- 无标题文档
查看论文信息

中文题名:

 

基于气体动理学格式-相场法模型的枝晶生长数值模拟

    

姓名:

 王瑜    

学号:

 1049722004821    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080200    

学科名称:

 工学 - 机械工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 交通与物流工程学院    

专业:

 机械工程    

研究方向:

 机械工程,凝固微观数值模拟    

第一导师姓名:

 李维东    

第一导师院系:

 交通与物流工程学院    

完成日期:

 2023-03-20    

答辩日期:

 2023-05-14    

中文关键词:

 

数值模拟 ; 枝晶生长 ; 自然对流 ; 气体动理学格式 ; 相场法

    

中文摘要:

激光焊接熔池中的金属凝固过程和该过程中产生的微观结构对焊缝的机械性能有重要的影响,金属凝固过程中常见的微观组织是枝晶组织,枝晶生长是一个复杂的微观过程,涉及流场的流动、传热、界面曲率及动力学等多种因素的影响。本文通过数值模拟的方式研究凝固过程中枝晶生长的规律,采用气体动理学格式 (Gas-kinetic scheme,GKS) 模拟流场和温度场,采用相场法 (Phase-field,PF) 模拟枝晶生长,并建立两者的耦合模型模拟复杂流动下的枝晶生长行为。通过数值模拟的方法对微观组织的生长机制进行研究,对理解和掌握焊接材料宏观属性有重要的指导意义。本文所做的工作如下:

(1) 本文根据气体动理学格式和相场法的基本原理,考虑熔体的流动、晶体的生长以及流场内的传热效应,建立了适用于模拟纯金属非等温凝固过程中枝晶生长的GKS-PF耦合模型。其中,采用PF方法模拟枝晶生长,采用GKS计算流场和温度场,两者通过温度场源项进行耦合。

(2) 分别采用模拟封闭方腔自然对流问题和模拟等轴枝晶的生长情况对GKS和GSK-PF耦合模型进行验证,应用GKS-PF耦合模型模拟自然对流作用下枝晶的生长过程。模拟结果表明,自然对流的存在加速了热流传输,改变了温度场的对称分布,在晶臂附近出现了涡流,促进了上游晶臂的生长,抑制了下游晶臂的生长,枝晶界面呈非对称形貌。

(3) 采用GKS-PF耦合模型研究了相场的主要参数,如过冷度、各向异性强度系数和耦合系数等对枝晶生长的影响规律。模拟结果表明:相场模型的主要参数对模拟结果有重要影响,随着过冷度、各向异性系数和耦合系数的增加,枝晶形貌发生了较大变化,能够更快、更明显地呈现出等轴枝晶的特征。

(4) 对多个枝晶互相影响的生长过程进行了模拟研究,提出了一种基于元胞自动机方法 (Cellular automata,CA) 的多枝晶随机择优生长取向模型,分别模拟了纯扩散条件下多个枝晶单择优取向角和多择优取向角枝晶生长形态。结果表明,多择优取向角时各个枝晶的碰撞更加激烈,形貌变得更加复杂。随后对自然对流作用下多个枝晶的生长过程进行了模拟研究,并且对比了不同生长条件下的枝晶轮廓,清晰的观察到了不同位置处枝晶形貌的变化。

参考文献:

[1] Xiao R, Zhang X. Problems and issues in laser beam welding of aluminum–lithium alloys[J]. Journal of Manufacturing Processes, 2014, 16(2): 166-175.

[2] Enz J, Kumar M, Riekehr S, et al. Mechanical properties of laser beam welded similar and dissimilar aluminum alloys[J]. Journal of Manufacturing Processes, 2017, 29: 272-280.

[3] Leo P, Renna G, Casalino G, et al. Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy[J]. Optics & Laser Technology, 2015, 73: 118-126.

[4] Wang L, Wei Y, Chen J, et al. Macro-micro modeling and simulation on columnar grains growth in the laser welding pool of aluminum alloy[J]. International Journal of Heat and Mass Transfer, 2018, 123: 826-838.

[5] Glicksman M, Schaefer R, Ayers J. Dendritic growth-A test of theory[J]. Metallurgical Transactions A, 1976, 7: 1747-1759.

[6] Kurz W, Fisher D, Trivedi R. Progress in modelling solidification microstructures in metals and alloys: dendrites and cells from 1700 to 2000[J]. International Materials Reviews, 2018, 64(6): 311-354.

[7] 王勇. 纯金属焊接熔池枝晶生长的相场法模拟初探[D]. 哈尔滨工业大学, 2009.

[8] Ding Y, Yuan X, Guo T, et al. Phase field simulation of dendrite growth under convection[J]. Acta Metallurgica Sinica (English Letters), 2010, 23(2): 121-128.

[9] Du L, Zhang R. Phase-field simulation of dendrite growth in the presence of lateral constraints[J]. Progress in Natural Science: Materials International, 2014, 24: 291-294.

[10] Tönhardt R, Amberg G. Dendritic growth of randomly oriented nuclei in a shear flow[J]. Journal of Crystal Growth, 2000, 213: 161-187.

[11] Zhu M, Stefanescu D. Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys[J]. Acta Materialia, 2007, 55: 1741-1755.

[12] Zhu M, Lee S, Hong C. Modified cellular automaton model for the prediction of dendritic growth with melt convection[J]. Physical Review E, 2004, 69(6): 061610.

[13] 朱鸣芳, 戴挺, 李成允, 等. 对流作用下枝晶生长行为的数值模拟[J]. 中国科学: E 辑, 2005, 35(7): 673-688.

[14] Choudhury A, Reuther K, Wesner E, et al. Comparison of phase-field and cellular automaton models for dendritic solidification in Al–Cu alloy[J]. Computational Materials Science, 2012, 55: 263-268.

[15] 张光跃, 荆涛, 柳百成. 相场方法原理及在微观组织模拟中的应用[J]. 机械工程学报, 2003, 39(5): 6-9.

[16] Yin H, Felicelli S, Wang L. Simulation of a dendritic microstructure with the lattice Boltzmann and cellular automaton methods[J]. Acta Materialia, 2011, 59(8): 3124-3136.

[17] Meng X, Cui L, Shi Y, et al. A CA-LBM model for simulating dendrite growth with forced convection[J]. Journal of Iron and Steel Research International, 2021, 28(8): 997-1008.

[18] Sakane S, Takaki T, Ohno M, et al. Three-dimensional morphologies of inclined equiaxed dendrites growing under forced convection by phase-field-lattice Boltzmann method[J]. Journal of Crystal Growth, 2018, 483: 147-155.

[19] Eshraghi M, Felicelli S, Jelinek B. Three dimensional simulation of solutal dendrite growth using lattice Boltzmann and cellular automaton methods[J]. Journal of Crystal Growth, 2012, 354(1): 129-134.

[20] Guo Z, Liu H, Luo L-S, et al. A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows[J]. Journal of Computational Physics, 2008, 227: 4955-4976.

[21] Xu K, He X. Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations[J]. Journal of Computational Physics, 2003, 190: 100-117.

[22] Xu K. Gas-kinetic schemes for unsteady compressible flow simulations[R]. Computational Fluid Dynamics, Annual Lecture Series, 29 th, Rhode-Saint-Genese, Belgium, 1998.

[23] 杨云峰, 谢明, 程勇, 等. 金属凝固微观组织数值模拟研究现状[J]. 材料导报, 2014, 28(21): 24-29.

[24] Oldfield W. A quantitative approach to casting solidification: freezing of cast iron[J]. ASM Transactions, 1966, 59(2): 945-960.

[25] Hunt J. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering, 1984, 65(1): 75-83.

[26] Rappaz M, Thévoz P. Solute diffusion model for equiaxed dendritic growth: Analytical solution[J]. Acta Metallurgica, 1987, 35(12): 2929-2933.

[27] Spittle J, Brown S. Computer simulation of the effects of alloy variables on the grain structures of castings[J]. Acta Metallurgica, 1989, 37(7): 1803-1810.

[28] Radhakrishnan B, Zacharia T. Monte Carlo simulation of grain boundary pinning in the weld heat-affected zone[J]. Metallurgical and Materials Transactions A, 1995, 26(8): 2123-2130.

[29] 刘国权, 宋晓艳, 于海波, 等. 一种 Monte Carlo 仿真新算法及其对三维个体晶粒长大速率拓扑依赖性理论方程的验证[J]. 金属学报, 1999, 35(3): 245-248.

[30] 何燕, 张立文, 牛静. CA 法及其在材料介观模拟中的应用[J]. 金属热处理, 2005, 30(5): 72-77.

[31] Von J, Burks A. Theory of self-reproducing automata[J]. IEEE Transactions on Neural Networks, 1966, 5(1): 3-14.

[32] Packard N. Theory and applications of cellular automata[M]. Singapore: World Scientific, 1986.

[33] Rappaz M, Gandin C. Probabilistic modelling of microstructure formation in solidification processes[J]. Acta Metallurgica et Materialia, 1993, 41(2): 345-360.

[34] Spittle J, Brown S. A 3D cellular automaton model of coupled growth in two component systems[J]. Acta Metallurgica et Materialia, 1994, 42(6): 1811-1815.

[35] Brown S, Bruce N. A 3-dimensional cellular automaton model of ‘free’dendritic growth[J]. Scripta Metallurgica et Materialia, 1995, 32(2): 241-246.

[36] Zhu M, Hong C. A three dimensional modified cellular automaton model for the prediction of solidification microstructures[J]. ISIJ International, 2002, 42(5): 520-526.

[37] Zhang S, Li C, Li R. Cellular automata-lattice Boltzmann simulation of multi-dendrite motion under convection based on dynamic grid technology[J]. Materials Today Communications, 2022, 31: 103342.

[38] Lee W, Jeong Y, Lee J, et al. Numerical simulation for dendrite growth in directional solidification using LBM-CA (cellular automata) coupled method[J]. Journal of Materials Science & Technology, 2020, 49: 15-24.

[39] 戴闻骁, 雷刚, 郑晓红, 等. 基于LBM-CA模型的自然对流下液氢中固空枝晶生长模拟[J]. 低温工程, 2021, (03): 33-39+46.

[40] 马旺, 陈洪建, 王佳, 等. 基于LBM-CA耦合模型的定向凝固多晶硅小平面枝晶生长数值模拟[J]. 硅酸盐学报, 2020, 48(01): 140-146.

[41] Yu Y, Li Y, Lin F, et al. A multi-grid cellular automaton model for simulating dendrite growth and its application in additive manufacturing[J]. Additive Manufacturing, 2021, 47: 102284.

[42] Wei J, Wang X, Yao M. Field variable diffusion cellular automaton model for dendritic growth with multifold symmetry for the solidification of alloys[J]. Modelling and Simulation in Materials Science and Engineering, 2021, 29(7): 075005.

[43] 许庆彦, 熊守美, 柳百成. 铸造合金的微观组织模拟研究进展[J]. 材料导报, 2002, (01): 11-14.

[44] Van J. The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density[J]. Journal of Statistical Physics, 1979, 20(2): 200-244.

[45] 王刚刚. 基于 PF-LBM 模型二元合金枝晶生长的三维模拟研究[D]. 兰州理工大学, 2016.

[46] Fix G, Gunzburger M, Peterson J. On finite element approximations of problems having inhomogeneous essential boundary conditions[J]. Computers & Mathematics with Applications, 1983, 9(5): 687-700.

[47] Kobayashi R. Modeling and numerical simulations of dendritic crystal growth[J]. Physica D: Nonlinear Phenomena, 1993, 63(3-4): 410-423.

[48] Wheeler A, Boettinger W, McFadden G. Phase-field model of solute trapping during solidification[J]. Physical Review E, 1993, 47(3): 1893.

[49] Karma A, Rappel W-J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics[J]. Physical Review E, 1996, 53(4): R3017.

[50] Kim S, Kim W, Suzuki T. Phase-field model for binary alloys[J]. Physical Review E, 1999, 60(6): 7186.

[51] Karma A, Rappel W-J. Phase-field model of dendritic sidebranching with thermal noise[J]. Physical Review E, 1999, 60(4): 3614.

[52] Rojas R, Takaki T, Ohno M. A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection[J]. Journal of Computational Physics, 2015, 298: 29-40.

[53] Yang C, Xu Q, Liu B. Phase-field–lattice Boltzmann simulation of dendrite growth under natural convection in multicomponent superalloy solidification[J]. Rare Metals, 2020, 39(2): 147-155.

[54] Ohno M, Takaki T, Shibuta Y. Numerical testing of quantitative phase-field models with different polynomials for isothermal solidification in binary alloys[J]. Journal of Computational Physics, 2017, 335: 621-636.

[55] Bellon B, Boukellal A, Isensee T, et al. Multiscale prediction of microstructure length scales in metallic alloy casting[J]. Acta Materialia, 2021, 207: 116686.

[56] Kavousi S, Zaeem M. Quantitative phase-field modeling of solute trapping in rapid solidification[J]. Acta Materialia, 2021, 205: 116562.

[57] Sakane S, Takaki T, Ohno M, et al. Simulation method based on phase-field lattice Boltzmann model for long-distance sedimentation of single equiaxed dendrite[J]. Computational Materials Science, 2019, 164: 39-45.

[58] Mao S, Wang X, Sun D, et al. Numerical modeling of dendrite growth in a steady magnetic field using the two relaxation times lattice Boltzmann-phase field model[J]. Computational Materials Science, 2022, 204: 111149.

[59] 王智平, 张辛健, 路阳, 等. PF-LBM 模型模拟强迫对流对二元合金枝晶生长的影响[J]. 兰州理工大学学报, 2014, 40(4): 13-17.

[60] 杨帅, 赵宇宏, 陈伟鹏, 等. Ti-4.5 Al 合金定向凝固倾斜枝晶生长的相场法模拟[J]. 特种铸造及有色合金, 2022, 41(6): 769-775.

[61] 朱昶胜, 高宏伟, 马芳兰, 等. 自适应有限元法对合金定向倾斜枝晶生长的相场法模拟[J]. 兰州理工大学学报, 2021, 47(3): 15.

[62] Sun D. A discrete kinetic scheme to model anisotropic liquid–solid phase transitions[J]. Applied Mathematics Letters, 2020, 103: 106222.

[63] Sun D, Xing H, Dong X, et al. An anisotropic lattice Boltzmann–phase field scheme for numerical simulations of dendritic growth with melt convection[J]. International Journal of Heat and Mass Transfer, 2019, 133: 1240-1250.

[64] Xu K, Prendergast K. Numerical Navier-Stokes solutions from gas kinetic theory[J]. Journal of Computational Physics, 1994, 114(1): 9-17.

[65] Xu K. A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial dissipation and Godunov method[J]. Journal of Computational Physics, 2001, 171(1): 289-335.

[66] 李启兵, 徐昆. 气体动理学格式研究进展[J]. 力学进展, 2012, 42(5): 522-537.

[67] 杨关旬. 基于气体动理学格式的方腔流和射流数值模拟研究[D]. 西安工业大学, 2022.

[68] Xu K, KIM C, Martinelli L, et al. BGK-based schemes for the simulation of compressible flow[J]. International Journal of Computational Fluid Dynamics, 1996, 7(3): 213-235.

[69] Xu K. BGK-based scheme for multicomponent flow calculations[J]. Journal of Computational Physics, 1997, 134(1): 122-133.

[70] Su M, Xu K, Ghidaoui M. Low-speed flow simulation by the gas-kinetic scheme[J]. Journal of Computational Physics, 1999, 150(1): 17-39.

[71] Xu K, Lui S. Rayleigh-Bénard simulation using the gas-kinetic Bhatnagar-Gross-Krook scheme in the incompressible limit[J]. Physical Review E, 1999, 60(1): 464.

[72] Li Q, Xu K, Fu S. A high-order gas-kinetic Navier–Stokes flow solver[J]. Journal of Computational Physics, 2010, 229(19): 6715-6731.

[73] Ren X, Xu K, Shyy W, et al. A multi-dimensional high-order discontinuous Galerkin method based on gas kinetic theory for viscous flow computations[J]. Journal of Computational Physics, 2015, 292: 176-193.

[74] Pan L, Xu K, Li Q, et al. An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier–Stokes equations[J]. Journal of Computational Physics, 2016, 326: 197-221.

[75] Jin C, Xu K. An adaptive grid method for two-dimensional viscous flows[J]. Journal of Computational Physics, 2006, 218(1): 68-81.

[76] Zhu L, Guo Z, Xu K. Discrete unified gas kinetic scheme on unstructured meshes[J]. Computers & Fluids, 2016, 127: 211-225.

[77] 许丁, 刘欣, 孙祥. 尺度自适应的离散统一气体动理学格式[J]. 工程数学学报, 2021, 38(05): 610-626.

[78] Karma A, Rappel W-J. Quantitative phase-field modeling of dendritic growth in two and three dimensions[J]. Physical Review E, 1998, 57(4): 4323.

[79] Zhao Z, Wen M, Li W. A coupled gas-kinetic BGK scheme for the finite volume lattice Boltzmann method for nearly incompressible thermal flows[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120584.

中图分类号:

 TG111    

条码号:

 002000074157    

馆藏号:

 YD10002287    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式