- 无标题文档
查看论文信息

中文题名:

 

CeO2改性多尺度WC-CoCr涂层制备及其抗空蚀性能研究

    

姓名:

 杨长春    

学号:

 1049732003997    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082300    

学科名称:

 工学 - 交通运输工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 交通与物流工程学院    

专业:

 交通运输    

研究方向:

 表面工程研究    

第一导师姓名:

 袁成清    

第一导师院系:

 交通与物流工程学院    

完成日期:

 2023-03-01    

答辩日期:

 2023-05-16    

中文关键词:

 

WC-CoCr涂层 ; 超音速火焰喷涂 ; 多尺度 ; CeO2 ; 空蚀

    

中文摘要:

空蚀是造成船舶螺旋桨及尾轴、绞吸式挖泥船泥泵、舵叶、柴油机气缸套和轴瓦等部件失效的主要形式之一。空蚀不仅会降低机械强度和效率,而且会产生较大噪音,缩短工作寿命,造成巨大损失。为了减少空蚀造成的损害,表面处理技术的应用得到了研究人员的广泛认可。超音速火焰喷涂技术(HVOF)制备的多尺度WC-10Co4Cr涂层因出色的抗空蚀性能而备受关注。然而,在涂层喷涂过程中,脱碳和氧化反应会导致涂层缺陷,这些缺陷会影响其抗空蚀性能。因此,通过优化涂层组织结构,有望解决以上问题。稀土因电子结构特殊,可作为力学性能的优化剂,可以改善硬质合金的力学和腐蚀等各种性能,有望提高多尺度涂层的抗空蚀性能。

在本研究中,采用HVOF技术制备了两种纳米CeO2改性多尺度WC-CoCr涂层,添加量分别为1.0 wt.%和2.0 wt.%。采用OM、SEM和XRD分析研究了纳米CeO2对涂层组织结构、孔隙率、力学性能和电化学性能的影响。结果表明,纳米CeO2的添加有利于降低涂层孔隙率并提高力学性能和电化学性能。特别是当CeO2含量为1.0 wt.%时,改性涂层具有最低孔隙率(0.23%)、最高显微硬度(1405.5 HV0.3)和开裂韧性(5.75 MPa·m1/2),同时具有最高腐蚀电位(-0.194 V)和最低腐蚀电流密度(0.493 μA/cm2)。

研究对比了多尺度涂层和改性涂层在不同环境下的抗空蚀性能,结果表明,两种改性涂层的抗空蚀性能表现更佳。在淡水介质中,CeO2添加量分别为1.0 wt.%和2.0 wt.%的改性涂层体积累计空蚀量分别降低了34%和24%;在NaCl溶液中分别降低了25%和18%。其中,添加1.0 wt.% CeO2的涂层表现出最佳的抗空蚀性能。在NaCl介质中,三种涂层均出现较高程度的空蚀破坏,且三种涂层因机械作用产生的体积累计空蚀量所占比例均大于50%。

研究对比了多尺度涂层和两种改性涂层在不同环境下的空蚀行为,结果显示,两种改性涂层的空蚀源、裂纹和空蚀坑扩展速率更慢。相较于淡水介质,NaCl介质的空蚀源和空蚀坑扩展程度更高,腐蚀作用加速了裂纹和空蚀坑的扩展程度,并促进了空蚀颗粒的蚀除。在淡水介质中,三种涂层的裂纹主要横向扩展,在NaCl溶液中,裂纹横向扩展的同时还向涂层内部进行扩展,进而形成更深、更大的空蚀坑。在改性涂层空蚀16 h后,相较于未改性涂层,改性涂层表面轮廓更平滑,凸凹起伏程度更小。

参考文献:

[1]石羚. 建设海洋强国,用好高质量发展战略要地[N]. 人民日报, 2022(005).

[2]蒋聪汝. 世界船舶产业发展趋势及其对中国船企的启示[J]. 西北民族大学学报(自然科学版), 2021, 42(01): 78-83+89.

[3]Zx Li, Lm Zhang, Al Ma, et al. Comparative study on the cavitation erosion behavior of two different rolling surfaces on 304 stainless steel[J]. Tribology International, 2021, 159: 106994.

[4]Selvam K, Saini J, Perumal G, et al. Exceptional cavitation erosion-corrosion behavior of dual-phase bimodal structure in austenitic stainless steel[J]. Tribol Int, 2019, 134: 77-86.

[5]习近平在第七十五届联合国大会一般性辩论上发表重要讲话[R]. 新华网. 2020-09-22.

[6]能源转型持续推进,节能降耗成效显著——党的十八大以来经济社会发展成就系列报告之十四[EB/OL]. 国家统计局, 2022-10-08.

[7]Hong S, Wu Y, Wu J, et al. Microstructure and cavitation erosion behavior of HVOF sprayed ceramic-metal composite coatings for application in hydro-turbines[J]. Renewable Energy, 2021, 164: 1089-1099.

[8]Park I, Kim S. Cavitation erosion behavior in seawater of electroless Ni-P coating and process optimization using Taguchi method[J]. Applied Surface Science, 2019, 477: 37-43.

[9]Aktas B, Usta O, Atlar M. Systematic investigation of coating application methods and soft paint types to detect cavitation erosion on marine propellers[J]. Applied Ocean Research, 2020, 94: 101868.

[10]Vanaei H, Eslami A, Egbewande A. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models [J]. International Journal of Pressure Vessels and Piping, 2017, 149:43-54.

[11]王民. 船舶尾轴的气蚀产生原因及改进措施探讨[J]. 中国水运月刊, 2010, 10(06) : 17-18.

[12]胡维光. 水轮机空蚀与磨损现象分析[J]. 湖南电力, 2013, 33(S2): 69-71.

[13]丁翔. 多尺度微纳米WC-CoCr涂层的组织结构、性能及空蚀行为研究[D]. 武汉:武汉理工大学, 2017.

[14]Karimi A, Martin J. Cavitation erosion of materials[J]. International Metals Reviews, 1986, 31(01): 1-26.

[15]Dorji U, Ghomashchi R, Hydro turine failure mechanisms:An overview[J]. Engineering Failure Analysis, 2014, 44: 136-147.

[16]Singhal A, Athavale M, Li H, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering-Transactions of the Asme, 2002, 124: 617-624.

[17]Szkodo M. Mathematical description and evaluation of cavitation erosion resistance of materials[J]. Journal of Materials Processing Technology, 2005, 164: 1631-1636.

[18]Nour W, Dulias U, Schneider J, et al. The effect of surface finish and cavitating liquid on the cavitation erosion of alumina and silicon carbide ceramics[J]. Ceramics Silikaty, 2007, 51(01): 30.

[19]Alicja K, Cavitation erosion resistance of Ti/TiN multilayer coatings[J]. Surface and Coatings Technology, 2013, 228: 115-123.

[20]Qin C, Zheng Y, Wei R. Cavitation erosion behavior of nanocomposite Ti–Si–C–N and Ti/Ti–Si–C–N coatings deposited on 2Cr13 stainless steel using a Plasma Enhanced Magnetron Sputtering process[J]. Surface and Coatings Technology, 2010, 204(21–22): 3530-3538.

[21]张法星, 许唯临, 朱雅琴,等. 空蚀冲击波模式下气泡尺寸在掺气减蚀中的作用[J].水利水电技术, 2005(10): 5-7.

[22]Matsumoto Y, Beylich A. Influence of homogeneous condensation inside a small gas bubble on its pressure response[J]. Journal of Fluids Engineering, 1985, 107(02), 281-286.

[23]Okada T, Hammitt F. Cavitation erosion in vibratory and venturi facilities[J]. Wear, 1981, 69(01): 55-69.

[24]Hammitt F. Cavitation and multiphase flow phenomena[M]. McGraw-Hill College, 1980.

[25]Hammit F, Kling C, Mitchell T, et. al. Asymmetric Cavitation Bubble Collape Near Solid Objects[R]. Cavitation and multiphase flow laboratory, Nov. 1970.

[26]Ito Y, Oba R. Cavitation bubble observation in a venture, especially, with respect to streamer bubbles[R]. Reports of the Institute high speed mechanics, Tohoku University, 1982,45: 1-18.

[27]Ye L, Zhu X. Analysis of the effect of impact of near-wall acoustic bubble collapse micro-jet on Al 1060[J]. Ultrasonics sonochemistry, 2017, 36: 507-516.

[28]Shima A, Tomita Y, Ohno T. Temperature effects on single bubble collapse and induced impulsive pressure[J]. Journal of Fluids Engineering, 1988, 110(2): 344-344.

[29]Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles[J]. Journal of Fluid Mechanics, 2000, 361: 75-116.

[30]Kling C, Hammitt F. A photographic study of spark-induced cavitation bubble collapse[J]. Journal of Fluids Engineering, 1972, 94(4): 825-832.

[31]Bordeasu I, Popoviciu M, Mitelea I, et. al. Chemical and mechanical aspects of the cavitation phenomena[J]. Revista de Chimie, 2007,58(12): 1300-1304.

[32]偶国富, 周永芳 ,郑智剑, 等. 空蚀机理的研究综述[J]. 液压与气动, 2012(04): 3-8.

[33]杜晋. 碳化钨基硬质合金涂层的制备及抗冲蚀与空蚀性能研究[D]. 扬州: 扬州大学, 2022.

[34]孙冬柏, 张秀丽, 俞宏英, 等. 空蚀过程中电化学电位变化规律研究[J]. 中国腐蚀与防护学报, 2000(05): 308-311.

[35]Sakamoto A, Funaki H, Matsumura M. Influence of galvanic macro-cell corrosion on the cavitation erosion durability assessment of metallic materials—International cavitation erosion test of Gdańsk[J]. Wear, 1995, 186: 542-547.

[36]黄继汤. 空化与空蚀的原理及应用[M]. 北京: 清华大学出版社, 1991.

[37]Gavranek V, Bolshutkin D, Zeldovich V. Thermal and Mechanical Action of a Cavitation Zone on the Surface of a Metal[J]. Fiz. Met. Metalloved, 1960, 10: 262-268.

[38]黄加强, 代青华, 汪洋, 等. 抗空泡腐蚀涂层的研究进展[J]. 上海涂料, 2016, 54(04): 29-33.

[39]张志萍, 周勇, 张健. 抗空蚀金属材料的研究进展[J]. 热处理技术与装备, 2011, 32(06): 1-3.

[40]Yang R. Copper alloy propeller material for foreign ships[J]. Int. Ship Technol, 1981, 0(9): 1.

[41]Baker S, Carr E, Laithwaite E, et al. Copper·zinc·aluminium·ferrous metals·concrete: Corrosion of metals in buildings london symposium[J]. Anti-Corros Method Mater, 1957, 4(05): 170.

[42]Castro M, Romero R. Transformations during continuous cooling of a β-Cu-22.72Al-3.55Be (at.%) alloy[J]. Scripata Materialia, 1999, 42(02): 157-161.

[43]刘志强, 张智嘉, 魏浩. 材料表面抗空蚀涂层的研究进展[J].功能材料, 2021, 52(04): 4038-4045+4053.

[44]Bonacorao N, Goncalves A, Dutra J. Automation of the processes of surface measurement and of deposition by welding for the recovery of rotors of lager-scale hydraulic turbines[J]. Journal of Materials Processing Technolony, 2006, 179(01-03); 231-238.

[45]国洪建, 贾均红, 张振宇, 等. 热喷涂技术的研究进展及思考[J]. 材料导报, 2013, 27: 38-40.

[46]Li M, Christofides P. Computational study of particle in-flight behavior in the HVOF thermal spray process[J]. Chemical Engineering Science, 2006, 61: 6540-6552.

[47]Liu J. An experimental study on synthesizing TiC-TiB2-Ni composite coating using electro-thermal explosionultra-high speed spraying method[J]. Materials Letters, 2010, 64: 684-687.

[48]王铀, 郑国明, 李殿生, 等. 纳米粉体再造粒的意义-制备纳米结构涂层的热喷涂材料[J]. 中国粉体工业, 20110(6) : 8-13.

[49]Erfanmanesh M, Shoja-Razavi R, Abdollah-Pour H, et al. Friction and wear behavior of laser cladded WC-Co and Ni/WC-Co deposits at high temperature[J]. International Journal of Refractory Metals and Hard Materials, 2019, 81: 137-148.

[50]张好强, 刘豪, 刘印, 等. 激光熔覆制备钴基复合涂层研究现状分析[J]. 激光与光电子学进展: 1-15.

[51]石琎, 丁翔, 胡一鸣, 等. WC 基涂层材料和制备工艺对其组织结构与性能的影响[J]. 热喷涂技术, 2015, 70(2): 39-45.

[52]Hong S, Wu Y, Zhang J, et al. Cavitation Erosion Behavior and Mechanism of HVOF Sprayed WC-10Co-4Cr Coating in 3.5wt% NaCl Solution[J]. Transactions of the Indian Institute of Metals, 2015, 68(01): 151-159.

[53]Karl S. Hard-Metal Alloy and the Process of Making Same[P]. US67176423, 1923.

[54]Bose A. A perspective on the earliest commercial pm metal-ceramic composite: cemented tungsten carbide[J]. International Journal of Powder Metallurgy, 2011, 47: 31-50.

[55]胡道平, 何宝山, 孔德会. Cr含量对WC基硬质合金耐腐蚀性能的影响[J]. 腐蚀与防护, 2006, 27(8): 382-386,421.

[56]Lamana M, Pukasiewicz A, Sampath S. Influence of cobalt content and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings[J]. Wear, 2018, 398: 209-219.

[57]Du J, Zhang J, Zhang C. Effect of heat treatment on the cavitation erosion performance of WC–12Co coatings[J]. Coatings, 2019, 9: 690.

[58]Perry J, Neville A, Hodgkiess T. A comparison of the corrosion behavior of WC-Co-Cr and WC-Co HVOF thermally sprayed coatings by in situ atomic force microscopy (AFM)[J]. Journal of Thermal Spray Technology, 2002, 11: 536-541.

[59]Cho J, Hwang S, Kim K. Corrosion behavior of thermal sprayed WC cermet coatings having various metallic binders in strong acidic environment[J]. Surface and Coatings Technology, 2006, 200: 2653-2662.

[60]Babu P, Madhavi Y, Krishna L, et al. Thermally-sprayed WC-based cermet coatings for corrosion resistance applications[J]. Jom, 2018, 70: 2636-2649.

[61]Liu Y, Hang Z, Xi N, et al. Erosion-corrosion behavior of HVOF WC-Co coating in Cl− and SO42− containing solutions[J]. Applied Surface Science, 2018, 431: 55-59.

[62]Akihiro K, Kaito T, MasayukiI A. Influence of chemical composition, grain size, and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings[J]. Surface and Coatings Technology, 2020, 394: 125881.

[63]Qiao L, Wu Y, Hong S, et al. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying[J]. Ceramics International, 2020, 47(02): 24-27.

[64]Song B, Murray J, Wellman R, et al. Dry sliding wear behaviour of HVOF thermal sprayed WC-Co-Cr and WC-CrxCy-Ni coatings[J]. Wear, 2019, 442-443: 203114.

[65]Vashishtha N, Khatirkar R, Sapate S. Tribological behaviour of HVOF sprayed WC-12Co, WC-10Co-4Cr and Cr3C2−25NiCr coatings[J]. Tribology International, 2016, 105: 55-68.

[66]Rabani N, Kamdi Z. Characterisation of WC-17Co and WC-9Ni HVOF Sprayed Cermet Coatings[J]. Materials science forum, 2016, 840: 331-335.

[67]Ozkavak H, Sahin S, Sarac M, et al. Comparison of wear properties of HVOF sprayed WC-Co and WC-CoCr coatings on Al alloys[J]. Materials Research Express, 2019, 6(09): 096554.

[68]孙剑飞, 张法明, 沈军. 纳米WC-Co复合粉末的制备工艺及其烧结特性[J]. 稀有金属与硬质合金, 2002(01): 33-37.

[69]Cho T, Yoon J, Kim K, et al. A study on HVOF coatings of micron and nano WC-Co powders[J]. Surface and Coatings Technology, 2008, 202: 5556-5559.

[70]Luo X, Smith G, Wang Y, et al. Cracking induced tribological behavior changes for the HVOF WC-12Co cermet coatings[J]. Ceramics International, 2019, 45(04): 4718-4728.

[71]黄建娜, 王璇, 刘松林. 材料表面空蚀机理及实验设备研究现状[J]. 精密制造与自动化, 2019, 1: 9-14.

[72]Santa J, Espitia L, Blanco J, et al. Slurry and cavitation erosion resistance of thermal spray coatings[J]. Wear, 2009, 267: 160-167.

[73]Armstrong R. The hardness and strength properties of WC-Co composites[J]. Materials, 2011, 4: 1287-1308.

[74]Kear B, Strutt P. Nanostructures: The next generation of high performance bulk materials and coatings[J]. Naval Research Reviews, 1994, 46: 4-4.

[75]张云乾, 丁彰雄, 范毅. HVOF喷涂纳米WC-12Co涂层的性能研究[J]. 中国表面工程, 2005(06): 25-29.

[76]Thakur L, Arora N. A study of processing and slurry erosion behavior of multi-walled carbon nanotubes modified HVOF sprayed nano-WC-10Co-4Cr coatings[J]. Surface and Coatings Technology, 2016, 309, 860-871.

[77]Skandan G, Yao R, Sadangi R, et al. Multimodal coatings: a new concept in thermal spraying[J]. Journal of thermal spray technology, 2000, 9: 329-331.

[78]Ma N, Guo L, Cheng Z. Improvement on mechanical properties and wear resistance of HVOF sprayed WC-12Co coatings by optimizing feedstock structure[J]. Applied Surface Science, 2014, 320: 364-371.

[79]Liu X, Kang J, Yue W, et al. Cavitation erosion behavior of HVOF sprayed WC-10Co4Cr cermet coatings in simulated sea water[J]. Ocean Engineering, 2019, 190: 106449.

[80]王芳, 王炼石, 赵治国, 等. 凝聚共沉法改性高岭土/NR复合材料的性能研究[J]. 橡胶工业, 2005(04): 197-200.

[81]杨树忠, 唐炜, 肖颖奕, 等. 稀土金属对超细晶WC-Co硬质合金组织和性能的影响[J]. 中国钨业, 2019, 34(05): 59-64.

[82]吴厚平, 张立, 王振波, 等. 镧、铈在WC-Co合金中赋存状态的研究[J]. 中国稀土学报, 2009, 27: 693-697.

[83]王铀, 李殿生, 郑国明, 等. WC-Co硬质合金材料的纳米稀土改性[J]. 硬质合金, 2012, 29(01): 53-59.

[84]岑升波, 陈辉, 刘艳, 等. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀磨损性能的影响[J]. 热喷涂技术, 2015, 7(03): 13-19.

[85]周红霞, 王亮, 彭飞, 等. 纳米稀土对热喷涂WC-12Co 涂层的改性作用[J]. 材料热处理学报, 2009, 30: 162.

[86]Wood R, Herd S, Thakare M. A critical review of the tribocorrosion of cemented and thermal sprayed tungsten carbide[J]. Tribology International, 2018, 119: 491-509.

[87]黄新春, 朱佳, 冀晓鹃. 等. WC-10Co-4Cr 粉末及涂层性能研究[J]. 热喷涂技术, 2010, 2(02): 7-10.

[88]王群. 热喷涂(焊)金属WC涂层组织、性能及抗磨粒磨损行为研究[D]. 长沙: 湖南大学, 2011.

[89]余翔. 超音速火焰制备的不同结构WC-CoCr涂层抗空蚀性能研究[D]. 武汉: 武汉理工大学, 2017.

[90]Teixeira V. Numerical analysis of the influence of coating porosity and substrate elastic properties on the residual stresses in high temperature graded coatings[J]. Surface and Coatinggs Technology, 2001, 146-147: 79-84.

[91]Novais R, Seabra M, Labrincha J, Ceramic tiles with controlled porosity and low thermal conductivity by using pore-forming agents[J]. Ceramics International, 2014, 40: 11637-11648.

[92]Portinhaa A, Teixeiraa V, Carneiroa J, et al. Characterization of thermal barrier coatings with a gradient in porosity[J]. Surface and Coatinggs Technology, 2005, 195: 245-251.

[93]逯平平,李新梅,梁存光,等. 热处理对等离子喷涂WC-12Co涂层性能的影响[J]. 材料热处理学报, 2019, 40(05): 123-129.

[94]王健, 田文慧, 赵嘉卿, 等. 水力机械中的空蚀研究综述[J]. 船舶力学, 2020, 24(04): 536-542.

[95]ASTM G32-16, Standard test method for cavitation erosion using vibratory apparatus[S]. Philadephia: American Society of Testing Materials, 2016.

[96]中华人民共和国国家质量监督检验检总局. GB6383-2009振动空蚀实验方法[S]. 北京:中国标准出版社, 2009.

[97]Ji S, Li Z, Du J, et al. Microstructure and phase analysis of WC-12Co coatings sprayed on Ti6Al4V alloy by HVOF[J]. Rare Met Mater Eng, 2012, 41(11): 2005-2008.

[98] Hong S, Wu Y, Zheng Y, et al. Microstructure and electrochemical properties of nanostructured WC–10Co–4Cr coating prepared by HVOF spraying[J]. Surface and Coatings Technology, 2013, 235: 582-588.

[99] 陈小明, 周夏凉, 吴燕明, 等. 超音速火焰喷涂微纳米结构WC-10Co4Cr涂层及其性能[J]. 金属热处理, 2016, 41(05): 52−56.

[100] Sharma S. Erosive wear study of rare earth modified HVOF-sprayed soatings using design of experiment[J]. Journal of Thermal Spray Technology, 2012, 21(01): 49-61.

[101] Du L, Xu B, Dong S, et al. Sliding wear behavior of the supersonic plasma sprayed WC–Co coating in oil containing sand[J]. Surface and Coatings Technology, 2008, 202(15): 3709-3714.

[102] 杭宗秋. 稀土改性WC/Co涂层的抗高温性能及界面第一性原理计算的研究[D]. 重庆: 西南交通大学, 2018.

[103] 邝海, 谭敦强, 何文, 等. 稀土元素对硬质合金影响的研究进展[J]. 稀有金属与硬质合金, 2018, 46(03): 69-74.

[104] 凌芹, 程皓然, 范增军, 等. 纳米稀土对超音速火焰喷涂WC-10Co-4Cr涂层的改性研究[J]. 中国涂料, 2017, 32(07): 58-62.

[105] Qi X, Zhu S. Effect of CeO2 addition on thermal shock resistance of WC–12% Co coating deposited on ductile iron by electric contact surface strengthening[J]. Applied Surface Science, 2015, 349: 792-797.

[106] 邓秋元. 稀土强化硬质合金的机理研究进展[J]. 稀有金属, 1993(06): 448-454.

[107] 陈卫. 几种海洋工程常用金属的空泡腐蚀性能[J]. 热加工工艺, 2015, 44(08): 17-20.

中图分类号:

 TG148    

条码号:

 002000074130    

馆藏号:

 YD10002251    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式