- 无标题文档
查看论文信息

中文题名:

 滇池草海沉积物对入湖河道水体中氮的去除研究    

姓名:

 陈俊男    

学号:

 1049731603619    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083002    

学科名称:

 环境工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 武汉理工大学    

院系:

 资源与环境工程学院    

专业:

 环境工程    

研究方向:

 湖泊生态修复    

第一导师姓名:

 陈晓国    

第一导师院系:

 武汉理工大学    

第二导师姓名:

 吴幸强    

完成日期:

 2018-05-26    

答辩日期:

 2018-05-18    

中文关键词:

 沉积物 ; 锯末 ; 尾水 ; 菌群结构 ; 脱氮    

中文摘要:

      滇池草海东岸的船房河接纳了大部分来自上游污水处理厂排放的尾水,虽然污水处理厂的尾水排放可达一级A标准(GB18918-2002),但一级A标准的氮浓度和《地表水环境质量标准》(GB3838-2002)功能要求最低的Ⅴ类水标准还有较大的一段距离。随着滇池流域污水处理负荷逐年增加,尾水正成为滇池草海中氮的重要来源之一。沉积物作为湖泊生态系统的重要组成部分,对水体中氮的去除起着关键的作用,沉积物对尾水中氮的转化能力如何,对于草海水体氮负荷的削减具有重要影响。

本研究以滇池草海沉积物为研究对象,通过室内模拟实验研究了沉积物对船房河入湖河道水体中氮的去除过程,并通过高通量测序技术,对沉积物样品的菌群结构进行了测定。具体内容包括,沉积物厚度和外加碳源对氮去除的影响,以及不同采样点沉积物菌群结构的差异及添加碳源的影响。具体研究内容与结果如下:

(1)脱氮实验结果表明,滇池草海3个采样点的沉积物对上覆水中的氮均有一定的去除能力,各点去除速率差异较小。表层沉积物厚度为1.0 cm时,对上覆水中氮的去除效果最佳。

(2)沉积物中外加碳源,可显著提高上覆水中氮的去除速率,当沉积物与锯末干重比为16:1时,沉积物对上覆水氮的去除效果最优。

(3)对滇池草海3个采样点的沉积物进行16S rRNA高通量测序,结果显示:不同采样点的沉积物在各分类水平上的优势菌种类近似,但各物种在各分类水平上的相对丰度有较大差异,细菌的多样性也有很大差异。

(4)添加锯末后的沉积物样品细菌多样性减少,但丰富度上升。在门水平上,优势类群不变,但添加锯木后的沉积物中Proteobacteria的相对丰度上升较大;在纲水平上,优势类群由添加锯木前的Gammaproteobacteria和Actinobacteria转变为Betaproteobacteria,且Gammaproteobacteria的相对丰度降低,说明锯木的添加主要是对Proteobacteria中Betaproteobacteria的生长起促进作用,可能对Gammaproteobacteria起抑制作用。在属水平上,几个在添加锯末前相对丰度较低的(<1%)菌属丰度显著增加,如Simplicispira、Pseudomonas、Hydrogenophaga和Thauera,这些菌对有机物具有降解能力,并且有些菌还具有反硝化功能。添加锯末后,PAOs相对丰度增长,而GAOs相对丰度下降。这些结果表明,添加碳源加强了沉积物中反硝化菌的生长,加速了微生物的反硝化作用。

参考文献:

[1] 杨桂山,马荣华,张路,等.中国湖泊现状及面临的重大问题与保护策略[J].湖泊科学,2010,22(6):799-810.

[2] 马荣华,杨桂山,段洪涛,等.中国湖泊的数量、面积与空间分布[J].中国科学:地球科学,2011,41(3):394-401.

[3] Qin B, Zheng L, K Havens. Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China[J]. Hydrobiologia, 2007, 581: 1-2.

[4] 环境保护部.2016年中国环境状况公报[J].环保工作资料选,2017(6).

[5] 陈永川,汤利,张德刚,等.滇池沉积物总氮的时空变化特征研究[J].土壤,2007,39(6):879-883.

[6] 段昌群,王焕校.滇池的区域生态经济容量特点和昆明城市功能关系[J].城市环境与城市生态,1992(3):16-20.

[7] 杨鹏民.滇池污染现状以及治理方案研究分析[J].科技资讯,2015,13(30):106-107.

[8] 阎世辉.关于我国水环境形势的分析及政策建议[J].环境保护,2001(3):10-13.

[9] Nyenje P M, Foppen J W, Uhlenbrook S, et al. Eutrophication and nutrient release in urban areas of sub-Saharan Africa--a review[J]. Science of the Total Environment, 2010, 408(3): 447-455.

[10] 蒋火华,吴贞丽.世界典型湖泊水质探研[J].世界环境,2000(4):35-37.

[11] 郭焕庭.国外流域水污染治理经验及对我们的启示[J].环境保护,2001(8):39-40.

[12] 涂建峰,江小年,郑丰.欧洲湖泊富营养化治理战略研究[J].水利水电快报,2007(14):8-11.

[13] Mbukwa E A, Boussiba S, Wepener V, et al. Potential use of dissolved cyanobacterial DNA for monitoring toxic Microcystis, cyanobacteria in filtered water[J]. Physics & Chemistry of the Earth Parts A/b/c, 2013, 66(8): 167-172.

[14] 冯明祥,王宏,刘鹏飞,等.日本水环境考察[J].东北水利水电,1999(2):45-46.

[15] 涂建峰,郑丰.美国湖泊富营养化治理战略研究[J].治黄科技信息,2011(6):21-23.

[16] Taranu Z E, Gregory-Eaves I. Quantifying Relationships Among Phosphorus, Agriculture, and Lake Depth at an Inter-Regional Scale[J]. Ecosystems, 2008, 11(5): 715-725.

[17] Liu W, Zhang Q, Liu G. Lake eutrophication associated with geographic location, lake morphology and climate in China[J]. Hydrobiologia, 2010, 644(1): 289-299.

[18] N?ges T. Relationships between morphometry, geographic location and water quality parameters of European lakes[J]. Hydrobiologia, 2009, 633(1): 33-43.

[19] Brown L J, Taleban V, Gharabaghi B, et al. Seasonal and spatial distribution patterns of atmospheric phosphorus deposition to Lake Simcoe, ON[J]. Journal of Great Lakes Research, 2011, 37(2): 15-25.

[20] Rawson D S. Some physical and chemical factors in the metabolism of lakes[J]. Am Assoc Adv Sci Publ 1939, 10: 9-26.

[21] Jingtao, Ding, Jinling, et al. Spatial heterogeneity of lake eutrophication caused by physiogeographic conditions: An analysis of 143 lakes in China[J]. Journal of Environmental Sciences, 2015, 30(4): 140-147.

[22] Bláhová L, Adamovsky O, Kubala L, et al. The isolation and characterization of lipopolysaccharides from Microcystis aeruginosa, a prominent toxic water bloom forming cyanobacteria[J]. Toxicon, 2013, 76: 187-196.

[23] 孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(03):589-595.

[24] 秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策[J].地球科学进展,2007,22(9):896-906.

[25] 李世杰.中国湖泊的变迁[J].科学大观园,2007(7):6-25.

[26] 赵磊,刘永,李玉照,等.湖泊生态系统稳态转换理论与驱动因子研究进展[J].生态环境学报,2014(10):1697-1707.

[27] Yang J, Hong L, Yang J, et al. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs[J]. Science of the Total Environment, 2016, s 557–558: 445-452.

[28] 蒋金花,潘小川,陶勇.109水体有机污染物对人体健康的影响[J].环境卫生学杂志,2003,30(6):321-325.

[29] 王国芳.高密度蓝藻消亡对富营养化湖泊黑臭水体形成的作用及机理[D].东南大学,2015.

[30] 李益敏,彭永岸,王玉朝,等.滇池污染特征及治理对策[J].云南地理环境研究,2003,15(4):32-38.

[31] 滇池规划编制技术组.滇池流域水污染防治“十二五”规划编制大纲[R].2010.

[32] 宋培忠.牛栏江一滇池补水工程水质影响模拟与评价[D].昆明理工大学,2015.

[33] Makundi I N. A study of heavy metal pollution in Lake Victoria sediments by energy dispersive X-ray fluorescence[J]. Journal of Environmental Science and Health, Part A, 2001, 36(6): 909-921.

[34] 淤嘉祜,王开绪,王灿东,等.滇池污染治理的原则和主要措施[J].环境科学导刊,1998(4):30-32.

[35] 杨健强.滇池污染的治理和生态保护[J].水利学报,2001,32(5):17-21.

[36] 徐旌."富营养化湖泊治理及湖泊管理昆明国际讨论会"综述[J].云南地理环境研究,2002,14(1):94-98.

[37] 王元军.南四湖水域环境现状及生态管理对策[J].中国水利,2009(5):48-50.

[38] 李辉.滇池治理面临三大难题[J].西部大开发,2006(10):38-42.

[39] 郭慧光.滇池治理与滇中调水[J].环境科学导刊,2007,26(6):30-33.

[40] 王雯雯.基于无机污染物风险分级的太湖污染底泥环保疏浚范围的确定方法研究[D].中国环境科学研究院,2012.

[41] 胡小贞,金相灿,刘倩,等.滇池污染底泥环保疏浚一期工程实施后环境效益评估[J].环境监控与预警,2010,02(4):46-49.

[42] 和丽萍,陈异晖,赵祥华.云南高原湖泊污染底泥环境疏浚工程设计要点问题探析[J].环境科学导刊,2006,25(a01):40-42.

[43] Schindler D W, Armstrong, F. A. J., Holmgren, S. K., et al. Eutrophication of Lake 227, Experimental Lakes Area, northwestern Ontario, by addition of phosphate and nitrate[J]. Journal of the Fisheries Board of Canada, 1971, 28(11): 1763-1782.

[44] Schelske C L. Eutrophication: Focus on Phosphorus[J]. Science, 2009, 324(5928): 724-735.

[45] Smith V H, Schindler D W. Eutrophication science: where do we go from here?[J]. Trends in Ecology & Evolution, 2009, 24(4): 201-207.

[46] Schindler D W, Hecky R E, Findlay D L, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input Results of a 37-year whole-ecosystem experiment[J]. Proceedings of the National Academy of Sciences, 2008, 105(32): 11254-11258.

[47] Russell B D, Connell S D. Eutrophication science: moving into the future[J]. Trends in Ecology & Evolution, 2009, 24(10): 527-529.

[48] Conley D J, Paerl H W, Howarth R W, et al. Controlling eutrophication: nitrogen and phosphorus[J]. Science, 2009, 323(5917): 1014-1015.

[49] Jianlong W, Ning Y. Partial nitrification under limited dissolved oxygen conditions[J]. Process Biochemistry, 2004, 39(10): 1223-1229.

[50] Chen Z, Wen Q, Wang J, et al. Simultaneous removal of carbon and nitrogen from municipal-type synthetic wastewater using net-like rotating biological contactor (NRBC)[J]. Process Biochemistry, 2006, 41(12): 2468-2472.

[51] Jianlong W, Jing K. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor[J]. Process Biochemistry, 2005, 40(5): 1973-1978.

[52] Soares M I M, Aharon Abeliovich. Wheat straw as substrate for water denitrification[J]. Water research, 1998, 32(12): 3790-3794.

[53] Ghafari S, Hasan M, Aroua M K. Bio-electrochemical removal of nitrate from water and wastewater--a review[J]. Bioresource Technology, 2008, 99(10): 3965-3974.

[54] Karanasios K A, Vasiliadou I A, Pavlou S, et al. Hydrogenotrophic denitrification of potable water: a review[J]. Journal of Hazardous Material, 2010, 180(1-3): 20-37.

[55] van Rijn J, Tal Y, Schreier H J. Denitrification in recirculating systems: Theory and applications[J]. Aquacultural Engineering, 2006, 34(3): 364-376.

[56] Schipper L A, Robertson W D, Gold A J, et al. Denitrifying bioreactors—An approach for reducing nitrate loads to receiving waters[J]. Ecological Engineering, 2010, 36(11): 1532-1543.

[57] Ovez B, Mergaert J, Saglam M. Biological Denitrification in Drinking Water Treatment Using the Seaweed Gracilaria Verrucosa as Carbon Source and Biofilm Carrier[J]. Water Environment Research, 2006, 78(4): 430-434.

[58] DeSimone L A, Howes B L. Nitrogen transport and transformations in a shallow aquifer receiving wastewater discharge: A mass balance approach[J]. Water Resources Research, 1998, 34(2): 271-285.

[59] Pabich W J, Ivan Valiela, Harold F. Hemond. . Relationship between DOC concentration and vadose zone thickness and depth below water table in groundwater of Cape Cod, USA[J]. Biogeochemistry, 2001, 55(3): 247-268.

[60] Jacinthe P A, Groffman P M, Gold A J, et al. Patchiness in microbial nitrogen transformations in groundwater in a riparian forest[J]. Journal of Environmental Quality, 1998, 27(1): 156-164.

[61] Devito K J, Fitzgerald D, Hill A R, et al. Nitrate dynamics in relation to lithology and hydrologic flow path in a river riparian zone[J]. Journal of Environmental Quality, 2000, 29(4): 1075-1084.

[62] Smith R L, John H. Duff. Denitrification in a Sand and Gravel Aquifer[J]. Applied and Environmental Microbiology, 1988, 54(5): 1071-1078.

[63] Starr R C, Robert W. Gillham. Denitrification and organic carbon availability in two aquifers[J]. Groundwater, 1993, 31(6): 934-947.

[64] Rabus R, Friedrich Widdel. Utilization of Alkylbenzenes during Anaerobic Growth of Pure Cultures of Denitrifying Bacteria on Crude Oil[J]. Applied and Environmental Microbiology, 1996, 62(4): 1238-1241.

[65] Morgan P, Stephen T. Lewis, Robert J. Watkinson. Biodegradation of benzene, toluene, ethylbenzene and xylenes in gas-condensate-contaminated ground-water[J]. Environmental Pollution, 1993, 82(2): 181-190.

[66] Johnson S J, Woolhouse K J, Prommer H, et al. Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater[J]. Engineering Geology, 2003, 70(3-4): 343-349.

[67] Kao C M, Borden, R. C. Site specific variability in BTEX biodegradation under denitrifying conditions[J]. Groundwater, 1997, 35(2): 305-311.

[68] Eckert P, Appelo C A J. Hydrogeochemical modeling of enhanced benzene, toluene, ethylbenzene, xylene (BTEX) remediation with nitrate[J]. Water Resources Research, 2002, 38(8): 5-1-5-11.

[69] Broholm M M, Arvin E. Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions[J]. Journal of Contaminant Hydrology, 2000, 44(3-4): 239-273.

[70] Wilhelm S R, Schiff S L, Robertson W D. Chemical fate and transport in a domestic septic system: unsaturated and saturated zone geochemistry[J]. Environmental Toxicology and Chemistry, 1994, 13(2): 193-203.

[71] Robertson W D, J. A. Cherry, E. A. Sudicky. Ground-water contamination from two small septic systems on sandaquifers[J]. Groundwater, 1991, 29(1): 82-92.

[72] MacQuarrie K T B, Sudicky E A, Robertson W D. Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers: II. Model application to a field site[J]. Journal of Environmental Quality, 2001, 47(1): 85-104.

[73] Rivett M O, Buss S R, Morgan P, et al. Nitrate attenuation in groundwater: a review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232.

[74] Modin O, Fukushi K, Yamamoto K. Denitrification with methane as external carbon source[J]. Water Research, 2007, 41(12): 2726-2738.

[75] Bill K A, Bott C B, Murthy S N. Evaluation of alternative electron donors for denitrifying moving bed biofilm reactors (MBBRs)[J]. Water Science Technology, 2009, 60(10): 2647-2657.

[76] Hiraishi A, Khan S T. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment[J]. Applied Microbiology and Biotechnology, 2003, 61(2): 103-109.

[77] Boley A, W R. Müller. Denitrification with polycaprolactone as solid substrate in a laboratory-scale recirculated aquaculture system[J]. Water Science and Technology 2005, 52(10-11): 495-502.

[78] Zhou H Z X, Wang J. Nitrate removal from groundwater using biodegradable polymers as carbon source and biofilm support[J]. International Journal of Environment and Pollution, 2009, 38(3): 339-348.

[79] Zhao X M X, Wang J. Biological denitrification of drinking water using biodegradable polymer[J]. International Journal of Environment and Pollution, 2009, 38(3): 328-338.

[80] Takahashi M, Yamada T, Tanno M, et al. Nitrate removal efficiency and bacterial community dynamics in denitrification processes using poly (L-lactic acid) as the solid substrate. [J]. Microbes and Environments, 2011, 26(3): 212-219.

[81] Wu W, Yang L, Wang J. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor[J]. Environmental Science and Pollution Research, 2012, 20(1): 333-339.

[82] Walters E, Hille A, He M, et al. Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material[J]. Water Research, 2009, 43(18): 4461-4468.

[83] Shen Z, jianlong Wang. Biological denitrification using cross-linked starch PCL blends as solid carbon source and biofilm carrier[J]. Bioresource Technology, 2011, 102(19): 8835-8838.

[84] Honda Y, Osawa Z. Microbial denitrification of wastewater using biodegradable polycaprolactone[J]. Polymer Degradation and Stability 2002, 76(2): 321-327.

[85] Mergaert J, Boley A, Cnockaert M C, et al. Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor[J]. Systematic and Applied Microbiology, 2001, 24(2): 303-310.

[86] Chu L, Wang J. Denitrification performance and biofilm characteristics using biodegradable polymers PCL as carriers and carbon source[J]. Chemosphere, 2013, 91(9): 1310-1316.

[87] Robertson W D. Nitrate removal rates in woodchip media of varying age[J]. Ecological Engineering, 2010, 36(11): 1581-1587.

[88] Xu Z, Shao L, Yin H, et al. Biological denitrification using corncobs as a carbon source and biofilm carrier[J]. Water Environment Research, 2009, 81(3): 242-247.

[89] Volokita M, Belkin S, Abeliovich A, et al. Biological denitrification of drinking water using newspaper[J]. Water Research, 1996, 30(4): 965-971.

[90] Ovez B. Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source[J]. Process Biochemistry, 2006, 41(6): 1289-1295.

[91] Cameron S G, Schipper L A. Hydraulic properties, hydraulic efficiency and nitrate removal of organic carbon media for use in denitrification beds[J]. Ecological Engineering, 2012, 41(4): 1-7.

[92] Aslan ?, Türkman A. Simultaneous biological removal of endosulfan (α+β) and nitrates from drinking waters using wheat straw as substrate[J]. Environment International, 2004, 30(4): 449-455.

[93] Healy M G, Ibrahim T G, Lanigan G J, et al. Nitrate removal rate, efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors.[J]. Ecological Engineering, 2012, 40(3): 198-209.

[94] Schipper L A, S. C. Cameron, S?ren Warneke. Nitrate removal from three different effluents using large-scale denitrification beds.[J]. Ecological Engineering, 2010, 36(11): 1552-1557.

[95] Warneke S, Schipper L A, Matiasek M G, et al. Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds[J]. Water Research, 2011, 45(17): 5463-5475.

[96] Brettar I, Sanchez-Perez J M, Trémolieres M. Nitrate elimination by denitrification in hardwood forest soils of the Upper Rhine floodplain – correlation with redox potential and organic matter[J]. Hydrobiologia, 2002, 469(1-3): 11-21.

[97] Dahl M, Nilsson B, Langhoff J H, et al. Review of classification systems and new multi-scale typology of groundwater–surface water interaction[J]. Journal of Hydrology, 2007, 344(1-2): 1-16.

[98] Schipper L A, Maja Vojvodi?-Vukovi?. Five years of nitrate removal, denitrification and carbon dynamics in a denitrification wall[J]. Water Research, 2001, 35(14): 3473-3477.

[99] Schipper L A, Maja Vojvodi?-Vukovi?. Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust[J]. Ecological Engineering, 2000, 14(3): 269-278.

[100] Schipper L A, Maja Vojvodi?-Vukovi?. Nitrate removal fromgroundwater using a denitrification wall amended with sawdust.Field trial[J]. Journal of Environmental Quality, 1998, 27(3): 664-668.

[101] D.W.Blowes W D R, C.J.Ptacek, C.Merkley. Removal of agricultural nitrate from tile-drainage effluent water using in-line bioreactors[J]. Journal of Contaminant Hydrology, 1994, 15(3): 207-221.

[102] 张红军.多泥沙河流的沉积物耗氧研究[J].中国环境科学,1992(1):24-28.

[103] Nealson K H. Sediment bacteria: who's there, what are they doing, and what's new?[J]. Annual Review of Earth and Planetary Sciences, 1997, 25(1): 403-434.

[104] Liu F, Lin G, Gao G, et al. Bacterial and archaeal assemblages in sediments of a large shallow freshwater lake, Lake Taihu, as revealed by denaturing gradient gel electrophoresis[J]. Journal of Applied Microbiology, 2009, 106(3): 1022-1032.

[105] Jurgens G, Gl?ckner F-O, Amann R, et al. Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization[J]. FEMS Microbiology Ecology, 2000, 34(1): 45-56.

[106] Edlund A, Soule T, Sj?ling S, et al. Microbial community structure in polluted Baltic Sea sediments[J]. Environmental Microbiology, 2006, 8(2): 223-232.

[107] Parkes R J, Webster G, Cragg B A, et al. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time[J]. Nature, 2005, 436(7049): 390-394.

[108] Nelson D M, Ohene-Adjei S, Hu F S, et al. Bacterial diversity and distribution in the Holocene sediments of a northern temperate lake[J]. Microbial Ecology, 2007, 54(2): 252-263.

[109] Zhao D, Huang R, Zeng J, et al. Diversity analysis of bacterial community compositions in sediments of urban lakes by terminal restriction fragment length polymorphism (T-RFLP)[J]. World Journal of Microbiology and Biotechnology, 2012, 28(11): 3159-3170.

[110] Zeng J, Yang L Y, Liang Y, et al. Spatial distribution of bacterial communities in sediment of a eutrophic lake revealed by denaturing gradient gel electrophoresis and multivariate analysis[J]. Canadian journal of Microbiology, 2008, 54(12): 1053-1063.

[111] Song H, Li Z, Du B, et al. Bacterial communities in sediments of the shallow Lake Dongping in China[J]. Journal of Applied Microbiology, 2012, 112(1): 79-89.

[112] Shao K, Gao G, Wang Y, et al. Vertical diversity of sediment bacterial communities in two different trophic states of the eutrophic Lake Taihu, China[J]. Journal of Environmental Sciences, 2013, 25(6): 1186-1194.

[113] Bai Y, Shi Q, Wen D, et al. Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China[J]. PloS one, 2012, 7(5): e37796.

[114] 吴丰昌,万国江.沉积物—水界面的生物地球化学作用[J].地球科学进展,1996,11(2):191-197.

[115] 杨龙元,蔡启铭.太湖梅梁湾沉积物—水界面氮迁移特征初步研究[J].湖泊科学,1998,10(4):41-47.

[116] Morris J T, Bowden W B. A Mechanistic, Numerical Model of Sedimentation, Mineralization, and Decomposition for Marsh Sediments1[J]. Soil Science Society of America Journal, 1986, 50(1): 96-105.

[117] Viollier E, Rabouille C, Apitz S E, et al. Benthic biogeochemistry: state of the art technologies and guidelines for the future of in situ survey[J]. Journal of Experimental Marine Biology & Ecology, 2003, 285(3): 5-31.

[118] 王心芳,魏复盛,齐文启.水和废水监测分析方法 [M].北京,中国环境科学出版社.2002.

[119] 白晓慧,钟卫国,陈群燕,等.城市内河水体污染修复中沉积物的影响与控制[J].环境科学,2002(s1):91-94.

[120] 史文霞.污染底泥对水体自净的影响及强化自净模式[D].天津大学,2010.

[121] 董晓莹,彭党聪.不同碳氮比下污水反硝化过程中亚硝氮积累的特性研究[J].环境科学学报,2017,37(9):3349-3355.

[122] 庄旭超.微生物原位强化修复技术在城市污染河道治理中的应用[D].华中农业大学,2012.

[123] 徐徽.太湖沉积物—水界面氮的迁移与脱氮转化[D].南京农业大学,2009.

[124] 李亚平.入滇池河口沉积物中反硝化细菌的多样性及其脱氮性能的研究[D].云南大学,2015.

[125] 卢少勇,蔡珉敏,金相灿,等.滇池湖滨带沉积物氮形态的空间分布[J].生态环境学报,2009,18(4):1351-1357.

[126] 冯胜,秦伯强,高光.太湖磷转化细菌与水体磷形态关系[J].湖泊科学,2008,20(4):428-436.

[127] S?ndergaard M, Jensen J P, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia, 2003, 506(1): 135-145.

[128] 高廷耀.水污染控制工程.下册[M].高等教育出版社,1999.

[129] 张恒军,吴群河.底泥的氮、磷释放及其微生物影响的研究[J].环境技术,2003(s1):20-23.

[130] 刘韬,齐国辅,高海鹰.滇池沉积物磷形态的水平分布特征[J].安全与环境工程,2010,17(6):26-29.

[131] 吴汉.异龙湖近百年来湖泊沉积物有机碳、氮同位素特征及其环境指示意义[D].云南师范大学,2016.

[132] 彭丹,金峰,吕俊杰,等.滇池底泥中有机质的分布状况研究[J].土壤,2004,36(5):568-572.

[133] 王敏.水源水库沉积物特性研究及其质量评价体系构建[D].西安理工大学,2016.

[134] Ali I, Asim M, Khan T A. Low cost adsorbents for the removal of organic pollutants from wastewater[J]. Journal of Environmental Management, 2012, 113(1): 170-183.

[135] Diniz V, Weber M E, Volesky B, et al. Column biosorption of lanthanum and europium by Sargassum[J]. Water Research, 2008, 42(1-2): 363-371.

[136] Doke K, Yusufi M, Joseph R, et al. Biosorption of hexavalent chromium onto wood apple shell: equilibrium, kinetic and thermodynamic studies[J]. Desalination and Water Treatment, 2012, 50(1-3): 170-179.

[137] Mahmood-ul-Hassan M, Yasin M, Yousra M, et al. Kinetics, isotherms, and thermodynamic studies of lead, chromium, and cadmium bio-adsorption from aqueous solution onto Picea smithiana, sawdust[J]. Environmental Science & Pollution Research International, 2018: 1-9.

[138] Mahmoodulhassan M, Suthar V, Rafique E, et al. Kinetics of cadmium, chromium, and lead sorption onto chemically modified sugarcane bagasse and wheat straw.[J]. Environmental Monitoring & Assessment, 2015, 187(7): 1-11.

[139] Shukla A, Zhang Y H, Dubey P, et al. The role of sawdust in the removal of unwanted materials from water[J]. Journal of Hazardous Materials, 2002, 95(1-2): 137-152.

[140] Chen X, Xu R, Xu Y, et al. Natural adsorbent based on sawdust for removing impurities in waste lubricants[J]. Journal of Hazardous Materials, 2018, 350: 38-45.

[141] Nyashina G S, Vershinina K Y, Dmitrienko M A, et al. Environmental benefits and drawbacks of composite fuels based on industrial wastes and different ranks of coal.[J]. Journal of Hazardous Materials, 2018, 347: 359-370.

[142] Nasernejad B, Zadeh T E, Pour B B, et al. Camparison for biosorption modeling of heavy metals (Cr (III), Cu (II), Zn (II)) adsorption from wastewater by carrot residues[J]. Process Biochemistry, 2005, 40(3-4): 1319-1322.

[143] Gao S, Luo T, Zhou Q, et al. Surface sodium lignosulphonate-immobilized sawdust particle as an efficient adsorbent for capturing Hg2+ from aqueous solution[J]. Journal of Colloid & Interface Science, 2018, 517: 9-17

[144] Ajmal M, Rao R A K, Ahmad R, et al. Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni (II) from electroplating wastewater[J]. Journal of hazardous Materials, 2000, 79(1-2): 117-131.

[145] Gao X, Wu L, Xu Q, et al. Adsorption kinetics and mechanisms of copper ions on activated carbons derived from pinewood sawdust by fast H3PO4 activation.[J]. Environmental Science & Pollution Research, 2018, 25(10): 1-9.

[146] Mishra R K, Mohanty K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.[J]. Bioresource Technology, 2017, 251: 63-74.

[147] Robertson W D V J L, Lombardo P S. Nitrate removal rates in a 15-year-old permeable reactive barrier treating septic system nitrate.[J]. Groundwater Monitoring & Remediation, 2008, 28(3): 65-72.

[148] Feng Y, Sun H, Xue L, et al. Sawdust biochar application to rice paddy field: reduced nitrogen loss in floodwater accompanied with increased NH3 volatilization[J]. Environmental Science & Pollution Research, 2018, 25(9): 1-8.

[149] Awad Y M, Ok Y S, Abrigata J, et al. Pine sawdust biomass and biochars at different pyrolysis temperatures change soil redox processes[J]. Science of the Total Environment, 2018, 625(2018): 147-154.

[150] Li R, Feng C, Hu W, et al. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.[J]. Water Research, 2016, 89: 171-179.

[151] 史静,俎晓静,张乃明,等.滇池草海沉积物磷形态、空间分布特征及影响因素[J].中国环境科学,2013,33(10):1808-1813.

[152] Orcutt B N, Sylvan J B, Knab N J, et al. Microbial ecology of the dark ocean above, at, and below the seafloor.[J]. Microbiology and Molecular Biology Reviews: MMBR, 2011, 75(2): 361-422.

[153] Konneke M, Bernhard A E, de la Torre J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058): 543-546.

[154] Kirchman D L, Dittel A I, Findlay S E G, et al. Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York[J]. Aquatic Microbial Ecology, 2004, 35(3): 243-257.

[155] Karr J R. Protecting Ecological Integrity: An Urgent Societal Goal[J]. Yale J.intl L, 1993, 18: 297-306.

[156] 姚丽平.城市黑臭河道底泥微生物群落结构对人工曝气的响应特征及机理研究[D].华东师范大学,2014.

[157] 余彬彬,李钧敏,金则新.分子生物学技术在活性污泥微生物多样性研究中的应用[J].江苏农业科学,2009,(05):313-315.

[158] 陈楠.太湖沉积物微生物群落组成与物质循环及藻华爆发的相关性[D].中国农业大学,2015.

[159] 郑宾国,罗兴章,张继彪,等.湖泊底泥中蓝藻越冬和复苏行为研究进展[J].环境污染与防治,2011,33(2):85-89.

[160] 顾婷婷,孔繁翔,谭啸,等.越冬和复苏时期太湖水体蓝藻群落结构的时空变化[J].生态学报,2011,31(1):21-30.

[161] Madsen E L. Microorganisms and their roles in fundamental biogeochemical cycles[J]. Current Opinion in Biotechnology, 2011, 22(3): 456-464.

[162] 霍睛睛.滇池沉积物中原核生物多样性及好氧反硝化菌的活性评价[D].云南大学,2016.

[163] Zhang J, Zhang X, Liu Y, et al. Bacterioplankton communities in a high-altitude freshwater wetland[J]. Annals of Microbiology, 2013, 64(3): 1405-1411.

[164] Cheng W, Zhang J, Wang Z, et al. Bacterial communities in sediments of a drinking water reservoir[J]. Annals of Microbiology, 2013, 64(2): 875-878.

[165] Tao J, Qin L, Liu X, et al. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism[J]. Bioresource Technology, 2017, 236: 60-67.

[166] Sauvain L, Bueche M, Junier T, et al. Bacterial communities in trace metal contaminated lake sediments are dominated by endospore-forming bacteria[J]. Aquatic Sciences, 2013, 76(S1): 33-46.

[167] Yamada T, Sekiguchi Y. Cultivation of Uncultured Chloroflexi Subphyla: Significance and Ecophysiology of Formerly Uncultured Chloroflexi 'Subphylum I' with Natural and Biotechnological Relevance[J]. Microbes and Environments, 2009, 24(3): 205-216.

[168] Zhao D, Huang R, Zeng J, et al. Diversity analysis of bacterial community compositions in sediments of urban lakes by terminal restriction fragment length polymorphism (T-RFLP)[J]. World Journal of Microbiology and Biotechnology, 2012, 28(11): 3159-3170.

[169] 薛银刚,刘菲,江晓栋.太湖不同湖区冬季沉积物细菌群落多样性[J].中国环境科学,2018,38(2):719-728.

[170] Abou-Zeid D-M, Müller R-J, Deckwer W-D. Degradation of natural and synthetic polyesters under anaerobic conditions[J]. Journal of Biotechnology, 2001, 86(2): 113-126.

[171] Feng L, Chen K, Han D, et al. Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers[J]. Bioresource Technology, 2016, 224: 236-245.

[172] Chu L, Wang J. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity.[J]. Chemosphere, 2016, 155: 463-470.

[173] Jaglic, Z, Cervinkova, D. Genetic basis of resistance to quaternary ammonium compounds - the qac genes and their role: a review.[J]. Veterinární Medicína, 2012, 57(6): 275-281.

[174] Sirisena K A, Ramirez S, Steele A, et al. Microbial Diversity of Hypersaline Sediments from Lake Lucero Playa in White Sands National Monument, New Mexico, USA[J]. Microbial Ecology, 2018: 1-15.

[175] Xun X, Zhao Q, Wu M, et al. Biodegradation of Organic Matter and Anodic Microbial Communities Analysis in Sediment Microbial Fuel Cells with/without Fe(III) Oxide Addition[J]. Bioresource Technology, 2016, 225: 402-408.

[176] Yang Y, Wang W. Benzyldimethyldodecyl ammonium chloride shifts the proliferation of functional genes and microbial community in natural water from eutrophic lake[J]. Environmental Pollution, 2018, 236: 355-365.

[177] Hui Q, Donde O O, Tian C, et al. Novel heterotrophic nitrogen removal and assimilation characteristic of the newly isolated bacterium Pseudomonas stutzeri, AD-1[J]. Journal of Bioscience & Bioengineering, 2018.

[178] K?mpfer P, Schulze R, J?ckel U, et al. Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1): 341-344.

[179] 杨浩,张国珍,杨晓妮,等.16S rRNA高通量测序研究集雨窖水中微生物群落结构及多样性[J].环境科学,2017,38(4):1704-1716.

[180] 王丽华,吕铮,郝春博,等.某石油污染场地地下水中降解菌群落结构研究[J].环境科学与技术,2013(7):1-8.

[181] 毛跃建.废水处理系统中重要功能类群Thauera属种群结构与功能的研究 [D].上海交通大学,2009.

[182] Mao Y, Zhang X, Xia X, et al. Versatile aromatic compound-degrading capacity and microdiversity of Thauera strains isolated from a coking wastewater treatment bioreactor[J]. Journal of Industrial Microbiology & Biotechnology, 2010, 37(9): 927-934.

[183] Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds - from one strategy to four[J]. Nature Reviews Microbiology, 2011, 9(11): 803-816.

[184] Bock E K H P, M?ller U C, et al. A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov.[J]. Archives of Microbiology, 1990, 153(2): 105-110.

[185] Shen N, Chen Y, Zhou Y. Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature.[J]. Water Research, 2017, 114: 308-315.

[186] McIlroy S J, Albertsen M, Andresen E K, et al. ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity[J]. The ISME Journal, 2013, 8(3): 613-624.

中图分类号:

 X524    

馆藏号:

 X524/3619/2018    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式