- 无标题文档
查看论文信息

中文题名:

 HSA/Au纳米簇复合荧光探针的制备方法研究及性能评价    

姓名:

 张娣    

学号:

 1049721200978    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081701    

学科名称:

 化学工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 化学化工与生命科学学院    

专业:

 化学工程    

研究方向:

 生物质化工    

第一导师姓名:

 黄进    

第一导师院系:

 武汉理工大学    

完成日期:

 2014-10-10    

答辩日期:

 2014-12-14    

中文关键词:

 纳米材料 ; 荧光 ; 人血清白蛋白 ; 水热 ; 超声 ; 近红外成像    

中文摘要:

由于纳米科技的迅猛发展,纳米材料与医学的联系越来越紧密,纳米材料凭借其特殊的表面效应、体积效应及量子尺寸效应等,迅速成为了研究热点,在荧光分子成像和医疗诊断应用等方面呈现出强大的后劲。虽然量子点(QDs)之类的荧光纳米材料具有强荧光,很高的光化学稳定性和出色的抗化学降解性等诸多特殊优势。但是,大部荧光材料成分上具有毒性,生物相容性差,对肿瘤进行诊断成像的同时,对其它正常组织也造成了严重的伤害。

金纳米簇是近年来比较热门的一种新型荧光纳米材料,除了具有强荧光,毒性小,抗光漂白等优点外,还因为拥有奇特的光学性能,在成像、传感等方面也有着十分广阔的运用前景。目前金簇的一些合成方法中,以牛血清蛋白作为还原剂和保护价剂来合成金簇用于肿瘤细胞成像是最为经典的方法,但牛血清蛋白质属于天然抗原,是一种异源药用蛋白质,在进入人体后会诱发抗体抗原反应而被清除,引起免疫原性,甚至会导致过敏反应。

在这项工作中,我们将金纳米簇作为研究对象,采用水浴机械搅拌、超声法作为合成金簇的手段,针对近红外分子成像应用中的要求发展了新的制备金簇的方法,并对影响金簇粒径、荧光强度等因素进行分析,充分优化实验条件,合成适用于要求的新材料,并初步预想将其用于近红外成像的探索。此项研究除了对癌症进行早期诊断、治疗和预防,减少癌症死亡率,保障人类健康具有重大意义以外,它还具有促进分子影像和医学诊断发展的作用。

本论文研究工作主要包括以下内容:

1. 归纳全部文献中关于牛血清蛋白合成金簇的方法,水浴加热,磁力搅拌下,使用人血清白蛋白(HSA)作为还原剂和保护剂来消除人体的免疫原型,成功制备出金簇。通过对不同合成方法的实验条件进行对比,找到了影响金簇荧光强度,粒径,量子产率的关键影响因素。另外,首次尝试引入超声作为促进化学反应的手段,将其运用于金纳米簇的合成中在短时间内成功制备出了具有近红外发射荧光的金簇,通过对工艺条件的调控,提出了可靠的优化方案。

2.利用荧光光谱、紫外吸收光谱、高分辨率透射电镜、动态光散射、红外光谱等技术对优化工艺后制备出的金簇进行表征,制备出的金簇粒径均小于2 nm,尺寸均一且分布均匀,这种比生物分子还要小的尺寸,更有利于金簇进入更深的组织内部,达到良好的成像效果;金簇量子产率分别为11%和9%,具有良好的荧光特性,荧光强度高,最大发射峰接近于近红外波段,极大地降低了可见光区成像的问题;在一些模拟人体环境中比较稳定,具有潜在的分子成像运用前景。

关键词:纳米材料,荧光,人血清白蛋白,水热,超声,近红外成像

参考文献:

[1] 曹茂盛,曹传宝,徐甲强. 纳米材料学[M]. 哈尔滨工业大学出版社,2002.

[2] 张立德. 纳米材料[M]. 化业出版社,2000 .

[3] 张雪梅, 付多才. 安徽农业学工技术师范学院学报[J],2000,14(1):54-56.

[4] 张立德, 牟季美. 纳米材料与纳米结构[M]. 北京科学出版社,1995.

[5] 吴俊, 王龙彪, 黄清安等. 纳米材料的进展[M]. 电镀与精饰,1999,21(6):1-5.

[6] 李玲, 向航. 功能材料与纳米技术[M]. 北京化学工业出版社,2002.

[7] M Sternitzke, B Derby, R J Brook. Alumina/silicon carbide nanocomposites by hybrid polymer/powder processing: microstructures and mechanical properties[J]. J. Am. Chem. Soc,1998, 81(1):41-48.

[8] 李玉增. 纳米结构材料[M].有色与稀有金属国外动态,1998,8:1-2.

[9] 王永康, 王立. 纳米材料科学与技术[M], 2002, 7, 110

[10] U. Kreibig, M.Vollmer. OPtical Properties of metal cIuster[J]. Berlikn springer-Verlag. 1995,1-2.

[11] 李小兵, 刘竞超. 纳米粒子与纳米材料[M].塑科, 1999,1,19-22.

[12] 顾宁,付得刚,张海黔. 纳米技术与应用[M]. 人民邮电出版社,2002,16-18.

[13] 计齐根,都有为,李勇. 纳米复合磁性材料的研究现状[J].金属功能学报,1999, 6(2):49-55.

[14] 袁苏宜. 纳米材料研究的进展[J].广东有色金属学报,1998.8(2):125-130

[15] Murphy C J, Gole A M, Stone J W, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging[J]. Accounts of Chemical Research. 2008, 41(12): 1721-1730.

[16] Zheng J, Nicovich P R, Dickson R M. Highly fluorescent noble metal quantum dots[J]. Annual review of physical chemistry, 2007, 58: 409.

[17] Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine[J]. The Journal of Physical Chemistry B, 2006, 110(14): 7238-7248.

[18] Knight W D, Clemenger K, de Heer W A, et al. Electronic shell structure and abundances of sodium clusters[J]. Physical review letters, 1984, 52(24): 2141.

[19] Zheng J, Zhang C, Dickson R M. Highly fluorescent, water-soluble, size-tunable gold quantum dots[J]. Physical Review Letters, 2004, 93(7): 077402.

[20] Willets K A, Van Duyne R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annu. Rev. Phys. Chem., 2007, 58: 267-297.

[21] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical reviews, 2004, 104(1): 293-346.

[22] Yguerabide J, Yguerabide E E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory[J]. Analytical biochemistry, 1998, 262(2): 137-156.

[23] Yguerabide J, Yguerabide E E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications:ⅡTheory[J]. Analytical biochemistry, 1998, 262(2): 137-156.

[24] Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity[J]. Chemical Society Reviews, 2009, 38(6): 1759-1782.

[25] Jena P, Rao B K, Khanna S N. Physics and chemistry of small clusters[C]//NATO ASIB Proc. 158: Physics and Chemistry of Small Clusters. 1987, 1.

[26] Wilcoxon J P, Martin J E, Parsapour F, et al. Photoluminescence from nanosize gold clusters[J]. The Journal of chemical physics, 1998, 108(21): 9137-9143.

[27] Link S, Beeby A, FitzGerald S, et al. Visible to infrared luminescence from a 28-atom gold cluster[J]. The Journal of Physical Chemistry B, 2002, 106(13): 3410-3415.

[28] Templeton A C, Cliffel D E, Murray R W. Redox and fluorophore functionalization of water-soluble, tiopronin-protected gold clusters[J]. Journal of the American Chemical Society, 1999, 121(30): 7081-7089.

[29] Zhang J, Geddes C D, Lakowicz J R. Complexation of polysaccharide and monosaccharide with thiolate boronic acid capped on silver nanoparticle[J]. Analytical biochemistry, 2004, 332(2): 253-260.

[30] Zhang C, Zhou Z, Qian Q, et al. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging[J]. J. Mater. Chem. B, 2013, 1(38): 5045-5053.

[31] Gies A P, Hercules D M, Gerdon A E, et al. Electrospray mass spectrometry study of tiopronin monolayer-protected gold nanoclusters[J]. Journal of the American Chemical Society, 2007, 129(5): 1095-1104.

[32] Harbich W, Fedrigo S, Buttet J, et al. Deposition of mass selected gold clusters in solid krypton[J]. The Journal of chemical physics, 1992, 96(11): 8104-8108.

[33] Fedrigo S, Harbich W, Buttet J. Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices[J]. The Journal of chemical physics, 1993, 99(8): 5712-5717.

[34] Zheng J, Petty J T, Dickson R M. High quantum yield blue emission from water-soluble Au8 nanodots[J]. Journal of the American Chemical Society, 2003, 125(26): 7780-7781.

[35] Zheng J, Zhang C, Dickson R M. Highly fluorescent, water-soluble, size-tunable gold quantum dots[J]. Physical Review Letters, 2004, 93(7): 077402.

[36] Duan H, Nie S. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters[J]. Journal of the American Chemical Society, 2007, 129(9): 2412-2413.

[37] Xie J, Zheng Y, Ying J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. Journal of the American Chemical Society, 2009, 131(3): 888-889.

[38] Yan L, Cai Y, Zheng B, et al. Microwave-assisted synthesis of BSA-stabilized and HSA-protected gold nanoclusters with red emission[J]. Journal of Materials Chemistry, 2012, 22(3): 1000-1005.

[39] Chan P H, Chen Y C. Human serum albumin stabilized gold nanoclusters as selective luminescent probes for Staphylococcus aureus and methicillin-resistant Staphylococcus aureus[J]. Analytical chemistry, 2012, 84(21): 8952-8956.

[40] Huang T, Murray R W. Visible luminescence of water-soluble monolayer-protected gold clusters[J]. The Journal of Physical Chemistry B, 2001, 105(50): 12498-12502.

[41] Link S, Beeby A, FitzGerald S, et al. Visible to infrared luminescence from a 28-atom gold cluster[J]. The Journal of Physical Chemistry B, 2002, 106(13): 3410-3415.

[42] Chen T H, Tseng W L. (Lysozyme Type VI)‐Stabilized Au8 Clusters: Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood[J]. Small, 2012, 8(12): 1912-1919.

[43] Chen S, Ingram R S, Hostetler M J, et al. Gold nanoelectrodes of varied size: transition to molecule-like charging[J]. Science, 1998, 280(5372): 2098-2101.

[44] Lee D, Donkers R L, Wang G, et al. Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles[J]. Journal of the American Chemical Society, 2004, 126(19): 6193-6199.

[45] Wilcoxon J P, Martin J E, Parsapour F, et al. Photoluminescence from nanosize gold clusters[J]. The Journal of chemical physics, 1998, 108(21): 9137-9143.

[46] K?nig L, Rabin I, Schulze W, et al. Chemiluminescence in the agglomeration of metal clusters[J]. Science, 1996, 274(5291): 1353-1354.

[47] Weissleder R, Pittet M J. Imaging in the era of molecular oncology[J]. Nature, 2008, 452(7187): 580-589.

[48] 高秀丽,陈立波,余永利.分子影像在人类肿瘤基因治疗中的应用[J]. 中国医学影像技术,2007, 23( 7) : 1100-1103.

[49] Winnard P T, Pathak A P, Dhara S, et al. Molecular imaging of metastatic potential[J]. Journal of Nuclear Medicine, 2008, 49(Suppl 2): 96S-112S.

[50] Herschman H R. Molecular imaging: looking at problems, seeing solutions[J]. Science, 2003, 302(5645): 605-608.

[51] Shadgan B, Macnab A J, J Trauma. Using near-infrared spectroscopy( NIRS) technology in a clinical setting to address an important issue[J]. J Trauma. 2008,65( 5) : 1205-1206.

[52] Naghmeh Azadfar , Florian Stockmar , Winfried Send. One-Pot Synthesis of Near-Infrared Fluorescent Gold Clusters for Cellular Fluorescence Lifetime Imaging[J] . Small . 2011, 7(18): 2614–2620.

[53] Lin C A J, Yang T Y, Lee C H, et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications[J]. ACS nano, 2009, 3(2): 395-401.

[55] Muhammed M A H, Verma P K, Pal S K, et al. Bright, NIR‐Emitting Au23 from Au25: Characterization and Applications Including Biolabeling[J]. Chemistry-a European Journal, 2009, 15(39): 10110-10120.

[56] Wang H H, Lin C A J, Lee C H, et al. Fluorescent gold nanoclusters as a biocompatible marker for in vitro and in vivo tracking of endothelial cells[J]. ACS nano, 2011, 5(6): 4337-4344.

[57] Xie J, Zheng Y, Ying J Y. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. Journal of the American Chemical Society, 2009, 131(3): 888-889.

[58] Oh E, Susumu K, Blanco‐Canosa J B, et al. Preparation of Stable Maleimide‐Functionalized Au Nanoparticles and Their Use in Counting Surface Ligands[J]. Small, 2010, 6(12): 1273-1278.

[59] Su S, Wang H, Liu X, et al. iRGD-coupled responsive fluorescent nanogel for targeted drug delivery[J]. Biomaterials, 2013, 34(13): 3523-3533.

[60] Lo C L, Lin K M, Hsiue G H. Preparation and characterization of intelligent core-shell nanoparticles based on poly (d, l-lactide)-g-poly (< i> N-isopropyl acrylamide-co-methacrylic acid)[J]. Journal of controlled release, 2005, 104(3): 477-488.

[61] Lin C A J, Yang T Y, Lee C H, et al. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications[J]. ACS nano, 2009, 3(2): 395-401.

[62] Chen D, Luo Z, Li N, et al. Amphiphilic polymeric nanocarriers with luminescent gold nanoclusters for concurrent bioimaging and controlled drug release[J]. Advanced Functional Materials, 2013, 23(35): 4324-4331.

[63] Huang X, Luo Y, Li Z, et al. Biolabeling hematopoietic system cells using near-infrared fluorescent gold nanoclusters[J]. The Journal of Physical Chemistry C, 2011, 115(34): 16753-16763.

[64] Deng L, Liu L, Zhu C, et al. Hybrid gold nanocube@ silica@ graphene-quantum-dot superstructures: synthesis and specific cell surface protein imaging applications[J]. Chem. Commun., 2013, 49(25): 2503-2505.

[65] Chen H, Li B, Wang C, et al. Characterization of a fluorescence probe based on gold nanoclusters for cell and animal imaging[J]. Nanotechnology, 2013, 24(5): 055704.

[66] Zhang J, Fu Y, Conroy C V, et al. Fluorescence intensity and lifetime cell imaging with luminescent gold nanoclusters[J]. The Journal of Physical Chemistry C, 2012, 116(50): 26561-26569.

[67] Liu C L, Wu H T, Hsiao Y H, et al. Insulin‐Directed Synthesis of Fluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity and Versatility in Cell Imaging[J]. Angewandte Chemie International Edition, 2011, 50(31): 7056-7060.

[68] Liu J M, Chen J T, Yan X P. Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe[J]. Analytical chemistry, 2013, 85(6): 3238-3245.

[69] Wang Y, Chen J, Irudayaraj J. Nuclear targeting dynamics of gold nanoclusters for enhanced therapy of HER2+ breast cancer[J]. Acs Nano, 2011, 5(12): 9718-9725.

[70] Wu X, He X, Wang K, et al. Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo[J]. Nanoscale, 2010, 2(10): 2244-2249.

[71] Nativo P, Prior I A, Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles[J]. ACS nano, 2008, 2(8): 1639-1644.

[72] 袁媛,何晓晓,石慧,王柯敏.牛血清白蛋白介导合成的金纳米簇用于活细胞荧光成像[J]. 高等学校化学学报. 2010.31(11):2167-2172

[73] Wu L, Zou Y, Deng C, et al. Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions[J]. Biomaterials, 2013, 34(21): 5262-5272.

[74] Nam J, Won N, Jin H, et al. pH-induced aggregation of gold nanoparticles for photothermal cancer therapy[J]. Journal of the American Chemical Society, 2009, 131(38): 13639-13645.

[75] Wang Y, Liu Y, Luehmann H, et al. Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging[J]. Nano letters, 2013, 13(2): 581-585.

[76] Proulx S T, Luciani P, Christiansen A, et al. Use of a PEG-conjugated bright near-infrared dye for functional imaging of rerouting of tumor lymphatic drainage after sentinel lymph node metastasis[J]. Biomaterials, 2013, 34(21): 5128-5137.

[77] Chen Z, Qian S, Chen J, et al. Protein-templated gold nanoclusters based sensor for off–on detection of ciprofloxacin with a high selectivity[J]. Talanta, 2012, 94: 240-245.

[78] Li H W, Ai K, Wu Y. Fluorescence visual gel-separation of dansylated BSA-protected gold-nanoclusters[J]. Chem. Commun., 2011, 47(35): 9852-9854.

[79] Mani Prabaharan , Jamison J Grailer , Srikanth Pilla. Gold nanoparticles with a monolayer of doxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery[J]. Biomaterials.2009,30: 6065–6075

[80] Juan Peng, Li-Na Feng, Kui Zhang,Xing-Hua Li. Calcium Carbonate–Gold Nanocluster Hybrid Spheres: Synthesis and Versatile Application in Immunoassays[J]. Chem. Eur. J. 2012, 18: 5261 – 5268

[81] Zhijun Zhou, Chunlei Zhang, Qirong Qian, Jiebing Ma. Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging[J]. Journal of Nanobiotechnology. 2013, 11:17-23.

[82] Chunlei Zhang, Zhijun Zhou, Qirong Qian, Guo Gao. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging[J]. J. Mater. Chem. B. 2013, 1:5045-5050

[83] Jing-Min Liu, Jia-Tong Chen, Xiu-Ping Yan. Near Infrared Fluorescent Trypsin Stabilized Gold Nanoclusters as Surface Plasmon Enhanced Energy Transfer Biosensor and in Vivo Cancer Imaging Bioprobe[J]. Anal. Chem. 2013, 85: 3238?3245

[84] Yifei Kong, Jun Chen,Feng Gao,Rik Brydson,Benjamin Johnson. Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging[J]. Nanoscale. 2013, 5: 1009-1013.

[85] Huang P, Bao L, Zhang CL, et .al. Folic acid-conjugated Silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy[J]. Biomaterials . 2011, 32:9796–9809.

[86] Bao C, Beziere N, del Pino P. Gold nanoprisms as optoacoustic signal nanoamplifiers for in vivo bioimaging of gastrointestinal cancers[J]. Small .2013, 9:68–74.

[87] Zhang A, Tu Y, Qin S, et al. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging[J]. J Colloid Interface Sci . 2012, 372:239–244.

[88] Retnakumari A, Setua S, Menon D, Ravindran P. Molecular-Receptor-Specific, Non-toxic, Near-Infrared-Emitting Au Cluster-Protein Nanoconjugates for Targeted Cancer Imaging. Nanotechnology[J] .2010, 21:55-103

[89] Negishi Y ,Tsukuda T. Visible Photoluminescence From Nearly Monodispersed Au-12 Clusters Protected by meso-2,3-Dimercaptosuccinic Acid[J]. Chem. Phys. Lett. 2004, 383:161–165.

[90] Pan Y, Neuss S, Leifert A, Fischler M, Brandau W, Jahnen-Dechent, W. Size-Dependent Cytotoxicity of Gold Nanoparticles[J]. Small .2007, 3: 1941–1949.

[91] Kawasaki H, Hamaguchi K, Osaka I , Arakawa R. ph-Dependent synthesis of pepsin mediated gold nanoclusters with blue green and red fluorescent emission[J]. Adv. Funct. Mater. 2011, 21 : 3508–3515.

[92] Polavarapu L, Manna M , Xu Q H. Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging[J] . Nanoscale . 2011,3 : 429–34.

[93] Lin S Y, Chen N T, Sum S P, et al. Ligand exchanged photoluminescent gold quantum dots functionalized with leading peptides for nuclear targeting and intracellular imaging[J]. Chemical Communications, 2008 ,39: 4762-4764.

[94] Qiao J, Mu X, Qi L, et al. Folic acid-functionalized fluorescent gold nanoclusters with polymers as linkers for cancer cell imaging[J]. Chem. Commun, 2013, 49(73): 8030-8032.

[95] Hang Z, Wang J, Chen C. Near‐Infrared Light‐Mediated Nanoplatforms for Cancer Thermo‐Chemotherapy and Optical Imaging[J]. Advanced Materials, 2013.

[96] Li H W, Yue Y, Liu T Y, et al. Fluorescence-Enhanced Sensing Mechanism of BSA-Protected Small Gold-Nanoclusters to Silver (I) Ions in Aqueous Solutions[J]. The Journal of Physical Chemistry C. 2013, 117(31): 16159-16165.

[97Xia X, Yang M, Wang Y, et al. Quantifying the coverage density of poly (ethylene glycol) chains on the surface of gold nanostructures[J]. ACS nano, 2011, 6(1): 512-522.

[98] Li C, Sutter J U, Birch D, et al. Fluorescence anisotropy of protein-Gold nanoclusters[J]. Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on. IEEE. 2012: 1-4.

[99] Zhang Y, Hu Q, Paau M C, et al. Probing Histidine-Stabilized Gold Nanoclusters Product by High-Performance Liquid Chromatography and Mass Spectrometry[J]. The Journal of Physical Chemistry C. 2013.

[100] Ni P, Zhang Y, Sun Y, et al. Facile synthesis of Prussian blue@ gold nanocomposite for nonenzymatic detection of hydrogen peroxide[J]. RSC Adv. 2013, 3(36): 15987-15992.

[101] Guterman R, Hesari M, Ragogna P J, et al. Anion-Exchange Reactions on a Robust Phosphonium Photopolymer for the Controlled Deposition of Ionic Gold Nanocluster[J]. Langmuir. 2013, 29(21): 6460-6466.

[102] Liu Y, Ai K, Cheng X, et al. Gold‐Nanocluster‐Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water[J]. Advanced Functional Materials, 2010, 20(6): 951-956.

[103] Wen F, Dong Y, Feng L, et al. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing[J]. Analytical chemistry,2011,83(4): 1193-1196

中图分类号:

 TB383    

馆藏号:

 TB383/0978/2014    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式