- 无标题文档
查看论文信息

中文题名:

 

稀土掺杂钙钛矿结构陶瓷的制备与吸波性能研究

    

姓名:

 罗州    

学号:

 1049732000940    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080500    

学科名称:

 工学 - 材料科学与工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 功能陶瓷    

第一导师姓名:

 刘俐    

第一导师院系:

 材料学院    

完成日期:

 2023-03-20    

答辩日期:

 2023-05-16    

中文关键词:

 

稀土掺杂 ; 钙钛矿 ; 介电性能 ; 传导损耗 ; 电磁吸波性能

    

中文摘要:

随着现代电子技术的快速发展,电磁干扰和辐射污染对精密设备和人类健康造成严峻挑战。因此,迫切需要一种能够将电磁能转化为其它形式的能量来有效吸收和衰减电磁波的电磁波吸收材料。目前,下一代吸波材料不仅追求高效的吸波性能,还需要在高温稳定性、轻量化和耐腐蚀等方面取得突破。ABO3型钙钛矿氧化物显示出结构稳定性高、密度低、耐热性佳和电磁性能优异等特性,引起了广泛研究,在氧电极、陶瓷、热敏电阻和超导材料等多种领域有着优秀的应用前景。由于钙钛矿结构的灵活性使得它能够容纳不同元素以不同的价态存在于晶格中,其物理化学性质和晶体结构可以通过A位或B位离子掺杂进行调节。本文采用稀土元素对钙钛矿结构陶瓷材料进行A位掺杂,以提高其电磁波吸收性能。选取Sm、La、Gd元素对SrMnO3、SrTiO3、CaMnO3进行掺杂,并系统研究了各体系样品的物相组成、晶体结构和元素价态变化对其电磁参数以及吸波性能的影响,证明了通过稀土掺杂以改善轨道简并度并增强Jahn-Teller畸变,来调节具有强电子晶格耦合的钙钛矿锰氧化物体系的电磁波吸收能力是可行的,并可能加速钙钛矿结构陶瓷作为吸波材料的应用。

本论文通过固相反应法,分别在1200ºC、1400ºC和1100ºC下成功合成了Sr0.5Sm0.5MnO3、Sr1-xLaxTiO3和Ca1-xGdxMnO3体系粉末样品,所有样品均呈现钙钛矿结构,稀土元素成功进入晶格。La3+离子与Sr3+离子的离子半径差异结合晶格缺陷引起了Sr1-xLaxTiO3体系样品的晶格收缩。而Ca1-xGdxMnO3体系样品则在晶体缺陷、Mn离子半径变化以及Jahn-Teller效应的共同作用下,晶胞体积增大。此外,三个体系的钙钛矿陶瓷粉末都有着良好的高温相稳定,具有成为高温吸波剂的潜力。

稀土掺杂不仅形成晶格缺陷,也使体系中的电荷平衡位置发生改变,提高了所有体系内掺杂样品的介电损耗。一部分原因是来自氧空位的贡献,与未掺杂样品相比,所有体系掺杂样品的氧空位含量都有所提升,尤其是在Sr1-xLaxTiO3和Ca1-xGdxMnO3体系中,随着La3+离子和Gd3+离子含量提升,氧空位含量愈发增大。氧空位的存在不仅增大了载流子的浓度,还能增强极化效应。Sr1-xLaxTiO3体系所有样品反射损耗的值都没有低于-10 dB。尽管Ti4+离子和Ti3+离子之间的电子迁移也提高了弛豫现象。但是过高的介电常数实部和过低的介电常数虚部影响了阻抗匹配,掺杂对Sr1-xLaxTiO3体系的吸波性能提升有限。

而与Sr1-xLaxTiO3体系相比,Sr0.5Sm0.5MnO3和Ca1-xGdxMnO3体系样品表现出良好的电磁波吸收能力。其中,Sr0.5Sm0.5MnO3在匹配厚度为5.6 mm时,最低反射损耗在15.84 GHz处达到了-32.57 dB,而Ca1-xGdxMnO3体系中,吸波性能最优异的CG2MO样品,在匹配厚度为2.8 mm时,不仅其反射损耗最低值达到了-31.9 dB,还具有3.3 GHz的有效吸波带宽。这些结果揭示了钙钛矿结构锰氧化物在电磁吸波领域的独特优势。掺杂能造成Mn3+离子含量的提高,增强了Mn元素与O元素的双交换作用,从而提高介电损耗。Sr0.5Sm0.5MnO3和Ca1-xGdxMnO3体系的掺杂样品不仅引入了极化弛豫损耗,也增强了传导损耗。与Sr0.5Sm0.5MnO3体系相比,Ca1-xGdxMnO3体系是一种介电损耗材料,其吸波性能不受居里温度的影响,不会在高温出现消磁现象。利用第一性原理计算来分析了Ca1-xGdxMnO3体系中的电子结构,证明了掺杂Gd3+离子增强了Mn元素与O元素的双交换作用。Gd的掺杂不仅增加了CaMnO3体系原有的载流子浓度,提高了传导损耗,还产生了大量的氧空位等缺陷,引起了Mn3+离子含量的提升,产生了缺陷极化、偶极子极化和界面极化等多重极化弛豫现象,从而提高了极化弛豫损耗,进而提高了介电损耗。得益于良好的介电损耗,Ca1-xGdxMnO3体系具有成为优质吸波材料的潜力。

参考文献:

[1] Elmahaishi M F, Azis R a S, Ismail I, et al. A review on electromagnetic microwave absorption properties: their materials and performance[J]. Journal of Materials Research and Technology-Jmr&T, 2022, 20: 2188-2220.

[2] Lou Z, Wang Q, Zhou X, et al. An angle-insensitive electromagnetic absorber enabling a wideband absorption[J]. Journal of Materials Science & Technology, 2022, 113: 33-39.

[3] Ma J, Li W, Fan Y, et al. Ultrathin and Light-Weight Graphene Aerogel with Precisely Tunable Density for Highly Efficient Microwave Absorbing[J]. Acs Applied Materials & Interfaces, 2019, 11(49): 46386-46396.

[4] Wu F, Liu Z, Xiu T, et al. Fabrication of ultralight helical porous carbon fibers with CNTs-confined Ni nanoparticles for enhanced microwave absorption[J]. Composites Part B-Engineering, 2021, 215.

[5] 王全磊, 孙珊珊, 朱岩岩, 等. 吸波材料与屏蔽材料的研究现状及进展[J]. 山东化工, 2022, 51(14): 117-119.

[6] 王彩霞, 刘元军. 磁损耗型吸波材料的发展现状[J]. 丝绸, 2021, 58(02): 27-34.

[7] Firouz M S, Mohi-Alden K, Omid M. A critical review on intelligent and active packaging in the food industry: Research and development[J]. Food Research International, 2021, 141.

[8] Wang B, Wu Q, Fu Y, et al. A review on carbon/magnetic metal composites for microwave absorption[J]. Journal of Materials Science & Technology, 2021, 86: 91-109.

[9] Wu Z, Cheng H-W, Jin C, et al. Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption[J]. Advanced Materials, 2022, 34(11).

[10] 曾强, 王荣超, 张小兰, 等. 电磁吸波材料研究进展[J]. 江西化工, 2021, 37(06): 100-103.

[11] Green M, Chen X. Recent progress of nanomaterials for microwave absorption[J]. Journal of Materiomics, 2019, 5(4): 503-541.

[12] Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles[J]. Journal of Applied Physics, 2012, 111(6).

[13] Srivastava S K, Manna K. Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: a review[J]. Journal of Materials Chemistry A, 2022, 10(14): 7431-7496.

[14] Zhang S, Cheng B, Gao Z, et al. Two-dimensional nanomaterials for high-efficiency electromagnetic wave absorption: An overview of recent advances and prospects[J]. Journal of Alloys and Compounds, 2022, 893.

[15] He P, Hou Z-L, Zhang K-L, et al. Lightweight ferroferric oxide nanotubes with natural resonance property and design for broadband microwave absorption[J]. Journal of Materials Science, 2017, 52(13): 8258-8267.

[16] Ruan W, Mu C, Wang B, et al. Metal-organic framework derived cobalt phosphosulfide with ultrahigh microwave absorption properties[J]. Nanotechnology, 2018, 29(40).

[17] Wang X R, Li C J, Lu W M, et al. Imaging and control of ferromagnetism in LaMnO3/SrTiO3 heterostructures[J]. Science, 2015, 349(6249): 716-719.

[18] Husanu M A, Vistoli L, Verdi C, et al. Electron-polaron dichotomy of charge carriers in perovskite oxides[J]. Communications Physics, 2020, 3(1).

[19] Li Q, Miao T, Zhang H, et al. Electronically phase separated nano-network in antiferromagnetic insulating LaMnO3/PrMnO3/CaMnO3 tricolor superlattice[J]. Nature Communications, 2022, 13(1).

[20] Garcia-Barriocanal J, Cezar J C, Bruno F Y, et al. Spin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces[J]. Nature Communications, 2010, 1.

[21] Zhai X, Cheng L, Liu Y, et al. Correlating interfacial octahedral rotations with magnetism in (LaMnO3+delta)(N)/(SrTiO3)(N) superlattices[J]. Nature Communications, 2014, 5.

[22] Grabowska E. Selected perovskite oxides: Characterization, preparation and photocatalytic properties-A review[J]. Applied Catalysis B-Environmental, 2016, 186: 97-126.

[23] Zhang C, Zhao P, Liu S, et al. Three-dimensionally ordered macroporous perovskite materials for environmental applications[J]. Chinese Journal of Catalysis, 2019, 40(9): 1324-1338.

[24] Garcia-Munoz P, Lefevre C, Robert D, et al. Ti-substituted LaFeO3 perovskite as photoassisted CWPO catalyst for water treatment[J]. Applied Catalysis B-Environmental, 2019, 248: 120-128.

[25] Kailasa S K, Vajubhai G N, Koduru J R, et al. Recent progress on the modifications of ultra-small perovskite nanomaterials for sensing applications[J]. Trac-Trends in Analytical Chemistry, 2021, 144.

[26] Wang H, Zhang L, Chen Z, et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances[J]. Chemical Society Reviews, 2014, 43(15): 5234-5244.

[27] Wei T, Liu B, Jia L, et al. Perovskite materials for highly efficient catalytic CH4 fuel reforming in solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(48): 24441-24460.

[28] Zhang L, Miao J, Li J, et al. Halide Perovskite Materials for Energy Storage Applications[J]. Advanced Functional Materials, 2020, 30(40).

[29] Fakharuddin A, Schmidt-Mende L, Garcia-Belmonte G, et al. Interfaces in Perovskite Solar Cells[J]. Advanced Energy Materials, 2017, 7(22).

[30] 刘祥萱, 王煊军, 崔虎. 雷达波吸收材料设计与特性分析[M]. 北京: 国防工业出版社, 2018.

[31] Wei Y, Zhang L, Gong C, et al. Fabrication of TiN/Carbon nanofibers by electrospinning and their electromagnetic wave absorption properties[J]. Journal of Alloys and Compounds, 2018, 735: 1488-1493.

[32] Shi Y, Yu L, Li K, et al. Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption[J]. Composites Science and Technology, 2020, 197.

[33] Wang Y, Chen D, Yin X, et al. Hybrid of MoS2 and Reduced Graphene Oxide: A Lightweight and Broadband Electromagnetic Wave Absorber[J]. Acs Applied Materials & Interfaces, 2015, 7(47): 26226-26234.

[34] Liang H, Liu J, Zhang Y, et al. Ultra-thin broccoli-like SCFs@TiO2 one-dimensional electromagnetic wave absorbing material[J]. Composites Part B-Engineering, 2019, 178.

[35] Zeng X, Cheng X, Yu R, et al. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers[J]. Carbon, 2020, 168: 606-623.

[36] 王一帆, 朱琳, 韩露, 等. 电磁吸波材料的研究现状与发展趋势[J]. 复合材料学报, 2023, 40(01): 1-12.

[37] Gao S, Yang S-H, Wang H-Y, et al. Excellent electromagnetic wave absorbing properties of two-dimensional carbon-based nanocomposite supported by transition metal carbides Fe3C[J]. Carbon, 2020, 162: 438-444.

[38] Jiao Y, Song Q, Yin X, et al. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band[J]. Journal of Materials Science & Technology, 2022, 119: 200-208.

[39] Dai B, Li J, Liu X, et al. Multiple synergistic losses in the absorption of electromagnetic waves by three-dimensional cross-linked carbon fiber[J]. Carbon, 2022, 195: 308-318.

[40] Cui L, Han X, Wang F, et al. A review on recent advances in carbon-based dielectric system for microwave absorption[J]. Journal of Materials Science, 2021, 56(18): 10782-10811.

[41] Ruiz-Perez F, Lopez-Estrada S M, Tolentino-Hernandez R V, et al. Carbon-based radar absorbing materials: A critical review[J]. Journal of Science-Advanced Materials and Devices, 2022, 7(3).

[42] Zhao Y, Shi Q, Li Z, et al. Preparation of carbon-based microwave absorbing materials by hybrid activation pyrolysis of lignin and coal[J]. Materials Letters, 2022, 328.

[43] 黄巨龙, 周亮, 陈萌, 等. 碳基材料吸波性能研究进展[J]. 中国材料进展, 2020, 39(02): 138-145.

[44] Shi Y, Li D, Si H, et al. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum[J]. Journal of Materials Science & Technology, 2022, 130: 249-255.

[45] Feng P, Wei H, Shang P, et al. Enhanced electromagnetic microwave absorption of SiC nanowire-reinforced PDC-SiC ceramics catalysed by rare earth[J]. Ceramics International, 2022, 48(17): 24915-24924.

[46] Duan W, Yin X, Ye F, et al. Synthesis and EMW absorbing properties of nano SiC modified PDC-SiOC[J]. Journal of Materials Chemistry C, 2016, 4(25): 5962-5969.

[47] Liu X, Xue J, Ren F, et al. Enhanced microwave-absorption properties of polymer-derived SiC/SiOC composite ceramics modified by carbon nanowires[J]. Ceramics International, 2020, 46(13): 20742-20750.

[48] Yang L, Liu H, Zu M. Enhanced microwave-absorbing property of precursor infiltration and pyrolysis derived SiCf/SiC composites at X band: Role of carbon-rich interphase[J]. Journal of the American Ceramic Society, 2018, 101(8): 3402-3413.

[49] Zhu X W, Jiang D L, Tan S H. Microwave absorbing property of SiC reticulated porous ceramics[J]. Journal of Inorganic Materials, 2002, 17(6): 1152-1156.

[50] 陈政伟, 范晓孟, 黄小萧, 等. 高温吸波陶瓷材料研究进展[J]. 现代技术陶瓷, 2020, 41(Z1): 1-98.

[51] Fu C, He D, Wang Y, et al. Enhanced microwave absorption properties of polyaniline-modified porous Fe3O4@C nanosheets[J]. Journal of Materials Science-Materials in Electronics, 2019, 30(13): 11907-11913.

[52] Meng X, Han Q, Sun Y, et al. Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19@polyaniline composite[J]. Ceramics International, 2019, 45(2): 2504-2508.

[53] Aggarwal N, Narang S B. Microwave absorption analysis of Mg-Zr-substituted Ni-Zn spinel ferrites in the X-band[J]. Journal of Physics and Chemistry of Solids, 2021, 159.

[54] Li Q, Guo W, Kong X, et al. MnFe2O4/ rGO/Diatomite composites with excellent wideband electromagnetic microwave absorption[J]. Journal of Alloys and Compounds, 2023, 941.

[55] 刘博, 周岩, 张莹莹, 等. 铁基金属复合材料吸波技术研究进展[J]. 中国金属通报, 2020, (11): 106-107.

[56] Zhu H, Zhang P, Dai S. Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis[J]. Acs Catalysis, 2015, 5(11): 6370-6385.

[57] Manos D, Miserli K, Konstantinou I. Perovskite and Spinel Catalysts for Sulfate Radical-Based Advanced Oxidation of Organic Pollutants in Water and Wastewater Systems[J]. Catalysts, 2020, 10(11).

[58] Lin N, Gong Y, Wang R, et al. Critical review of perovskite-based materials in advanced oxidation system for wastewater treatment: Design, applications and mechanisms[J]. Journal of Hazardous Materials, 2022, 424.

[59] Das N, Kandimalla S. Application of perovskites towards remediation of environmental pollutants: an overview[J]. International Journal of Environmental Science and Technology, 2017, 14(7): 1559-1572.

[60] 李玉, 程倩. 双掺杂钙钛矿复合氧化物结构及磁电性质[M]. 北京: 科学出版社, 2015.

[61] 田宏伟. 电荷有序锰氧化物Y0.5Ca0.5MnO3的磁特性及穆斯堡尔谱研究[D]; 吉林大学, 2005.

[62] Cui K, Cheng Y, Dai J, et al. Synthesis, characterization and microwave absorption properties of La0.6Sr0.4MnO3/polyaniline composite[J]. Materials Chemistry and Physics, 2013, 138(2-3): 810-816.

[63] Yuan W, Cheng L, Xia T, et al. Effect of Fe doping on the lattice structure, microscopic morphology and microwave absorption properties of LaCo1-xFexO3[J]. Journal of Alloys and Compounds, 2022, 926.

[64] Wang F, Gu W, Chen J, et al. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption[J]. Journal of Materials Science & Technology, 2022, 105: 92-100.

[65] Guo J, Tong Z, Liang Q, et al. Investigating the effect of Pr doping BiFeO3 on the microwave absorption and magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2022, 549.

[66] Huang L, Cheng L, Pan S, et al. Influence of A-site doping barium on structure, magnetic and microwave absorption properties of LaFeO3 ceramics powders[J]. Journal of Rare Earths, 2022, 40(7): 1106-1117.

[67] Xiong Y, Guo J, Liang Q, et al. Effect of Bi1-xCaxFeO3 on microstructure, microwave absorption and magnetic properties[J]. Journal of Magnetism and Magnetic Materials, 2022, 562.

[68] Huang S, Deng L, Zhou K, et al. Effect of Ag substitution on the electromagnetic property and microwave absorption of LaMnO3[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(19): 3149-3153.

[69] Zhang S, Cao Q, Zhang M, et al. Effects of Sr2+ or Sm3+ doping on electromagnetic and microwave absorption performance of LaMnO3[J]. Journal of Applied Physics, 2013, 113(7).

[70] Jia H, Zhou W, Nan H, et al. Enhanced high temperature microwave absorption of La0.9Sr0.1MnO3/MgAl2O4 composite ceramics based on controllable electrical conductivity[J]. Journal of the European Ceramic Society, 2020, 40(54): 1931-1937.

[71] Liu Y, Zhu D, Qing Y, et al. Effects of La3+ or Ti4+ doping on dielectric and microwave absorption performance of CaMnO3 in the 8.2–18 GHz[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(8): 10329-10338.

[72] Liu Y, Zhu D, Feng G, et al. Effects of Ni2+, Zr4+, or Ti4+ doping on the electromagnetic and microwave absorption properties of CaMnO3 particles[J]. Ceramics International, 2021, 47(14): 19995-20002.

[73] Liu Y, Zhu D, Chai X, et al. Enhanced dielectric and microwave absorption properties of CaMnO3 powders by Sr doping in the 8.2–18 GHz band[J]. Ceramics International, 2021, 47(10): 13339-13343.

[74] Liu Y, Zhu D, Chai X, et al. Influence of synergistic effect of Mn valence state and oxygen vacancy concentration on microwave absorbing properties of CaMnO3[J]. Ceramics International, 2022, 48(7): 9882-9889.

[75] Jain A, Shyue Ping O, Hautier G, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation[J]. Apl Materials, 2013, 1(1).

[76] Luo B-H, Wang X-Y, Zhang Y, et al. First Principles Study of the Electronic and Magnetic Properties of Ce Doped SrMnO3[J]. Chinese Journal of Chemical Physics, 2011, 24(6): 697-702.

[77] 杨超群. SrTiO3掺杂改性及其吸波性能研究[D]; 西安工业大学, 2020.

[78] 孙涛. 钛酸锶光催化增强研究:氢/氨热处理对钛酸锶光催化的影响[D]; 复旦大学, 2011.

[79] Huang G-X, Wang C-Y, Yang C-W, et al. Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with Mn1.8Fe1.2O4 Nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618.

[80] Xia W, Wu H, Xue P, et al. Microstructural, Magnetic, and Optical Properties of Pr-Doped Perovskite Manganite La0.67Ca0.33MnO3 Nanoparticles Synthesized via Sol-Gel Process[J]. Nanoscale Research Letters, 2018, 13.

[81] Jaiswar S, Mandal K D. Evidence of Enhanced Oxygen Vacancy Defects Inducing Ferromagnetism in Multiferroic CaMn7O12 Manganite with Sintering Time[J]. Journal of Physical Chemistry C, 2017, 121(36): 19586-19601.

[82] Zhu Y, Zhou W, Yu J, et al. Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions[J]. Chemistry of Materials, 2016, 28(6): 1691-1697.

[83] Wang T, Qian X, Yue D, et al. CaMnO3 perovskite nanocrystals for efficient peroxydisulfate activation[J]. Chemical Engineering Journal, 2020, 398.

[84] Wang J, Jia Z, Liu X, et al. Construction of 1D Heterostructure NiCo@C/ZnO Nanorod with Enhanced Microwave Absorption[J]. Nano-Micro Letters, 2021, 13(1).

[85] Liu L, Han D, Shi L, et al. Fabrication and microwave absorbing property of WO3@WC with a core-shell porous structure[J]. Ceramics International, 2022, 48(18): 26575-26584.

[86] Gu W, Cui X, Zheng J, et al. Heterostructure design of Fe3N alloy/porous carbon nanosheet composites for efficient microwave attenuation[J]. Journal of Materials Science & Technology, 2021, 67: 265-272.

[87] Kusumoto K. Dielectric and piezoelectric properties of NaNbO3-LiNbO3-SrTiO3 ceramics[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46(10B): 7094-7096.

[88] Trang An D, Chang Won A, Kim B W, et al. Effects of SrTiO3 Modification on the Piezoelectric and Strain Properties of Lead-Free K0.5Na0.5NbO3-Based Ceramics[J]. Journal of Electronic Materials, 2022, 51(4): 1490-1497.

[89] 乔勇涛. Sr1-xCexTiO3基储能介质陶瓷的介电性能研究[D]; 武汉理工大学, 2013.

[90] Luo Y, Hao H, Li D, et al. Effects of Y2O3 doping on the dielectric properties and microstructures of SrTiO3-LaAlO3 microwave dielectric ceramics[J]. Ceramics International, 2022, 48(10): 14288-14294.

[91] 黄心笛. 稀土掺杂高介SrTiO3基陶瓷的制备与改性研究[D]; 武汉理工大学, 2018.

[92] 沈宗洋. 稀土Nd掺杂SrTiO3基高储能介质陶瓷缺陷结构及介电性能研究[D]; 武汉理工大学, 2007.

[93] 赵颖, 陈前林, 李翠芹, 等. La掺杂CaMnO3基热电材料微观结构与热电性能研究[J]. 人工晶体学报, 2018, 47(09): 1790-1797.

[94] Psiuk B, Szade J, Szot K. SrTiO3 surface modification upon low energy Ar+ bombardment studied by XPS[J]. Vacuum, 2016, 131: 14-21.

[95] 伍小翥. 稀土Nd掺杂SrTiO3基陶瓷的介电性能研究[D]; 武汉理工大学, 2011.

[96] Li C, Chen Q, Yan Y, et al. High-temperature thermoelectric properties of Ca0.92La0.04RE0.04MnO3 (RE = Sm, Dy and Yb) prepared by coprecipitation[J]. Materials Research Express, 2018, 5(2).

[97] Zhang F P, Zhang X, Lu Q M, et al. Doping induced electronic structure and estimated thermoelectric properties of CaMnO3 system[J]. Physica B-Condensed Matter, 2011, 406(6-7): 1258-1262.

[98] Millis A J. Lattice effects in magnetoresistive manganese perovskites[J]. Nature, 1998, 392(6672): 147-150.

[99] Zhang M, Yang H-J, Li Y, et al. Cobalt doping of bismuth ferrite for matched dielectric and magnetic loss[J]. Applied Physics Letters, 2019, 115(21).

[100]Zhu J, Li H, Zhong L, et al. Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis[J]. Acs Catalysis, 2014, 4(9): 2917-2940.

[101]Wang Z, Mao X, Chen P, et al. Understanding the Roles of Oxygen Vacancies in Hematite-Based Photoelectrochemical Processes[J]. Angewandte Chemie-International Edition, 2019, 58(4): 1030-1034.

[102]Zener C. Interaction between the d-Shells in the Transition Metals. III. Calculation of the Weiss Factors in Fe, Co, and Ni[J]. Phys Rev, 1951, 83(2): 299-301.

[103]Zener C. Interaction Between the d-Shells in the Transition Metals[J]. Phys Rev, 1951, 81(3): 440-444.

[104]Luo W, Liu Y, Wang C, et al. Sacrificial template synthesis of (V0.8Ti0.1Cr0.1)2AlC and carbon fiber@(V0.8Ti0.1Cr0.1)2AlC microrods for efficient microwave absorption[J]. Journal of Materials Science & Technology, 2022, 111: 236-244.

[105]Hou Y, Cheng L, Zhang Y, et al. Enhanced Flexibility and Microwave Absorption Properties of HfC/SiC Nanofiber Mats[J]. Acs Applied Materials & Interfaces, 2018, 10(35): 29876-29883.

[106]Hou Y, Cheng L, Zhang Y, et al. Electrospinning of Fe/SiC Hybrid Fibers for Highly Efficient Microwave Absorption[J]. Acs Applied Materials & Interfaces, 2017, 9(8): 7265-7271.

中图分类号:

 TB34    

条码号:

 002000074655    

馆藏号:

 TD10060623    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式