(自然科学版), 2022, 50(05): 750-758.

[22]颜伟雄, 胡觉亮, 韩曙光. 资源约束的模块化服装生产工序编排优化模型与算法[J]. 计算机集成制造系统, 2022.

[23]Triki H, Mellouli A, Masmoudi F. A multi-objective genetic algorithm for assembly line resource assignment and balancing problem of type 2 (ALRABP-2)[J]. Journal of Intelligent Manufacturing, 2017, 28(2): 371-385.

[24]王巍, 王云婷, 宋文龙. 基于FlexSim机群式布置木质家具生产线仿真[J]. 林业科学, 2020, 56(4): 135-142.

[25]Mosadegh H, Ghomi S M T F, Süer G A. Heuristic approaches for mixed-model sequencing problem with stochastic processing times[J]. International Journal of Production Research, 2017, 55(9-10): 2857-2880.

[26] Kampker A, Kreisköther K, Schumacher M. Mathematical Model for Proactive Resequencing of Mixed Model Assembly Lines[J]. Procedia Manufacturing, 2019, 33: 438- 445.

[27]王峻峰, 张玉帆, 邵瑶琪, 等. 面向生产性能数字孪生的仿真数据映射研究[J]. 系统仿真学报, 2021, 33(10): 2470-2477.

[28]杨开润. 工业数字孪生虚实数据融合处理技术研究[D]. 西安: 西安电子科技大学, 2021.

[29]柳林燕, 杜宏祥, 汪惠芬, 等. 车间生产过程数字孪生系统构建及应用[J]. 计算机集成制造系统, 2019, 25(6): 1536-1545.

[30]万峰, 邢香园, 吴剑锋, 等. 基于数字孪生的卫星总装过程管控系统[J]. 计算机集成制造系统, 2021, 27(2): 631.

[31]方圆, 刘江, 吕瑞强, 等. 基于数字孪生的设备加工过程监测技术研究[J]. 航空制造技术, 2021, 64(4): 91-96.

[32]Botkina D, Hedlind M, Olsson B, et al. Digital twin of a cutting tool[J]. Procedia CIRP, 2018, 72: 215-218.

[33]赵启东, 徐钢, 黎敏. 基于支持向量数据描述方法的生产过程监控、诊断与优化[J]. 北京科技大学学报, 2016, 38(12): 1791-1797.

[34]Yang Guiming, Fan Xiaohui, Chen Xuling, et al. Optimization of cooling process of iron ore pellets based on mathematical model and data mining[J]. Journal of Iron and Steel Research Internationa, 2015, 22(11): 1002-1008.

[35]王文波. 数据驱动的物联制造系统关键性能预测和优化方法研究[D]. 西安: 西北工业大学, 2019.

[36]Rosen R, Von Wichert G, Lo G, et al. About the importance of autonomy and digital twins for the future of manufacturing[J]. IFAC-PapersOnLine, 2015, 48(3): 567-572.

[37]Tuegel E J. The airframe digital twin: some challenges to realization[C]// The 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Resron: American Institute Aeronautics and Astronautics (AIAA), 2012: 1812.

[38]Lee J, Lapira E, Yang S, et al. Predictive manufacturing system - trends of next-generation production systems[J]. IFAC Proceedings Volumes, 2013, 46(7): 150-156.

[39]陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9.

[40]庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵,体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4): 753-768.

[41]陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18.

[42]刘怀兰, 岳鹏, 閤辰皓, 等. 基于VDEVS的离散制造车间虚拟实体行为模型描述方法[J]. 计算机集成制造系统, 2021, 027(010): 2950-2960.

[43]周有城, 武春龙, 孙建广, 等. 面向智能产品的数字孪生体功能模型构建方法[J]. 计算机集成制造系统, 2019, 25(06): 1392-1404.

[44]Zhang Hao, Liu Qiang, Chen Xin, et al. A digital twin-based approach for designing and multi-objective optimization of hollow glass production line[J]. IEEE Access, 2017, 5: 26901-26911.

[45]Yi Yang, Yan Yuehui, Liu Xiaojun, et al. Digital twin-based smart assembly process design and application framework for complex products and its case study[J]. Journal of Manufacturing Systems, 2021, 58: 94-107.

[46]Zhang Meng, Zuo Ying, Tao Fei. Equipment energy consumption management in digital twin shop-floor: A framework and potential applications[C]// 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2018: 1-5.

[47]Werner A, Zimmermann N, Lentes J. Approach for a holistic predictive maintenance strategy by incorporating a digital twin[J]. Procedia Manufacturing, 2019, 39: 1743-1751.

[48]Stavropoulos P, Papacharalampopoulos A, Michail C K, et al. Robust additive manufacturing perfonnance through a contro1 oriented digita1 twin[J]. Metals - Open Access Metallurgy Journal, 2021, 11(5): 708.

[49]Lv Qibing, Zhang Rong, Sun Xuemin, et al. A digital twin-driven human-robot collaborative assembly approach in the wake of COVID-19[J]. Journal of Manufacturing Systems, 2021, 60: 837-851.

[50]胡富琴, 杨芸, 刘世民, 等. 航天薄壁件旋压成型数字孪生高保真建模方法[J]. 计算机集成制造系统, 2022, 28(05): 1282-1292.

[51]Luo Weichao, Hu Tianliang, Zhang Chengrui, et al. Digital twin for CNC machine tool: modeling and using strategy[J]. Journal of Ambient Intelligence and Humanized Computing, 2018, 10(3):1-12.

[52]Hamid G, Farbod K. Construction of damage-free digital twin of damaged aero-engine blades for repair volume generation in remanufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2022, 77: 102335.

[53]Wang Jinjiang, Ye Lunkuan, Gao R X, et al. Digital Twin for rotating machinery fault diagnosis in smart manufacturing[J]. International Journal of Production Research, 2019, 57(12): 3920-3934.

[54]Dai Sheng, Zhao Gang, Yu Yong, et al. Ontology-based information modeling method for digital twin creation of as-fabricated machining parts[J]. Robotics and Computer-Integrated Manufacturing, 2021, 72: 102173.

[55]Söderberg R, Wärmefjord K, Carlson J S, et al. Toward a Digital Twin for real-time geometry assurance in individualized production[J]. CIRP annals, 2017, 66(1): 137-140.

[56]Zhang He, Qi Qinglin, Tao Fei. A multi-scale modeling method for digital twin shop-floor[J]. Journal of Manufacturing Systems, 2022, 62: 417-428.

[57]Liu Shimin, Bao Jinsong, Lu Yuqian, et al. Digital twin modeling method based on biomimicry for machining aerospace components[J]. Journal of Manufacturing Systems, 2021, 58: 180-195.

[58]Bao Jinsong, Guo Dongsheng, Li Jie, et al. The modelling and operations for the digital twin in the context of manufacturing[J]. Enterprise Information Systems, 2019, 13(4): 534-556.

[59]Zhang Qi, Zhang Xiaomei, Xu Wenjun, et al. Modeling of digital twin workshop based on perception data[C]// Intelligent Robotics and Applications: 10th International Conference, ICIRA 2017, Wuhan, China, August 16–18, 2017, Proceedings, Part III 10. Springer International Publishing, 2017: 3-14.

[60]Zhuang Cunbo, Miao Tian, Liu Jianhua, et al. The connotation of digital twin, and the construction and application method of shop-floor digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68: 102075.

[61]陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(01): 1-18.

[62]Ding Kai, Chan F T S, Zhang Xudong, et al. Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors[J]. International Journal of Production Research, 2019, 57(20): 6315-6334.

[63]江海凡, 丁国富, 张剑. 数字孪生车间演化机理及运行机制[J]. 中国机械工程, 2020, 31(7): 824-832.

[64]吴鹏兴. 面向离散制造车间的数字孪生模型构建方法研究[D]. 南京: 南京航空航天大学, 2021.

[65]Guo Jiapeng, Zhao Ning, Sun Lin, et al. Modular based flexible digital twin for factory design[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3): 1189-1200.

[66]Kim B C, Mun D. Stepwise volume decomposition for the modification of B-rep models[J]. International Journal of Advanced Manufacturing Technology, 2014, 75(9-12): 1393-1403.

[67]Wang Jun, Gu Dingxiao, Gao Zhanheng, et al. Feature-based solid model reconstruction[J]. Journal of Computing and Information Science in Engineering, 2013, 13(1): 011004.

[68]Hu Sijie, Polette A, Pernot J P. SMA-Net: Deep learning-based identification and fitting of CAD models from point clouds[J]. Engineering with Computers, 2022, 38(6): 5467-5488.

[69]刘振宇, 傅云, 谭建荣. 基于仿真组件的数字样机运动模型构建与重用[J]. 机械工程学报, 2009, 45(10): 118-124.

[70]覃斌, 阎春平. 基于特征域和结构组件的CAD/CAE集成建模方法[J]. 计算机集成制造系统, 2011, 17(7): 1397-1403.

[71]Zhang Yueze, Zhang Caixia, Yan Jun, et al. Rapid construction method of equipment model for discrete manufacturing digital twin workshop system[J]. Robotics and Computer-Integrated Manufacturing, 2022, 75: 102309.

[72]Garg S, Gogoi A, Chakraborty S, et al. Machine learning based digital twin for stochastic nonlinear multi-degree of freedom dynamical system[J]. Probabilistic Engineering Mechanics, 2021, 66: 103173.

[73]Yu Jinsong, Song Yue, Tang Diyin, et al. A Digital Twin approach based on nonparametric Bayesian network for complex system health monitoring[J]. Journal of Manufacturing Systems, 2021, 58: 293-304.

[74]Zipper H, Auris F, Strahilov A, et al. Keeping the digital twin up-to-date—Process monitoring to identify changes in a plant[C]// 2018 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2018: 1592-1597.

[75]Wang Jinjiang, Ye Lunkuan, Gao R X, et al. Digital Twin for rotating machinery fault diagnosis in smart manufacturing[J]. International Journal of Production Research, 2019, 57(12): 3920-3934.

[76]Zhang He, Qi Qinglin, Ji Wei, et al. An update method for digital twin multi-dimension models[J]. Robotics and Computer-Integrated Manufacturing, 2023, 80: 102481.

[77]Yun Wei, Zhang Xuan, Li Zhudong, et al. Knowledge modeling: A survey of processes and techniques[J]. International Journal of Intelligent Systems, 2021, 36(4): 1686-1720.

[78]Schreiber G, Akkermans H, Anjewierden A, et al. Knowledge engineering and management: the CommonKADS methodology[M]. MIT Press, 2000.

[79]Musen M A. Overcoming the limitations of role-limiting methods[J]. Knowledge acquisition, 1992, 4(2): 165-170.

[80]Angele J, Fensel D, Landes D, et al. Model-Based and Incremental Knowledge Engineering: The MIKE Approach[C]// Extended Papers from the IFIP TC12 Workshop on Artificial Intelligence from the Information Processing Perspective: Knowledge Oriented Software Design, Amsterdam, North-Holland Publishing Co. 1992: 139-168.

[81]Li Jia, Yang Yunbin, Wei Lifan. Ontology-based knowledge representation for mechanical products[C]// 2nd International Conference on Materials and Products Manufacturing Technology (ICMPMT 2012), Guangzhou, People’s Republic of China, 2012: 365-370.

[82]Ye Yingxin, Hu Tianliang, Zhang Chengrui, et al. Design and development of a CNC machining process knowledge base using cloud technology[J]. International Journal of Advanced Manufacturing Technology, 2018, 94: 3413-3425.

[83]Eum K, Kang M, Kim G, et al. Ontology-based modeling of process selection knowledge for machining feature[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14: 1719-1726.

[84]Alsafi Y, Vyatkin V. Ontology-based reconfiguration agent for intelligent mechatronic systems in flexible manufacturing[J]. Robotics and Computer Integrated Manufacturing, 2010, 26(4): 381-391.

[85]Imran M, Young B. The application of common logic based formal ontologies to assembly knowledge sharing[J]. Journal of Intelligent Manufacturing, 2015, 26(1): 139-158.

[86]刘晓敏, 李娇蓉, 陈亮, 等. 融合可拓学与多层次知识建模的仿生原型获取[J]. 机械工程学报, 2020, 55(21): 150-160.

[87]Lartigau J, Xu X, Nie L, et al. Cloud manufacturing service composition based on QoS with geo-perspective transportation using an improved Artificial Bee Colony optimisation algorithm[J]. International Journal of Production Research, 2015, 53(14): 4380-4404.

[88]Li Yuhua, Bandar Z A, Mclean D. An approach for measuring semantic similarity between words using multiple information sources[J]. Knowledge & Data Engineering IEEE Transactions on, 2003, 15(4): 871-882.

[89]Ichise R. Machine learning approach for ontology mapping using multiple concept similarity measures[C]// Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008). IEEE, 2008: 340-346.

[90]Son H, Lee S H. Three-dimensional model retrieval in single category geometry using local ontology created by object part segmentation through deep neural network[J]. Journal of Mechanical Science and Technology, 2021, 35(11): 5071-5079.

[91]Taieb M A H, Aouicha M B, Hamadou A B. Ontology-based approach for measuring semantic similarity[J]. Engineering Applications of Artificial Intelligence, 2014, 36: 238-261.

[92]刘庭煜, 汪惠芬, 贲可存, 等. 基于多维情境本体匹配的产品开发过程业务产物智能推荐技术[J]. 计算机集成制造系统, 2016, 22(12): 2727-2750.

[93]Ma Songhua, Tian Ling. Ontology-based semantic retrieval for mechanical design knowledge[J]. International Journal of Computer Integrated Manufacturing, 2015, 28(2): 226-238.

[94]Zhang Feng, Guo Zongliang. A novel optimization method for ontology matching based on heuristic population evolution algorithm[J]. Arabian Journal for Science and Engineering, 2019, 44(4): 3137-3153.

[95]Do H H, Rahm E. COMA—a system for flexible combination of schema matching approaches[C]// VLDB'02: Proceedings of the 28th International Conference on Very Large Databases. Morgan Kaufmann, 2002: 610-621.

[96]张雷, 郑辰兴, 钟言久, 等. 基于粗糙集的机械产品绿色设计知识更新[J]. 中国机械工程, 2019, 30(05): 595-602.

[97]Hatzilygeroudis I, Prentzas J. Using a hybrid rule-based approach in developing an intelligent tutoring system with knowledge acquisition and update capabilities[J]. Expert Systems with Applications, 2004, 26(4): 477-492.

[98]徐剑, 裘乐淼, 张树有. 知识反馈的递进式产品配置设计技术[J]. 计算机集成制造系统, 2011, 17(06): 1135-1143.

[99]陈继文, 杨红娟, 董明晓, 等. 基于本体语义块相似匹配的设计知识更新[J]. 机械工程学报, 2014, 50(7): 161-167.

[100]Luo Ruiping, Sheng Buyun, Lu Yingkang, et al. Digital Twin Model Quality Optimization and Control Methods Based on Workflow Management[J]. Applied Sciences-Basel, 2023, 13(5): 2884.

[101]张辰源, 陶飞. 数字孪生模型评价指标体系[J]. 计算机集成制造系统, 2021, 27(8): 2171-2186.

[102]Tao Fei, Zhang Meng, Nee A Y C. Digital twin driven smart manufacturing[M]. Academic Press, 2019.

[103]艾辉, 陈立平, 李玉梅, 等. 基于性能仿真的产品配置设计方法[J].中国机械工程, 2011, 22(07): 853-859.

[104]El-Sappagh S, Elmogy M. A fuzzy ontology modeling for case base knowledge in diabetes mellitus domain[J]. Engineering science and technology, an international journal, 2017, 20(3): 1025-1040.

[105]付高财. 基于特征信息的三维CAD模型检索技术研究与应用[D]. 武汉: 武汉理工大学, 2019.

[106]Taieb M A H, Aouicha M B, Hamadou A B. Ontology-based approach for measuring semantic similarity[J]. Engineering Applications of Artificial Intelligence, 2014, 36: 238-261.

[107]Osada R, Funkhouser T, Chazelle B, et al. Shape distributions[J]. ACM Transactions on Graphics (TOG), 2002, 21(4): 807-832.

[108]Kashyap R. The perfect marriage and much more: Combining dimension reduction, distance measures and covariance[J]. Physica A: Statistical Mechanics and its Applications, 2019, 536: 120938.

[109]Bonnici V, Giugno R, Pulvirenti A, et al. A subgraph isomorphism algorithm and its application to biochemical data[J]. BMC Bioinformatics, 2013, 14(7): 1-13.

[110]Cui Yi, Feng Ping, Jin Juliang, et al. Water Resources Carrying Capacity Evaluation and Diagnosis Based on Set Pair Analysis and Improved the Entropy Weight Method[J]. Entropy, 2018, 20(5).

[111]Yin Zuoming, Wang Desheng, Zhang Xinghai, et al. Millisecond-delay Intervals in Horizontal Layering Bench Blasting Based on the Evaluation Model of the Entropy Weight Method[J]. Journal of Engineering Science and Technology Review, 2020, 13(5): 90-97.

[112]梅鑫南, 王应明. 基于前景理论和熵权法的交叉效率集结方法[J]. 运筹与管理, 2022, 31(7): 35-41.

[113]Zhuang Cunbo, Miao Tian, Liu Jianhua, et al. The connotation of digital twin, and the construction and application method of shop-floor digital twin[J]. Robotics and Computer-Integrated Manufacturing, 2021, 68: 102075.

[114]Tao Fei, Cheng Jiangfeng, Qi Qinglin, et al. Digital twin-driven product design, manufacturing and service with big data[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9): 3563-3576.

[115]Corney J R, Rea H, Clark D, et al. Coarse Filters for Shape Matching[J]. Computer Graphics & Applications IEEE, 2002, 22(3): 65-74.

[116]刘浩然, 赵翠香, 李轩, 等. 一种基于改进遗传算法的神经网络优化算法研究[J]. 仪器仪表学报, 2016, 37(07): 1573-1580.

[117]Wang Fei, Liu Zhendong, Zhu Hongchun, et al. An Improved Method for Stable Feature Points Selection in Structure-from-Motion Considering Image Semantic and Structural Characteristics[J]. Sensors, 2021, 21(7): 2416.

[118]Sun Wei, Mo Chengcheng. High-speed real-time augmented reality tracking algorithm model of camera based on mixed feature points[J]. Journal of Real-Time Image Processing, 2021, 18: 249-259.

[119]Li Yulin, Zheng Wenfeng, Liu Xiangjun, et al. Research and improvement of feature detection algorithm based on FAST[J]. Rendiconti Lincei. Scienze Fisiche e Naturali, 2021, 32(4): 775-789.

[120]Young M, Pretty C, McCulloch J, et al. Sparse point cloud registration and aggregation with mesh‐based generalized iterative closest point[J]. Journal of Field Robotics, 2021, 38(8): 1078-1091.

[121]Yin Zuoming, Wang Desheng, Zhang Xinghai, et al. Millisecond-delay Intervals in Horizontal Layering Bench Blasting Based on the Evaluation Model of the Entropy Weight Method[J]. Journal of Engineering Science & Technology Review, 2020, 13(5).

[122]Abouqora Y, Herouane O, Moumoun L, et al. A hybrid CNN-CRF inference models for 3D mesh segmentation[C]// 2020 6th IEEE Congress on Information Science and Technology (CiSt). IEEE, 2021: 296-301.

[123]Wu Zizhao, Shou Ruyang, Wang Yunhai, et al. Interactive shape co-segmentation via label propagation[J]. Computers & Graphics, 2014, 38: 248-254.

[124]Su Yansen, Guo Neng, Tian Ye, et al. A non-revisiting genetic algorithm based on a novel binary space partition tree[J]. Information Sciences, 2020, 512: 661-674.

[125]Chen Hui, Feng Yan, Yang Jian, et al. 3D reconstruction approach for outdoor scene based on multiple point cloud fusion[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(10): 1761-1772.

[126]Makovetskii A, Voronin S, Kober V, et al. A non‐iterative method for approximation of the exact solution to the point‐to‐plane variational problem for orthogonal transformations[J]. Mathematical Methods in the Applied Sciences, 2018, 41(18): 9218-9230.

[127]Rusinkiewicz S. A symmetric objective function for ICP[J]. ACM Transactions on Graphics (TOG), 2019, 38(4): 1-7.

[128]Tang Te, Wang Changhao, Tomizuka M. A framework for manipulating deformable linear objects by coherent point drift[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3426-3433.

[129]Alasan M, Aleem S, Zobaa A F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function[J]. Energy Conversion and Management, 2020, 210: 112716.

[130]Karunasingha D S K. Root mean square error or mean absolute error? Use their ratio as well[J]. Information Sciences, 2022, 585: 609-629.

[131]严爱军, 钱丽敏, 王普. 案例推理属性权重的分配模型比较研究[J]. 自动化学报, 2014, 40(9): 1896-1902.

[132]吴鹏兴, 郭宇, 黄少华, 等. 基于数字孪生的离散制造车间可视化实时监控方法[J]. 计算机集成制造系统, 2021, 27(6): 1605-1616.

[133]丁剑, 白晓民, 赵伟, 等. 基于复杂事件处理技术的电网故障信息分析及诊断方法[J]. 中国电机工程学报, 2007, 27(28): 40-45.

[134]尹超, 张云, 钟婷. 面向新产品开发的云制造服务资源组合优选模型[J]. 计算机集成制造系统, 2012, 18(7): 1368-1378.

[135]晋武侠, 钟定洪, 刘烃, 等. 基于多源特征空间的微服务可维护性评估方法[J]. 软件学报, 2021, 32(5): 1322-1340.

[136]Buran B, Erçek M. Public transportation business model evaluation with Spherical and Intuitionistic Fuzzy AHP and sensitivity analysis[J]. Expert Systems with Applications, 2022, 204: 117519.

[137]李伟, 焦松, 陆凌云, 等. 基于特征差异的仿真模型验证及选择方法[J]. 自动化学报, 2014, 40(10): 2134-2144.

[138]Huang N E, Shen Zheng, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995.

[139]Laumanns M, Thiele L, Deb K, et al. Combining convergence and diversity in evolutionary multiobjective optimization[J]. Evolutionary computation, 2002, 10(3): 263-282.

[140]Ali R G, Hadi R, Hasan M D. Multiple-deme parallel genetic algorithm based on modular neural network for effective load shedding[J]. Soft Computing, 2021, 25: 13779-13794.

[141]Yuan Jiawei, Liu Hailin, Gu Fangqing, et al. Investigating the properties of indicators and an evolutionary many-objective algorithm using promising regions[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(1): 75-86.

[142]Jaber A, Lafon P, Younes R. A branch-and-bound algorithm based on NSGAII for multi-objective mixed integer nonlinear optimization problems[J]. Engineering Optimization, 2022, 54(6): 1004-1022.

[143]Li Miqing, Yang Shengxiang, Liu Xiaohui, et al. IPESA-II: Improved Pareto envelope-based selection algorithm II[C]// Evolutionary Multi-Criterion Optimization: 7th International Conference, EMO 2013, Sheffield, UK, March 19-22, 2013. Proceedings 7. Springer Berlin Heidelberg, 2013: 143-155.

[144]Shi Zhichao, Wang Rui, Zhang Tao. Multi-objective optimal design of hybrid renewable energy systems using preference-inspired coevolutionary approach[J]. Solar Energy, 2015, 118: 96-106.

[145]Dai Guangming, Zhou Chong, Wang Maocai, et al. Indicator and reference points co-guided evolutionary algorithm for many-objective optimization problems[J]. Knowledge-Based Systems, 2018, 140: 50-63.

[146]Zhang Wenqiang, Xu Weitao, Gen M. Multi-objective Evolutionary Algorithm with Strong Convergence of Multi-area for Assembly Line Balancing Problem with Worker Capability[J]. Procedia Computer Science, 2013, 20: 83-89.

中图分类号:

 TH186    

条码号:

 002000074726    

馆藏号:

 TD10060746    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式