中文题名: |
基于高精地图的多智能车协同定位方法研究 |
姓名: | |
学号: | 1049732004013 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 082300 |
学科名称: | 工学 - 交通运输工程 |
学生类型: | 硕士 |
学校: | 武汉理工大学 |
院系: | |
专业: | |
研究方向: | 协同定位 |
第一导师姓名: | |
第一导师院系: | |
完成日期: | 2023-05-20 |
答辩日期: | 2023-05-20 |
中文关键词: | |
中文摘要: |
随着无人驾驶相关技术产业的快速推进,智能车已经成为当前学术界和工业界的研究热点,作为智能车发展基础和核心的高精度定位技术得到了长足发展。目前应用最广泛的智能车定位方式是全球导航卫星系统、惯性导航系统等,此外基于视觉和激光的定位技术也取得了长足进步,结合高精地图,提高了智能车定位精度。同时在智能交通系统进一步发展的背景下,利用车对车信息交互(Vehicle-to-Vehicle, V2V)的多智能车协同定位技术步入了研究人员的视野。协同定位技术可充分利用定位场景中的多源信息,实现了信息互补,极大提高了传感器数据的有效利用率,提高了整个定位系统的定位精度和鲁棒性。根据相关研究背景,本文面向智能车的定位问题,开展了基于高精地图的多智能车协同定位方法研究。本文主要研究工作如下: 1)研究基于孪生网络的特征层高精地图构建与表征方法。该方法将三维激光点云表征为二维点云极化图形式,同时构建了孪生网络对点云极化图之间的相似性进行建模,将其转换为基于孪生网络场景编码的相似概率计算,提高了地图匹配的效率和准确率。并且以其主干网络提取的场景编码为基础,结合点云极化图以及全局位姿,构建了激光极化地图,即特征层高精地图,为智能车定位提供先验信息参考。 2)研究基于直方图滤波的智能车自定位方法。该方法利用特征层高精地图实现智能车自定位。在节点级定位中,通过直方图滤波计算最优匹配地图节点,将状态定义为多个待匹配的地图节点,其中状态转移通过匀速运动模型获得,观测概率通过待定位节点与地图节点的孪生网络场景编码特征以及SURF(Speeded-Up Robust Features)点特征获得,有效提高了地图节点匹配的准确率。在度量级定位中,利用GICP(Generalized Iterative Closet Point)算法配准三维点云,实现智能车全局位置计算。 3)研究基于时空图模型的多智能车协同定位方法。该方法将协同定位环境下车辆位置的最优状态估计问题转化为时空图模型构建与优化问题。时空图模型的节点即各个时刻每辆车的位置,边的类型即约束的种类,包括自定位观测、车-车位置观测、车道层高精地图观测和帧间位置观测。并针对协同定位中的通讯和数据处理时延问题,利用时延补偿加以优化。在求解过程中,利用滑窗限制时空图模型规模,引入Huber核函数减少由异常值导致的错误边对整体优化效果的影响。并采用LM(Levenberg-Marquardt)法求解目标函数实现对感知区域中的车辆位置最优状态估计,实现多智能车协同定位。 |
参考文献: |
[1] 李克强, 戴一凡, 李升波, 等.智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(01): 1-14. [2] 刘思源. 车联网自适应协同定位技术的研究[D]. 上海交通大学, 2019. [3] 孙宁. 基于多源信息融合的智能汽车环境感知技术研究[D]. 镇江: 江苏大学, 2018. [11] 陈龙, 刘坤华, 周宝定, 等. 多智能体协同高精地图构建关键技术研究[J]. 测绘学报, 2021, 50(11): 1447-1456. [13] 焦朋朋, 杨紫煜, 洪玮琪, 等. 车路协同下车队避让紧急车辆的换道引导方法[J]. 中国公路学报, 2021, 34(07): 95-104. [14] 缪立新, 王发平. V2X车联网关键技术研究及应用综述[J]. 汽车工程学报, 2020, 10(01): 1-12. [17] 王栋民, 赵冬青, 向民志, 等. 车载分散式协同定位算法性能分析[J]. 测绘科学技术学报, 2021, 38(02): 130-135. [18] 张宝成, 柯成, 查九平, 等. 非差非组合PPP-RTK: 模型算法、终端样机与实测结果[J]. 测绘学报, 2022, 51(08): 1725-1735. [20] 王一军, 杨杰, 余明杨. 北斗导航系统移动基准站差分定位算法[J]. 国防科技大学学报, 2017, 39(05): 45-49. [24] 董毅, 王鼎杰, 吴杰. 载波相位时间差分辅助的SINS/GNSS紧组合导航方法[J]. 中国惯性技术学报, 2021, 29(04). [26] 王睿, 赵方, 彭金华, 等. 基于WiFi和蓝牙融合的室内定位算法[J]. 计算机研究与发展, 2011(02): 28-33. [34] 蔡英凤, 陆子恒, 李祎承, 等. 基于多传感器融合的紧耦合SLAM系统[J]. 汽车工程, 2022, 44(03): 350-361. [48] 李祎承, 胡钊政, 胡月志, 等. 基于GPS与图像融合的智能车辆高精度定位算法[J]. 交通运输系统工程与信息, 2017, 17(03): 112-119. [54] 崔文靓, 王玉静, 康守强, 等. 基于改进YOLOv3算法的公路车道线检测方法[J]. 自动化学报, 2022, 45: 1-9. [70] 孙宁, 闫梦如, 倪捷, 等. 基于GRI的多车协同定位研究[J]. 汽车工程, 2018, 40(04): 488-493. [71] 段续庭, 田大新, 王云鹏. 基于V2X通信网络的车辆协同定位增强方法[J]. 汽车工程, 2018, 40(08): 947-951. [74] 王玖玲, 吴韶波, 张媛利, 等. 利用V2X增强GPS的协同车辆定位方法[J]. 系统仿真学报, 2019, 31(12): 2901-2906. [76] 罗文慧, 董宝田, 王泽胜. 基于车路协同的车辆定位算法研究[J]. 西南交通大学学报, 2018, 53(05): 1072-1077. |
中图分类号: | U463.6 |
条码号: | 002000073839 |
馆藏号: | YD10001973 |
馆藏位置: | 203 |
备注: | 403-西院分馆博硕论文库;203-余家头分馆博硕论文库 |