中文题名: |
累积塑性与疲劳裂纹扩展交互作用下船舶结构极限强度
|
姓名: |
胡康
|
学号: |
104977150152
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
082400
|
学科名称: |
工学 - 船舶与海洋工程
|
学生类型: |
博士
|
学校: |
武汉理工大学
|
院系: |
船海与能源动力工程学院
|
专业: |
船舶与海洋工程
|
研究方向: |
船舶结构极限强度
|
第一导师姓名: |
杨平
|
第一导师院系: |
船海与能源动力工程学院
|
完成日期: |
2023-03-08
|
答辩日期: |
2023-05-19
|
中文关键词: |
循环载荷 ; 剩余极限强度 ; 船舶结构 ; 累积塑性 ; 疲劳裂纹扩展
|
中文摘要: |
︿
船舶结构的极限强度是评估船舶能否承受服役期间各种载荷的重要指标,也是指导船舶结构理性设计的重要基础。准确评估船舶结构的极限强度,一直是船舶工业届和学术届重点关注的研究课题。传统极限强度评估方法均为建立在一次性单调载荷下的极限强度基础上,然而船舶在服役周期内,更多的情况是处于交变循环载荷的作用下。恶劣风浪情况下船舶结构承受较大交变循环载荷时,船舶结构塑性变形的不断累积且会形成了低周疲劳裂纹并不断扩展,累积塑性损伤和疲劳裂纹损伤共同导致了船体梁的最大承载能力逐渐降低,最终导致船体梁出现整体破坏。以一次性极限强度为基础的评估方法存在过高预估船舶结构极限强度的风险,必须在对船舶结构极限强度评估时考虑累积塑性和疲劳裂纹扩展的影响。 本文旨在静力极限强度概念的基础上,同时考虑循环载荷引起的累积塑性和疲劳裂纹扩展,对极端循环荷载下船舶结构的极限强度进行评估。本文从船体板、加筋板和简化箱型梁等三个结构维度综合运用理论分析、数值计算以及试验研究的方法,来更真实地评估恶劣海况下船舶结构的(剩余)极限强度,具有十分重大的科学研究意义和工程应用价值。论文的主要研究工作如下: (1)回顾了船舶结构极限强度的研究历史和已有研究方法,介绍了相关的研究背景,指出了已有研究成果的不足,阐述了开展累积塑性和疲劳裂纹扩展交互作用下船舶结构极限强度研究的重要性和必要性。 (2)引入等效屈服强度衰减参数和等效弹性模量衰减参数来考虑累积塑性引起的结构损伤,并对单调加载下船体板/加筋板的平均应力-平均应变(或载荷-端缩)公式进行了修正,得到循环荷载下船体板/加筋板平均应力应变修正公式。在累积塑性引起的结构损伤基础上考虑疲劳裂纹损伤对极限强度做进一步地折减,推导得出循环荷载下裂纹板/裂纹加筋板的剩余极限强度简化公式。 (3)分析了循环载荷幅值、裂纹分布、板的长宽比、带板板厚以及加强筋尺寸对裂纹板/裂纹加筋板在极端循环载荷下裂纹扩展规律和极限强度衰减规律的影响,并将由循环载荷引起的累积塑性损伤和疲劳裂纹损伤均考虑在内,提出了考虑裂纹扩展下裂纹板/裂纹加筋板的无量纲化极限强度预测公式,用于估算其循环极限强度值。 (4)对船体板和加筋板试件进行极端循环载荷下极限承载性能试验,通过变更不同工况来同时考虑累积塑性和疲劳裂纹扩展对试件剩余极限强度的影响。试验结果与理论简化公式、预测公式以及数值仿真结果进行了对比,验证了本文中理论计算模型与数值计算方法的准确性及合理性。 (5)设计、制作了系列简化箱型梁模型,分别对其开展了双向循环弯曲下极限崩溃强度试验,试验研究箱型梁模型在交替中垂-中拱弯矩下的极限承载性能,分析并比较完整箱型梁与裂纹箱型梁极限弯矩的衰减规律。 (6)详细讨论了裂纹长度、裂纹分布和裂纹位置对裂纹箱型梁在极端循环载荷下极限弯矩的影响;分析了极端循环载荷下极限强度折减机理,得出极限强度折减归因于累积塑性损伤与疲劳裂纹损伤的交互作用,并通过其他箱型梁模型验证了其适用性。 (7)总结本文的研究工作,并对后续研究工作进行展望。
﹀
|
参考文献: |
︿
[1] Rutherford S E, Caldwell J B. Ultimate Longitudinal Strength of Ships: A Case Study[J]. Trans SNAME. 1990, 98: 441-471. [2] 林正锦. Erika判决:国家法律博弈国际公约[J]. 中国船检, 2008(04): 40-43. [3] 李树华. “威望”号油轮溢油事故及其在国际社会引起的强烈反响[J]. 交通环保, 2003(01): 36-42. [4] 翁志敏, 徐剑华. MOL Comfort号海难事故的背影[J]. 中国船检, 2014(10): 50-53. [5] Caldwell J B. Ultimate longitudinal strength[J]. Trans RINA. 1965, 107: 411-430. [6] Faulkner D, Sadden J A. Toward a unified approach to ship structural safety[J]. Trans RINA. 1979, 121: 1-28. [7] Nishihara S. Analysis of ultimate strength of stiffened rectangular plate (4th report)-on the ultimate bending moment of ship hull girder[J]. J Soc Naval Archit Jpn. 1983, 154: 367-375 (in Japanese). [8] Mansour A E, Yang J M, Thayamballi A. An experimental investigation of ship hull ultimate strength[J]. Trans SNAME. 1990, 98: 411-439. [9] Smith C S. Influence of local compressive failure on ultimate longitudinal strength of a ship’s hull[C]. Proceedings of International Symposium on Practical Design in Shipbuilding. 1977: 73-79. [10] Ostapenko A. Strength of ship hull girders under moment, shear and torque[C]. Proceedings of Symposium on Extreme Loads Response. Arlington, Virginia, U.S.A., 1981: 149-166. [11] Yao T, Nikolov P I. Progressive collapse analysis of a ship’s hull under longitudinal bending[J]. J Soc Naval Archit Jpn. 1991, 170: 446-9. [12] Gordo J M, Soares C G. Approximate load shortening curves for stiffened plates under uniaxial compression[A]. In: Faulkner D, Cowling M J, Incecik A, et al. Integrity of Offshore Structures-5[C]. Arly: EMAS, 1993: 189-211. [13] IACS. Common structural rules for double hull oil tankers[S]. London: International Association of Classification Societies (IACS) Pulications, 2006. [14] IACS. Common structural rules for bulk carriers[S]. London: International Association of Classification Societies (IACS) Pulications, 2006. [15] Chen Y K, Kutt L M, Piaszezyk C M, et al. Ultimate strength of ship structures[J]. Trans SNAME. 1983: 149-168. [16] Kutt L M, Piaszczyk C M, Chen Y K, et al. Evaluation of the longitudinal ultimate strength of various ship hull configurations[J]. Trans SNAME. 1985, 93: 33-53. [17] Fujikubo M, Harada M., Yao T, et al. Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure Part 1: Continuous plate[J]. Mar Struct. 2005, 18: 383-410. [18] Fujikubo M, Harada M., Yao T, et al. Estimation of ultimate strength of continuous stiffened panel under combined transverse thrust and lateral pressure Part 2: continuous stiffened panel[J]. Mar Struct. 2005, 18: 411-427. [19] Khedmati M R, Zareei M R, Rigo P. Sensitivity analysis on the elastic buckling and ultimate strength of continuous stiffened aluminium plates under combined in-plane compression and lateral pressure[J]. Thin-Walled Struct. 2009, 47(11): 1232-1245. [20] Khedmati M R, Ghavami K. A numerical assessment of the buckling/ultimate strength characteristics of stiffened aluminium plates with fixed/floating transverse frames[J]. Thin-Walled Struct. 2009, 47(11): 1373-1386. [21] Khedmati M R, Zareei M R, Rigo P. Empirical formulations for estimation of ultimate strength of continuous stiffened aluminium plates under combined in-plane compression and lateral pressure[J]. Thin-Walled Struct. 2010, 48(3): 274-289. [22] Ueda Y, Rashed S M H. The idealized structural unit method and its application to deep girder structures[J]. Comput Struct. 1984, 18(2):227-93. [23] Paik J K, Advanced idealized struetural elements considering both ductile-collapse and excessive tension-deformation[J]. J Soc Naval Archit Kor. 1993, 30(3): 100-115. [24] Paik J K, Thayamballi A K, Che J S. Ultimate strength of ship hulls under combined vertical bending, horizontal bending and shearing forces[J]. Trans SNAME. 1996, 104: 31-59. [25] Ishibashi K, Fujikubo M, Yao T. Development of ISUM Element for Rectangular Plate with Cutout[J]. J Soc Naval Archit Jpn. 2006, 3: 285-292. [26] Kaeding P. Development of ISUM plate element with consideration of lateral pressure effects and its application to stiffened plates of ships[C]. Proceedings of PRAD'2004. Luebeck-Travemunde, Germany, 2004: 148-155. [27] Faulkner J A, Clarke J D, Smith C S, et al. The loss of HMS. Cobra-A reassessment[J]. Trans RINA. 1984, 127: 125-151. [28] Kell CO. Investigation of structural characteristics of destroyers “Preston” and “Bruce”. Part I-Description[J]. Trans SNAME. 1931, 39: 35-64. [29] Kell CO. Investigation of structural characteristics of destroyers “Preston” and “Bruce”. Part II-Analysis of data and results[J]. Trans SNAME. 1940, 48: 125-72. [30] Nishihara S. Ultimate longitudinal strength of midship cross section[J]. J Naval Arch Ocean Eng. 1984, 22: 200-214. [31] Reckling K A. Behaviour of boxgirder under bending and shear[A]. Proceedings of 13th International ship and Offshore Structures Congress. Paris, 1997, II.2.46- II.2.49. [32] 王佳颖, 张世联. 纵向箱型梁舱段极限强度试验研究[J]. 中国造船, 2011, 52(02): 47-54. [33] Deng H, Yuan T, Gan J, et al. Experimental and numerical investigations on the collapse behaviour of box type hull girder subjected to cyclic ultimate bending moment[J]. Thin-Walled Struct. 2022, 175: 109204.1-109204.17. [34] 吴卫国, 邓卉, 甘进. 船体结构极限强度模型试验技术研究[C]//纪念《船舶力学》创刊二十周年学术会议论文集. 2017: 406-418. [35] Paik J K, Thayamballi A K, Lee J M. Effect of initial deflection shape on the ultimate strength behavior of welded steel plates under biaxial compressive loads[J]. J Ship Res. 2004, 48(1): 45-60. [36] Jiang X L, Soares C G. A closed form formula to predict the ultimate capacity of pitted mild steel plate under biaxial compression[J]. Thin-Walled Struct. 2012, 59: 27-34. [37] Jiang X L, Soares C G. Ultimate capacity of rectangular plates with partial depth pits under uniaxial loads[J]. Mar Struct. 2012, 26: 27-41. [38] Paik J K, Thayamballi A K, Lee S K, et al. A semi-analytical method for the elastic-plastic large deflection analysis of welded steel or aluminum plating under combined in-plane and lateral pressure loads[J]. Thin-Walled Struct. 2001, 39(2): 125-152. [39] Paik J K, Kim B J. Ultimate strength formulations for stiffened panels under combined axial load, in-plane bending and lateral pressure: A benchmark study[J]. Thin-Walled Struct. 2002, 40(1): 45-83. [40] Zhang S, Khan I. Buckling and ultimate capability of plates and stiffened panels in axial compression[J]. Mar Struct. 2009, 22(4): 791-808. [41] Badran S F, Saddek A B, Leheta H W. Ultimate strength of Y and T stiffeners subjected to lateral loads with three different levels of initial imperfection[J]. Ocean Eng. 2013, 61: 12-25. [42] Tanaka Y, Endo H. Ultimate strength of stiffened plates with their stiffeners locally buckled in compression. J Soc Naval Archit Jpn. 1988, 164: 456-467. [43] Shin D K, Le V A, Kim K. In-plane ultimate compressive strengths of HPS deck panel system stiffened with U-shaped ribs[J]. Thin-Walled Struct. 2013, 63: 70-81. [44] Xu M C, Soares C G. Comparisons of calculations with experiments on the ultimate strength of wide stiffened panels[J]. Mar Struct. 2013, 31: 82-101. [45] Xu M C, Fujikubo M , Soares C G. Influence of model geometry and boundary conditions on the ultimate strength of stiffened panels under uniaxial compressive loading[J]. Journal of Offshore Mechanics and Arctic Engineering. 2013, 135(4): 1-10. [46] Xu M C, Soares C G. Assessment of residual ultimate strength for wide dented stiffened panels subjected to compressive loads[J]. Eng Struct. 2013(49): 316-328. [47] Karvinen K G, Pegg N G. A simplified method for nonlinear failure analysis of stiffened plates[J]. Mar Struct. 2006, 19(2-3): 97-109. [48] Byklum E, Amdahl J. A simplified method for elastic large deflection analysis of plates and stiffened panels due to local buckling[J]. Thin-Walled Struct. 2002, 40(11): 925-953. [49] Byklum E, Steen E, Jørgen A. A semi-analytical model for global buckling and post-buckling analysis of stiffened panels[J]. Thin-Walled Struct. 2004, 42(5): 701-717. [50] Brubak L, Håkon A, Hellesland J. Ultimate strength prediction by semi-analytical analysis of stiffened plates with various boundary conditions[J]. Thin-Walled Struct. 2013, 62(1): 28-36. [51] 王春刚, 宋代军, 贾连光. 大宽厚比H形截面轴压构件极限承载力直接强度法研究[J].工程力学, 2012, 29(S1): 41-45. [52] Kwon Y B. The development of the direct strength method for welded steel members with buckling interactions[J]. Thin-Walled Struct. 2014, 81(4): 121-131. [53] Kitarovic, S. Nonlinear Euler–Bernoulli beam kinematics in progressive collapse analysis based on the Smith’s approach[J]. Mar Struct. 2014, 39: 118-130. [54] Paik J K. Ultimate limit state performance of oil tanker structures designed by IACS common structural rules[J]. Thin-Walled Struct. 2007, 45: 1022-1034. [55] Paik J K, Brunner E, et al. Ultimate strength[C]. Proceedings of 17th International ship and Offshore Structure Congress, Seoul, Korea, 2009, 1: 375-474. [56] Paik J K, Mansour A E. A simple formulation for predicting the ultimate strength of ships[J]. J Mar Sci Tech-Japan. 1995, 1(1): 52-62. [57] 吴剑国, 万琪, 王福花, 等. 多跨失稳的船体梁极限强度的Smith法修正研究[J]. 中国造船, 2018, 59(2): 51-61. [58] 冯国庆, 周海仲, 任慧龙, 等. 焊接初始缺陷对船体梁极限弯矩的影响[J]. 船舶工程, 2017, 33(2): 67-70. [59] 王醍, 张延昌, 林瞳, 等. 船体梁弯曲极限强度分析[J]. 船舶工程, 2017, 39(4): 24-29. [60] 刘昆, 严力宇, 张延昌, 等. 考虑中性轴偏转的碰撞损伤船体梁剩余极限强度分析[J]. 船舶工程, 2020, 42(5): 35-40. [61] Darehshouri S F, Shanmugam N E, Osman S A. An analytical method for ultimate shear strength of composite plate girders with web opening [J]. Eng Struct. 2013, 56: 610-620. [62] 彭营豪, 方梦丹, 王福花, 等. 船体梁极限剪切强度计算方法[J]. 舰船科学技术, 2020, 42(10): 47-50. [63] Murray J M. Longitudinal strength of tankers[J]. Int Shipbuild Prog. 1958, 5(52): 543-553. [64] Evans J H. Ship structure design concepts[M]. Cornell Maritime Press Inc., 1983. [65] Mansour A E, Lin Y H, Paik J K. Ultimate strength of ships under combined vertical and horizontal moments[C]. In: Proceedings of the 6th international symposium on PRADS. 1995, 844-851. [66] Fujita Y, Nomoto T, Yuge K. Behavior of deformation of structural members under compressive and tensile loads (1st report)-On the buckling of a column subjected to repeated loading[J]. J Soc Naval Archit Jpn. 1984, 156: 346-354. [67] Fukumoto Y, Kusama H. Cyclic behaviour of plates under in-plane loading[J]. Eng Struct. 1985, 7(1): 56-63. [68] Fukumoto Y. Local instability tests of plate elements under cyclic uniaxial loading[J]. J Struct Eng. 1985, 111(5): 1051-1067. [69] Fukumoto Y, Kusama H. Cyclic bending tests of thin-walled box beams[J]. Proceedings of JSCE Structural Engineering/Earthquake Engineering. 1985, 2(1): 141-151. [70] Yao T, Nikolov P I. Buckling/plastic collapse of plates under cyclic loading[J]. J Soc Naval Archit Jpn. 1990, 168: 449-462. [71] Usami T, Ge H B. Cyclic behavior of thin-walled steel structures-numerical analysis[J]. Thin-Walled Struct. 1998, 32: 41-80. [72] 黄震球. 关于海船船体总强度准则的一个新见解[J]. 船海工程, 1993(6): 8-12. [73] 黄震球. 循环压缩-拉伸载荷下船体板的极限强度[J]. 华中理工大学学报, 1994(4): 36-148. [74] 黄震球, 陈齐树, 骆子夜. 循环弯曲载荷下船体梁的极限纵强度[J]. 中国造船, 1996(3): 87-95. [75] 黄震球. 船舶强度研究中的几个问题[J]. 船海工程, 1999(3): 1-5. [76] 任慧龙, 李陈峰. 基于递增塑性破坏的船体极限强度分析研究[C]//船舶力学学术会议暨船舶力学创刊十周年纪念学术会议. 2007. [77] 李辉程. 基于递增塑性法的船体极限强度研究[D]. 哈尔滨工程大学, 2009. [78] Li S, Hu Z, Benson S. An analytical method to predict the buckling and collapse behaviour of plates and stiffened panels under cyclic loading[J]. Eng Struct. 2019, 199: 1-26. [79] Liu B, Soares C G. Ultimate strength assessment of ship hull structures subjected to cyclic bending moments[J]. Ocean Eng. 2020, 215: 107685.1-107685.10. [80] 吴剑国, 申屠晨楠, 何梦翔, 等. 在循环载荷下扶强材极限强度的数值分析与试验验证[J]. 浙江工业大学学报, 2022, 50(02): 198-202+215. [81] 孟志光, 王凡超, 叶帆, 等. 循环荷载作用下加筋板格单元的损伤累积及力学模型研究[J]. 船舶工程, 2018, 40(05): 94-98. [82] 崔虎威, 杨平. 面内循环压缩载荷下船体平板的剩余极限强度[J]. 华中科技大学学报(自然科学版), 2015, 43(4): 108-112. [83] 崔虎威, 杨平, 李政杰. 循环载荷下船体板极限承载性能研究[J]. 中国造船, 2017, 58(04): 76-82. [84] 崔虎威, 杨平, 周杨, 等. 循环载荷下箱型梁极限强度性能实验研究[J]. 船舶力学, 2018, 22(05): 595-602. [85] Cui H W, Yang P. Ultimate strength and failure characteristics research on steel box girders under cyclic-bending moments[J]. J Mar Sci Tech. 2018(4): 1-11. [86] Shi G, Wang M, Bai Y, et al. Experimental and modeling study of high-strength structural steel under cyclic loading[J]. Eng Struct. 2012, 37: 1-13. [87] Paik J K, Kumar Y V S, Lee J M. Ultimate strength of cracked plate elements under axial compression or tension[J]. Thin-Walled Struct. 2005, 43(2): 237-272. [88] Shi G J, Wang D Y. Residual ultimate strength of open box girders with cracked damage[J]. Ocean Eng. 2012, 43: 90-101. [89] Ao L, Wang D Y. Ultimate torsional strength of cracked stiffened box girders with a large deck opening[J]. Int J Nav Arch Ocean. 2016, 8(4): 360-374. [90] Brighenti R. Buckling of cracked thin-plates under tension or compression[J]. Thin-Walled Struct. 2005, 43(2): 209-224. [91] Paik J K. Residual ultimate strength of steel plates with longitudinal cracks under axial compression: experiments[J]. Ocean Eng. 2008, 35: 1775-1783. [92] Paik J K. Residual ultimate strength of steel plates with longitudinal cracks under axial compression—Nonlinear finite element method investigations[J]. Ocean Eng. 2008, 36(3): 266-276. [93] Shi G J, Wang D Y. Residual ultimate strength of cracked box girders under torsional loading [J]. Ocean Eng. 2012, 43: 102-112. [94] Khedmati M R, Edalat P, Javidruzi M. Sensitivity analysis of the elastic buckling of cracked plate elements under axial compression[J]. Thin-Walled Struct. 2009, 47(5): 522-536. [95] Alinia M M, Hosseinzadeh S A A, Habashi H R. Influence of central cracks on buckling and post-buckling behaviour of shear panels[J]. Thin-Walled Struct. 2007, 45(4): 422-431. [96] Alinia M M, Hosseinzadeh S A A, Habashi H R. Buckling and post-buckling strength of shear panels degraded by near border cracks[J]. J Constr Steel Res. 2008, 64(12): 1483-1494. [97] 王芳,黄小平,崔维成. 具有中心穿透裂纹缺陷的矩形板极限拉伸强度分析[J]. 中国造船, 2006, 47(1): 12-18. [98] Wang F, Cui W C. Parametric finite element analysis of the ultimate strength of through- thickness cracked plates[J]. Journal of Ship Mechanics. 2006, 10(6): 76-93. [99] 李景阳, 崔维成, 王芳. 中心穿透裂纹板在复杂载荷作用下的剩余极限强度分析[J]. 舰船科学技术, 2009, 31(8): 44-50. [100] 胡勇, 崔维成. 具有裂纹缺陷的板和加筋板格在联合载荷作用下的剩余极限强度[J]. 船舶力学, 2003, 7(1): 63-78. [101] Paik J K, Kumar Y. Ultimate strength of stiffened panels with cracking damage under axial compression or tension[J]. J Ship Res. 2006, 50(3): 231-238. [102] Rahbar-Ranji A, Zarookian A. Ultimate strength of stiffened plates with a transverse crack under uniaxial compression[J]. Ships Offshore Struc. 2015,10(4): 416-425. [103] Bayatfar A, Khedmati M R, Rigo P. Residual ultimate strength of cracked steel unstiffened and stiffened plates under longitudinal compression[J]. Thin-Walled Struct. 2014, 84: 378-392. [104] 冯帆. 循环载荷下含裂纹船舶结构的剩余极限强度研究[D]. 武汉理工大学, 2020. [105] Paik J K, Thayamballi A K. Ultimate strength of ageing ships[C]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 2002, 216(1): 57-77. [106] Dow R S. Testing and analysis of a 1/3-scale welded steel frigate model[C]. Proceedings of the 2nd International Conference on Advances in Marine Structures. 1991: 749-773. [107] Gao D W, Shi G J, Wang D Y. Residual ultimate strength of hull structures with crack and corrosion damage[J]. Eng Fail Anal. 2012, 25: 316-328. [108] Ueda Y, Yao T. The influence of complex initial deflection modes on the behaviour and ultimate strength of rectangular plates in compression[J]. J Constr Steel Res. 1985, 5(4): 265-302. [109] Brighenti R. Buckling sensitivity analysis of cracked thin plates under membrane tension or compression loading[J]. Nuclear Engineering & Design. 2009, 239(6): 965-980. [110] Brighenti R, Carpinteri A. Buckling and fracture behavior of cracked thin plates under shear loading[J]. Materials & Design. 2011, 32(3):1347-1355. [111] Paik J K, Thayamballi A K. Some recent developments on ultimate limit state design technology for ships and offshore structures[J]. Ships Offshore Struc. 2006,1(2): 99-116. [112] Paik J K, Melchers R E. Condition assessment of aged structures[J]. Corros Eng Sci Techn. 2009, 44(4): 247-248. [113] Seifi R, Khoda-yari N. Experimental and numerical studies on buckling of cracked thin-plates under full and partial compression edge loading[J]. Thin-Walled Struct. 2011, 49(12): 1504-1516. [114] Saad-Eldeen S, Garbatov Y, Soares C G. Experimental strength analysis of steel plates with a large circular opening accounting for corrosion degradation and cracks subjected to compressive load along the short edges[J]. Mar Struct. 2016, 48: 52-67. [115] Saad-Eldeen S, Garbatov Y, Soares C G. Experimental investigation on the residual strength of thin steel plates with a central elliptic opening and locked cracks[J]. Ocean Eng. 2016, 115: 19-29. [116] 陈钢, 刘应华. 结构塑性极限与安定分析理论及工程方法[M]. 科学出版社, 2006. [117] 陈钢, 杨璞, 刘应华. 弹塑性结构安定性上限分析的数值方法及应用[J]. 工程力学, 2005, 22(1): 21-27. [118] 田雨,纪卓尚. 船舶结构低周疲劳强度分析方法[J]. 哈尔滨工程大学学报, 2011, 32(2): 153-158. [119] 田雨, 纪卓尚. 低周疲劳损伤对老化船舶结构剩余极限强度的影响[J]. 中国造船, 2010, 51(1): 115-121. [120] 田雨. 船体结构低周疲劳损伤极限强度研究[D]. 大连理工大学, 2011. [121] Faulkner D. A review of effective plating for use in the analysis of stiffened plating in bending and compression[J]. J Ship Res. 1975, 19(1), 1-17. [122] Frankland J M. The strength of ship plating under edge compression[A]. Report 469, Experimental Modal Basin Navy Yard, Washington D.C., US, 1940. [123] 秦荣. 大型复杂结构非线性分析的新理论新方法[M]. 科学出版社, 2006. [124] Paris P, Gomez M, Anderson W. A rational analytic theory of fatigue[J]. Trend Eng. 1961, 13: 9-14. [125] Nuismer R J. An energy release rate criterion for mixed mode fracture[J]. International Journal of Fracture Mechanics. 1975, 11(02): 245-250. [126] Sih G C. Mechanics of Fracture Initiation and Propagation[M]. Kluwer Academic Publishers. Dordrecht/Boston/London, 1991. [127] Miner M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics. 1945, 12: 154-159. [128] 师俊平, 李智慧, 韩冬. 不同热处理状态45钢材料的Ⅰ-Ⅱ复合型断裂试验分析[J]. 机械强度, 2012, 34(6): 892-898. [129] Elber W. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics. 1970, 2: 37-45. [130] Margaritis Y, Toulios M. The ultimate and collapse response of cracked stiffened plates subjected to uniaxial compression[J]. Thin-Walled Struct. 2012, 50: 157-173. [131] Westergaard H M. Bearing pressures and cracks[J]. Journal of Applied Mechanics. 1939, 6: 49-53. [132] Schwalbe K H. Comparison of several fatigue crack propagation laws with experimental results[J]. Journal of Engineering Fracture. 1974, 6: 325-341. [133] Castro J T P, Meggiolaro M A, Miranda A C O. Singular and non-singular approaches for predicting fatigue crack growth behavior[J]. International Journal of Fatigue. 2005, 27: 1366-1388. [134] Schwalbe K H. Approximate calculation of fatigue crack growth[J]. Journal of Engineering Fracture. 1973, 9: 381-395. [135] Chaboehe J L, Nouailhas D. Constitutive modeling of ratcheting effects—Part I: Experimental facts and properties of the classical models[J]. Journal of Engineering Materials and Technology-Transactions of the ASME. 1989, 111(4): 384-392. [136] Armstrong P J, Frederick C O. A mathematical representation of the multi-axial baushinger effect[R]. Tech. Report C.E.G.B. Report RD/B/N731, 1965. [137] Zaverl J R, Lee D. A constitutive model of cyclic plasticity[J]. Journal of Nuclear Materials. 1978, 75: 14-24. [138] Chaboche J L, Lesne P M A. Liner continuous fatigue damage model[J]. Fatigue & Fracture of Engineering Materials & Structures. 1988, 11(1): 1-17. [139] Chandrakanth S, Pandey P C. An isotropic damage model for ductile material[J]. Engineering Fracture Mechanics. 1995, 50(4): 457-465. [140] 娄志文. 损伤力学基础[M]. 西安:西安交通大学出版社, 1991. [141] Yang X H, Li N, Jin Z H. A continuous low cycle fatigue damage model and its application in engineering materials [J]. International Journal of Fatigue. 1997, 19(10): 687-692. [142] ISSC Committee III. 1 Report: Ultimate Strength[C]. Proceedings of the 18th International Ship and Offshore Structures Congress (ISSC). Rostock, Germany, 2012: 285-363. [143] Fukumoto Y, Itoh Y. Numerical data bank for the system evaluating the ultimate strength of steel structural members[J]. JSCE. J. 1981, 312: 59-72 (in Japanses). [144] Cui C, Yang P, Xia T, et al. Assessment of residual ultimate strength of cracked steel plates under longitudinal compression[J]. Ocean Eng. 2016, 121: 174-183. [145] 王芳. 具有裂纹损伤的船舶结构剩余极限强度分析[D]. 上海交通大学, 2007. [146] Paik J K, Thayamballi A K. Ultimate Limit State Design of Steel-Plated Structures[M]. Wiley, Chichester, UK., 2003. [147] 张旭辉. 极端循环载荷作用下船体结构极限强度研究[D]. 哈尔滨工程大学, 2021. [148] Hu Y, Cui W C, Pedersen P T. Maintained ship hull xcgirxcder ultimate strength reliability considering corrosion and fatigue[J]. Mar Struct. 2004, 17(2): 91-123. [149] 中国船级社. 材料与焊接规范[S]. 北京: 人民交通出版社, 2015. [150] 李闯. 循环载荷下含裂纹损伤船舶结构的承载力研究[D]. 武汉理工大学, 2018. [151] Yu C L, Chen Y T, Yang S, et al. Ultimate strength characteristic and assessment of cracked stiffened panel under uniaxial compression[J]. Ocean Eng. 2018, 152: 6-16. [152] Rahman M K, Chowdhury M. Estimation of ultimate strength longitudinal bending moment of ships and box girders[J]. J Ship Res. 1996, 40(3): 244-257. [153] IACS. Harmonized common structural rules for bulk carriers and oil tankers[S]. International Association of Classified Societies (IACS) Pulications, 2013. [154] Paik J K, Thayamballi A K. Ship-shaped Offshore Installations: Design, Building and Operation[M]. Cambridge University Press, 2007. [155] 王萌. 强烈地震作用下钢框架的损伤退化行为[D]. 清华大学, 2013. [156] 李杰. 地震循环载荷下钢结构梁柱焊接节点耗能与损伤行为的研究[D]. 天津大学, 2002. [157] 吴剑国, 王锦琦, 叶帆, 等. 加筋板的累积损伤力学模型研究[J]. 浙江工业大学学报, 2021, 49(2): 129-134. [158] Cui C, Yang P, Li C, et al. Ultimate strength characteristics of cracked stiffened plates subjected to uniaxial compression[J]. Thin-Walled Struct. 2017, 113: 27-38. [159] Xu M C, Garbatov Y, Soares C G. Residual ultimate strength assessment of stiffened panels with locked cracks[J]. Thin-Walled Struct. 2014, 85: 398-410. [160] Kim D K, Lim H L, Kim M S, et al. An empirical formulation for predicting the ultimate strength of stiffened panels subjected to longitudinal compression[J]. Ocean Eng. 2017, 140(1): 270-280. [161] 崔虎威. 循环载荷下考虑累积塑性破坏的船体结构极限强度研究[D]. 武汉理工大学, 2018. [162] Shi X H, Zhang J, Soares C G. Numerical assessment of experiments on the residual ultimate strength of stiffened plates with a crack[J]. Ocean Eng. 2019, 171: 443-457. [163] Li D Y, Feng L, Huang D Y, et al. Residual ultimate strength of stiffened box girder with coupled damage of pitting corrosion and a crack under vertical bending moment[J]. Ocean Eng. 2021, 235: 109341.1-109341.21.
﹀
|
中图分类号: |
U661.43
|
条码号: |
002000074508
|
馆藏号: |
YD10002669
|
馆藏位置: |
203
|
备注: |
403-西院分馆博硕论文库;203-余家头分馆博硕论文库
|