- 无标题文档
查看论文信息

中文题名:

 

高性能锌离子电池负极的设计制备与应用

    

姓名:

 刘宇    

学号:

 104971190087    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 工学 - 材料科学与工程 - 材料学    

学生类型:

 博士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 新能源材料与器件    

第一导师姓名:

 黄嘉兴    

第一导师院系:

 材料科学与工程学院    

完成日期:

 2023-06-12    

答辩日期:

 2023-05-16    

中文关键词:

 

锌离子电池 ; 负极 ; 有机材料 ; 界面重构 ; 电解液添加剂

    

中文摘要:

水系可充电锌离子电池因其本征安全、低成本、无毒和锌具有合适的氧化还原电位等优势,引起广泛关注,被认为是在大规模储能应用中有潜力的候选者。负极材料作为电池的重要组成部分,是实现高性能锌离子电池的关键因素之一。锌离子电池负极主要分为非金属负极和锌金属基负极两大类。其中非金属负极能够避免枝晶生长和析氢等副反应,但面临高的制备成本和低的锌离子扩散动力学、较高的氧化还原电位等问题;锌金属基负极具有低的氧化还原电位和高的比容量,但面临枝晶生长、析氢和腐蚀等副反应的巨大挑战。针对这些问题,本论文以制备无枝晶高性能锌离子电池负极为导向,在制备和研究高性能非金属负极材料的同时,也研究金属负极的高效改性策略(表面改性、界面重构、电解液调控),为实现高性能水系可充电锌离子电池提供多重保障。此外,本论文还通过电化学分析、原位表征和理论计算相结合的方式揭示性能提升机制。本文的主要成果如下:

(1)1,4,5,8-萘二酰亚胺(NI)有机材料作为锌离子电池负极时,在循环过程中会发生溶解和电极结构劣化等问题导致电池性能衰退。为了提升电极结构的稳定性,本章通过调控粘结剂和制备工艺对NI电极进行处理,发现使用聚四氟乙烯(PTFE)粘结剂及辊压工艺制备的NI电极(RNI-PTFE)显示出最优异的电化学性能。当电流密度为3 A g-1时,RNI-PTFE电极在循环2200圈后仍显示出高达123.3 mA h g-1的放电容量。结合原位/非原位表征手段揭示了NI电极的离子存储机制及性能增强原理,将这种策略应用于其他有机物中也实现了性能显著提升,表明这种策略具有普适性。此外,基于普鲁士蓝(KZnHCF)正极和RNI-PTFE负极组装的全电池显示出优异的倍率性能(在电流密度为10 A g-1时放电比容量为113.9 mA h g-1)、~1.2 V的平均放电电压和50.2 Wh kg-1的能量密度(电流密度为1 A g-1)。这项工作为开发高性能水系锌离子电池无枝晶有机负极提供新的设计策略。

(2)由于锌金属在水系电解液中热力学不稳定,活性水分子会腐蚀锌负极导致寄生反应发生。本章利用原子层沉积(ALD)技术在锌金属表面构筑一层不同厚度的ZrO2界面层(ZrO2@Zn),其中厚度为40 nm的ZrO2@Zn电极具有最佳的综合性能。40 nm ZrO2@Zn//40 nm ZrO2@Zn对称电池在1 mA cm-2 / 0.5 mA h cm-2条件下显示出低的极化(36 mV)和长的寿命(1750 h)。即使电流密度提升到10 mA cm-2时,该对称电池依然能够稳定循环860 h,实现高达4.3 Ah cm-2的累计沉积容量。40 nm ZrO2@Zn//40 nm ZrO2@Cu非对称电池也显示出优异的可逆性。此外,根据COMSOL模拟和电化学结果表明,ZrO2镀层能够隔绝水与锌负极的接触从而抑制寄生副反应,并能够匀化界面电场促进锌离子均匀沉积和抑制枝晶生长,从而实现优异的可逆性和循环稳定性。此外,基于二氧化锰(MnO2)正极和40 nm ZrO2@Zn负极组装的全电池在3.08 A g-1的电流密度下循环2500圈后仍展现出高达137.7 mA h g-1的放电容量。

(3)在水系电解液中,锌金属负极表面随机分布的氧化层会加速金属锌的钝化和不均匀沉积,严重阻碍了水系锌离子电池走向实际应用。本章重新揭示了氧化层(ZnO)对锌负极的作用,并证明了表面终止行为对提升水系锌离子电池电化学性能的重要性。ZnO层会演化成均匀分布的羟基硫酸锌(Zn4(OH)6SO4·xH2O,ZSH)保护层,这种保护层并没有直接参与锌的沉积/溶解过程,而是具有降低脱溶剂化能和保护锌负极的作用。通过实验和模拟相结合,提出并验证了一种“边缘脱水-沿边缘转移”的锌离子输运新机制,明确区别于“表面脱水-晶体通道转移”传统机制。由于锌枝晶生长和副反应得到有效抑制,ZnO@Zn//ZnO@Zn对称电池在电流密度为10 mA cm-2时表现出超过1200 h的稳定寿命以及高达6.24 Ah cm-2的累积沉积容量,远优于Zn//Zn对称电池。此外,基于MnO2正极和ZnO@Zn负极组装的全电池展现出超1000圈的优异循环稳定性及高达99.07%的库伦效率。该工作表明合适的表面终止化学设计对于提高金属负极性能是至关重要的。

(4)电解液添加剂策略具有低成本、易操作等优势而被广泛研究。本章将谷氨酸钠添加剂引入硫酸锌电解液中(MSG/ZnSO4),实现了锌负极表面固态电解质界面(SEI)保护层的构筑,从而提升了锌负极的可逆性和稳定性。根据理论计算和实验分析,发现谷氨酸阴离子(Glu-)会优先吸附在锌金属表面,并在沉积过程中发生还原反应形成稳定的SEI层,从而有效抑制了锌负极界面处的副反应和提高了锌负极的电化学动力学。因此,使用MSG/ZnSO4电解液的Zn//Zn对称电池展示出长达4000 h的循环寿命,Zn//Cu电池能够可逆循环1350圈,且平均库伦效率高达99.35%,MnO2//Zn全电池在1300圈循环后比容量仍然高达108.7 mA h g-1。该工作中展示的原位SEI设计新策略为实现锌的有效利用以及ZIBs的内在安全性和稳定性开辟了一种高效且廉价的新途径。

参考文献:

[1] Zhu Z, Jiang T, Ali M, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22), 16610-16751.

[2] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058), 928-935.

[3] Bongaarts J. Special report on global warming of 1.5°C[J]. Population and Development Review, 2019, 45(1), 251-252.

[4] Mesbahi T, Ouari A, Ghennam T, et al. A stand-alone wind power supply with a Li-ion battery energy storage system[J]. Renewable and Sustainable Energy Reviews, 2014, 40, 204-213.

[5] Kim H, Jeong G, Kim Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chemical Society Reviews, 2013, 42(23), 9011-9034.

[6] Cai Y, Liu F, Luo Z, et al. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode[J]. Energy Storage Materials, 2018, 13, 168-174.

[7] Simon P, Gogotsi Y, Dunn B. Materials science. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176), 1210-1211.

[8] Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23), 11636-11682.

[9] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104(10), 4245-4270.

[10] Canepa P, Sai Gautam G, Hannah D C, et al. Odyssey of multivalent cathode materials: Open questions and future challenges[J]. Chemical Reviews, 2017, 117(5), 4287-4341.

[11] Yoo H D, Shterenberg I, Gofer Y, et al. Mg rechargeable batteries: An on-going challenge[J]. Energy & Environmental Science, 2013, 6(8), 2265-2279.

[12] Ponrouch A, Palacín M R. Post-Li batteries: Promises and challenges[J]. Philosophical Transactions of the Royal Society A, 2019, 377(2152), 20180297.

[13] Mathew V, Sambandam B, Kim S, et al. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments[J]. ACS Energy Letters, 2020, 5(7), 2376-2400.

[14] Jia X, Liu C, Neale Z G, et al. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews, 2020, 120(15), 7795-7866.

[15] Andrews J L, Banerjee S. It’s not over until the big ion dances: Potassium gets its groove on[J]. Joule, 2018, 2(11), 2194-2197.

[16] Massé R C, Uchaker E, Cao G. Beyond Li-ion: Electrode materials for sodium-and magnesium-ion batteries[J]. Science China Materials, 2015, 58, 715-766.

[17] Li H, Ma L, Han C, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62, 550-587.

[18] Wang M, Zhang F, Lee C S, et al. Low-cost metallic anode materials for high performance rechargeable batteries[J]. Advanced Energy Materials, 2017, 7(23), 1700536.

[19] Liu Z, Huang Y, Huang Y, et al. Voltage issue of aqueous rechargeable metal-ion batteries[J]. Chemical Society Reviews, 2020, 49(1), 180-232.

[20] Mauger A, Julien C M, Goodenough J B, et al. Tribute to michel armand: From rocking chair–Li-ion to solid-state lithium batteries[J]. Journal of the Electrochemical Society, 2019, 167(7), 070507.

[21] Li W, Wang K, Cheng S, et al. An ultrastable presodiated titanium disulfide anode for aqueous “rocking‐chair” zinc ion battery[J]. Advanced Energy Materials, 2019, 9(27), 1900993.

[22] Li Q, Pan H, Li W, et al. Homogeneous interface conductivity for lithium dendrite-free anode[J]. ACS Energy Letters, 2018, 3(9), 2259-2266.

[23] Wang T, Li C, Xie X, et al. Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives[J]. ACS Nano, 2020, 14(12), 16321−16347.

[24] Zhou L F, Du T, Li J Y, et al. A strategy for anode modification for future zinc-based battery application[J]. Materials Horizons, 2022, 9(11), 2722-2751.

[25] Wippermann K, Schultze J W, Kessel R, et al. The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives[J]. Corrosion Science, 1991, 31(2), 205-223, 225-230.

[26] Beverskog B, Puigdomenech I. Revised pourbaix diagrams for zinc at 25–300 °C[J]. Corrosion Science, 1997, 31(1), 107-114.

[27] Hao J, Li X, Zeng X, et al. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries[J]. Energy & Environmental Science, 2020, 13(11), 3917-3949.

[28] Kao C-C, Ye C, Hao J, et al. Suppressing hydrogen evolution via anticatalytic interfaces toward highly efficient aqueous Zn-ion batteries[J]. ACS Nano, 2023, 17(4), 3948-3957.

[29] Yi Z, Chen G, Hou F, et al. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries[J]. Advanced Energy Materials, 2020, 11(1), 2003065.

[30] Zheng J, Yin J, Zhang D, et al. Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes[J]. Science Advances, 2020, 6(25), eabb1122.

[31] Zhao Z, Zhao J, Hu Z, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy & Environmental Science, 2019, 12(6), 1938-1949.

[32] Guo X, Zhang Z, Li J, et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives[J]. ACS Energy Letters, 2021, 6(2), 395-403.

[33] Chao D, Zhou W, Ye C, et al. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage[J]. Angewandte Chemie International Edition, 2019, 58(23), 7823-7828.

[34] Tang B, Shan L, Liang S, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2019, 12(11), 3288-3304.

[35] Cao Z, Zhuang P, Zhang X, et al. Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries[J]. Advanced Energy Materials, 2020, 10(30), 2001599.

[36] Liu W, Hao J, Xu C, et al. Investigation of zinc ion storage of transition metal oxides, sulfides, and borides in zinc ion battery systems[J]. Chemical Communications, 2017, 53(51), 6872-6874.

[37] He X, Zhang H, Zhao X, et al. Stabilized molybdenum trioxide nanowires as novel ultrahigh-capacity cathode for rechargeable zinc ion battery[J]. Advanced Science, 2019, 6(14), 1900151.

[38] Kim H-S, Cook J B, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x[J]. Nature Materials, 2017, 16(4), 454-460.

[39] De Castro I A, Datta R S, Ou J Z, et al. Molybdenum oxides - from fundamentals to functionality[J]. Advanced Materials, 2017, 29(40), 1701619.

[40] Xiong T, Zhang Y, Wang Y, et al. Hexagonal MoO3 as a zinc intercalation anode towards zinc metal-free zinc-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(18), 9006-9012.

[41] Yang B, Qin T, Du Y, et al. Rocking-chair proton battery based on a low-cost "water in salt" electrolyte[J]. Chemical Communications, 2022, 58(10), 1550-1553.

[42] Wang B, Yan J, Zhang Y, et al. In situ carbon insertion in laminated molybdenum dioxide by interlayer engineering toward ultrastable “rocking-chair” zinc-ion batteries[J]. Advanced Functional Materials, 2021, 31(30), 2102827.

[43] Yao Y, Chen Z, Yu R, et al. Confining ultrafine moo2 in a carbon matrix enables hybrid Li ion and Li metal storage[J]. ACS Applied Materials & Interfaces, 2020, 12(36), 40648-40654.

[44] Lee B, No W J, Oh S H. Unravelling the role of interfacial chemistry evolution in the kinetics of zinc insertion into chevrel phase[J]. Journal of Power Sources, 2020, 478, 229086.

[45] Chae M S, Heo J W, Lim S C, et al. Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo6S8 and Zn2Mo6S8 chevrel phases in aqueous electrolytes[J]. Inorganic Chemistry, 2016, 55(7), 3294-3301.

[46] Chae M S, Hong S-T. Prototype system of rocking-chair Zn-ion battery adopting zinc chevrel phase anode and rhombohedral zinc hexacyanoferrate cathode[J]. Batteries, 2019, 5(1), 3.

[47] Du Y, Zhang B, Zhou W, et al. Laser-radiated tellurium vacancies enable high-performance telluride molybdenum anode for aqueous zinc-ion batteries[J]. Energy Storage Materials, 2022, 51, 29-37.

[48] Songmueang K, Zhang D, Cao J, et al. Flower-like W/WO3 as a novel cathode for aqueous zinc-ion batteries[J]. Chemical Communications, 2021, 57(61), 7549-7552.

[49] Cao J, Zhang D, Yue Y, et al. Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries[J]. Chemical Engineering Journal, 2021, 426, 131893.

[50] Levi E, Gofer Y, Aurbach D. On the way to rechargeable Mg batteries: The challenge of new cathode materials[J]. Chemistry of Materials, 2009, 22(3), 860-868.

[51] Wang L, Jiang M, Liu F, et al. Layered TiS2 as a promising host material for aqueous rechargeable Zn ion battery[J]. Energy & Fuels, 2020, 34(9), 11590-11596.

[52] Lv Z, Wang B, Ye M, et al. Activating the stepwise intercalation-conversion reaction of layered copper sulfide toward extremely high capacity zinc-metal-free anodes for rocking-chair zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(1), 1126-1137.

[53] Yang Y, Xiao J, Cai J, et al. Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: An insight into its intercalation/extraction kinetics and charge storage mechanism[J]. Advanced Functional Materials, 2020, 31(3), 2005092.

[54] Li W, Ma Y, Li P, et al. Electrochemically activated Cu2–xTe as an ultraflat discharge plateau, low reaction potential, and stable anode material for aqueous Zn-ion half and full batteries[J]. Advanced Energy Materials, 2021, 11(42), 2102607.

[55] Zhao Q, Huang W W, Luo Z Q, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes[J]. Science Advances, 2018, 4(3), eaao1761.

[56] Yan L, Zeng X, Li Z, et al. An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage[J]. Materials Today Energy, 2019, 13, 323-330.

[57] Liu N, Wu X, Zhang Y, et al. Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries[J]. Advanced Science, 2020, 7(14), 2000146.

[58] Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465), 645-648.

[59] Wang Z, Huang J, Guo Z, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes[J]. Joule, 2019, 3(5), 1289-1300.

[60] Tian Y, An Y, Wei C, et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries[J]. ACS Nano, 2019, 13(10), 11676-11685.

[61] Chen D, Long Y, Wu Z, et al. A gelation-assisted approach for versatile MXene inks[J]. Advanced Functional Materials, 2022, 32(36), 2204372.

[62] Xie C, Ji H, Zhang Q, et al. High-index zinc facet exposure induced by preferentially orientated substrate for dendrite-free zinc anode[J]. Advanced Energy Materials, 2022, 13(3), 2203203.

[63] Xie C, Yang Z, Zhang Q, et al. Designing zinc deposition substrate with fully preferred orientation to elude the interfacial inhomogeneous dendrite growth[J]. Research, 2022, 2022, 9841343.

[64] Li C, Shi X, Liang S, et al. Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode[J]. Chemical Engineering Journal, 2020, 379, 122248.

[65] Wu C, Tan H, Huang W, et al. A new scalable preparation of metal nanosheets: Potential applications for aqueous Zn-ion batteries anode[J]. Advanced Functional Materials, 2020, 30(34), 2003187.

[66] Wang W, Huang G, Wang Y, et al. Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries[J]. Advanced Energy Materials, 2022, 12(6), 2102797.

[67] Xie C, Liu S, Yang Z, et al. Discovering the intrinsic causes of dendrite formation in zinc metal anodes: Lattice defects and residual stress[J]. Angewandte Chemie International Edition, 2023, 62(16), e202218612.

[68] Li S, Fu J, Miao G, et al. Toward planar and dendrite-free Zn electrodepositions by regulating sn-crystal textured surface[J]. Advanced Materials, 2021, 33(21), e2008424.

[69] Du W, Huang S, Zhang Y, et al. Enable commercial zinc powders for dendrite-free zinc anode with improved utilization rate by pristine graphene hybridization[J]. Energy Storage Materials, 2022, 45, 465-473.

[70] Hao J, Li X, Zhang S, et al. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries[J]. Advanced Functional Materials, 2020, 30(30), 2001263.

[71] Zhang Y, Yang G, Lehmann M L, et al. Separator effect on zinc electrodeposition behavior and its implication for zinc battery lifetime[J]. Nano Lett, 2021, 21(24), 10446-10452.

[72] Song Y, Ruan P, Mao C, et al. Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries[J]. Nano-Micro Letters, 2022, 14(1), 218.

[73] Wang Z, Dong L, Huang W, et al. Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes[J]. Nano-Micro Letters, 2021, 13(1), 73.

[74] Yuan D, Manalastas W, Jr., Zhang L, et al. Lignin@nafion membranes forming Zn solid-electrolyte interfaces enhance the cycle life for rechargeable zinc-ion batteries[J]. ChemSusChem, 2019, 12(21), 4889-4900.

[75] Zhang Y, Li X, Fan L, et al. Ultrathin and super-tough membrane for anti-dendrite separator in aqueous zinc-ion batteries[J]. Cell Reports Physical Science, 2022, 3(4), 100824.

[76] Kang L, Cui M, Jiang F, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries[J]. Advanced Energy Materials, 2018, 8(25), 1801090.

[77] Deng C, Xie X, Han J, et al. A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode[J]. Advanced Functional Materials, 2020, 30(21), 2000599.

[78] Cui Y, Zhao Q, Wu X, et al. An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes[J]. Angewandte Chemie International Edition, 2020, 59(38), 16594-16601.

[79] Hao J, Li B, Li X, et al. An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries[J]. Advanced Materials, 2020, 32(34), e2003021.

[80] Ma L, Li Q, Ying Y, et al. Toward practical high-areal-capacity aqueous zinc-metal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes[J]. Advanced Matererials, 2021, 33(12), e2007406.

[81] Chu Y, Zhang S, Wu S, et al. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes[J]. Energy & Environmental Science, 2021, 14(6), 3609-3620.

[82] Zhao K, Wang C, Yu Y, et al. Ultrathin surface coating enables stabilized zinc metal anode[J]. Advanced Materials Interfaces, 2018, 5(16), 1800848.

[83] Cao P, Zhou X, Wei A, et al. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries[J]. Advanced Functional Materials, 2021, 31(20), 2100398.

[84] Jia H, Wang Z, Tawiah B, et al. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries[J]. Nano Energy, 2020, 70, 104523.

[85] Dong L, Yang W, Yang W, et al. Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors[J]. Chemical Engineering Journal, 2020, 384, 123355.

[86] Wang A, Zhou W, Huang A, et al. Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: A strategy to realize dendrite-free Zn-MnO2 batteries[J]. Journal of Colloid and Interface Science, 2020, 577, 256-264.

[87] Zhou Z, Zhang Y, Chen P, et al. Graphene oxide-modified zinc anode for rechargeable aqueous batteries[J]. Chemical Engineering Science, 2019, 194, 142-147.

[88] Shen C, Li X, Li N, et al. Graphene-boosted, high-performance aqueous Zn-ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(30), 25446-25453.

[89] Xia A, Pu X, Tao Y, et al. Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries[J]. Applied Surface Science, 2019, 481, 852-859.

[90] Li Z, Wu L, Dong S, et al. Pencil drawing stable interface for reversible and durable aqueous zinc-ion batteries[J]. Advanced Functional Materials, 2020, 31(4), 2006495.

[91] Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nature Energy, 2016, 1(5), 1-7.

[92] Wan F, Zhang L, Dai X, et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers[J]. Nature Communications, 2018, 9(1), 1656.

[93] Zhang Y, Li H, Huang S, et al. Rechargeable aqueous zinc-ion batteries in MgSO4/ZnSO4 hybrid electrolytes[J]. Nano-Micro Letters, 2020, 12(1), 60.

[94] Zhao R, Wang H, Du H, et al. Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition[J]. Nature Communications, 2022, 13(1), 3252.

[95] Li Y, Wu P, Zhong W, et al. A progressive nucleation mechanism enables stable zinc stripping–plating behavior[J]. Energy & Environmental Science, 2021, 14(10), 5563-5571.

[96] Zhang Q, Ma Y, Lu Y, et al. Halogenated Zn2+ solvation structure for reversible Zn metal batteries[J]. Journal of the American Chemical Society, 2022, 144(40), 18435-18443.

[97] Liu S, Shang W, Yang Y, et al. Effects of I3− electrolyte additive on the electrochemical performance of Zn anodes and Zn/MnO2 batteries[J]. Batteries & Supercaps, 2022, 5(1), e202100221.

[98] Zhang H, Guo R, Li S, et al. Graphene quantum dots enable dendrite-free zinc ion battery[J]. Nano Energy, 2022, 92, 106752.

[99] Sun C, Wu C, Gu X, et al. Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition[J]. Nano-Micro Letters, 2021, 13(1), 89.

[100] Zeng X, Mao J, Hao J, et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions[J]. Advanced Materials, 2021, 33(11), e2007416.

[101] Xu W, Zhao K, Huo W, et al. Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries[J]. Nano Energy, 2019, 62, 275-281.

[102] Bayaguud A, Luo X, Fu Y, et al. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries[J]. ACS Energy Letters, 2020, 5(9), 3012-3020.

[103] Hou Z, Zhang X, Li X, et al. Surfactant widens the electrochemical window of an aqueous electrolyte for better rechargeable aqueous sodium/zinc battery[J]. Journal of Materials Chemistry A, 2017, 5(2), 730-738.

[104] Zhang Q, Luan J, Fu L, et al. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive[J]. Angewandte Chemie International Edition, 2019, 58(44), 15841-15847.

[105] Miao Z, Liu Q, Wei W, et al. Unveiling unique steric effect of threonine additive for highly reversible Zn anode[J]. Nano Energy, 2022, 97, 107145.

[106] Huang C, Zhao X, Liu S, et al. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions[J]. Advanced Materials, 2021, 33(38), e2100445.

[107] Qin R, Wang Y, Zhang M, et al. Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries[J]. Nano Energy, 2021, 80, 105478.

[108] Li T C, Lim Y, Li X L, et al. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage[J]. Advanced Energy Materials, 2022, 12(15), 2103231.

[109] Sun P, Ma L, Zhou W, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive[J]. Angewandte Chemie International Edition, 2021, 60(33), 18247-18255.

[110] Qiu M, Sun P, Qin A, et al. Metal-coordination chemistry guiding preferred crystallographic orientation for reversible zinc anode[J]. Energy Storage Materials, 2022, 49, 463-470.

[111] Wang D, Lv D, Liu H, et al. In situ formation of nitrogen-rich solid electrolyte interphase and simultaneous regulating solvation structures for advanced Zn metal batteries[J]. Angewandte Chemie International Edition, 2022, 61(52), e202212839.

[112] Zhang N, Cheng F, Liu Y, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery[J]. Journal of the American Chemical Society, 2016, 138(39), 12894-12901.

[113] Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials, 2018, 17(6), 543-549.

[114] Li M, Wang X, Hu J, et al. Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode[J]. Angewandte Chemie International Edition, 2023, 62(8), e202215552.

[115] Wu X, Xu Y, Zhang C, et al. Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte[J]. Journal of the American Chemical Society, 2019, 141(15), 6338-6344.

[116] Yang M, Zhu J, Bi S, et al. A binary hydrate-melt electrolyte with acetate-oriented cross-linking solvation shells for stable zinc anodes[J]. Advanced Materials, 2022, 34(18), e2201744.

[117] Geng L, Meng J, Wang X, et al. Eutectic electrolyte with unique solvation structure for high-performance zinc-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(31), e202206717.

[118] Yang W, Du X, Zhao J, et al. Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries[J]. Joule, 2020, 4(7), 1557-1574.

[119] Han D, Cui C, Zhang K, et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries[J]. Nature Sustainability, 2022, 5(3), 205-213.

[120] Du H, Dong Y, Li Q J, et al. A new zinc salt chemistry for aqueous zinc-metal batteries[J]. Advanced Materials, 2023, 10.1002/adma.202210055. e2210055.

[121] Guo Y, Li H, Zhai T. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Advanced Matererials, 2017, 29(29), 1700007.

[122] Whittingham M S. Introduction: Batteries[J]. Chemical Reviews, 2014, 114(23), 11413.

[123] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23), 11503-11618.

[124] Tan C, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites[J]. Chemical Society Reviews, 2015, 44(9), 2713-2731.

[125] Mai L, Yan M, Zhao Y. Track batteries degrading in real time[J]. Nature, 2017, 546(7659), 469-470.

[126] Liu C X, Xie X S, Lu B G, et al. Electrolyte strategies toward better zinc-ion batteries[J]. ACS Energy Letters, 2021, 6(3), 1015-1033.

[127] Zhang T S, Tang Y, Guo S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review[J]. Energy & Environmental Science, 2020, 13(12), 4625-4665.

[128] Huang M, Wang X P, Meng J S, et al. Ultra-fast and high-stable near-pseudocapacitance intercalation cathode for aqueous potassium-ion storage[J]. Nano Energy, 2020, 77, 105069.

[129] Huang M, Meng J, Huang Z, et al. Ultrafast cation insertion-selected zinc hexacyanoferrate for 1.9 V K–Zn hybrid aqueous batteries[J]. Journal of Materials Chemistry A, 2020, 8(14), 6631-6637.

[130] Li M, Meng J S, Li Q, et al. Finely crafted 3D electrodes for dendrite-free and high-performance flexible fiber-shaped Zn-Co batteries[J]. Advanced Functional Materials, 2018, 28(32), 1802016.

[131] Lee Y-G, Lee J, An G H. Free-standing manganese oxide on flexible graphene films as advanced electrodes for stable, high energy-density solid-state zinc-ion batteries[J]. Chemical Engineering Journal, 2021, 414, 128916.

[132] Wan F, Huang S, Cao H, et al. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries[J]. ACS Nano, 2020, 14(6), 6752-6760.

[133] Zhao J, Xu Z, Zhou Z, et al. A safe flexible self-powered wristband system by integrating defective MnO2-x nanosheet-based zinc-ion batteries with perovskite solar cells[J]. ACS Nano, 2021, 15(6), 10597-10608.

[134] Sun W, Wang F, Hou S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. Journal of the American Chemical Society, 2017, 139(29), 9775-9778.

[135] Cheng Y, Luo L, Zhong L, et al. Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(22), 13673-13677.

[136] Tie Z, Niu Z. Design strategies for high-performance aqueous Zn/organic batteries[J]. Angewandte Chemie International Edition, 2020, 59(48), 21293-21303.

[137] Liang Y L, Tao Z L, Chen J. Organic electrode materials for rechargeable lithium batteries[J]. Advanced Energy Materials, 2012, 2(7), 742-769.

[138] Lu Y, Zhang Q, Li L, et al. Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries[J]. Chem, 2018, 4(12), 2786-2813.

[139] Wang Y, Wang C, Ni Z, et al. Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries[J]. Advanced Matererials, 2020, 32(16), e2000338.

[140] Nam K W, Kim H, Beldjoudi Y, et al. Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries[J]. Journal of the American Chemical Society, 2020, 142(5), 2541-2548.

[141] Wang W X, Kale V S, Cao Z, et al. Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery[J]. ACS Energy Letters, 2020, 5(7), 2256-2264.

[142] Kumankuma-Sarpong J, Tang S, Guo W, et al. Naphthoquinone-based composite cathodes for aqueous rechargeable zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(3), 4084-4092.

[143] Zhang S Q, Long S T, Li H, et al. A high-capacity organic cathode based on active N atoms for aqueous zinc-ion batteries[J]. Chemical Engineering Journal, 2020, 400, 125898.

[144] Na M, Oh Y, Byon H R. Effects of Zn2+ and H+ association with naphthalene diimide electrodes for aqueous Zn-ion batteries[J]. Chemistry of Materials, 2020, 32(16), 6990-6997.

[145] Wang X, Chen L, Lu F, et al. Boosting aqueous Zn2+ storage in 1,4,5,8-naphthalenetetracarboxylic dianhydride through nitrogen substitution[J]. ChemElectroChem, 2019, 6(14), 3644-3647.

[146] Chou S L, Pan Y, Wang J Z, et al. Small things make a big difference: Binder effects on the performance of Li and Na batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(38), 20347-20359.

[147] Joyce G. Laquindanum, Howard E. Katz, Ananth Dodabalapur, et al. N-channel organic transistor materials based on naphthalene frameworks[J]. Journal of the American Chemical Society, 1996, 118, 11331-11332.

[148] Keeling D L, Oxtoby N S, Wilson C, et al. Assembly and processing of hydrogen bond induced supramolecular nanostructures[J]. Nano Letters, 2003, 3(1), 9-12.

[149] Seydou M, Teyssandier J, Battaglini N, et al. Characterization of NTCDI supra-molecular networks on Au(111); combining STM, IR and DFT calculations[J]. RSC Advances, 2014, 4(49), 25698-25708.

[150] Abdel-Khalek H, Shalaan E, El Salam M A, et al. Effect of thermal annealing on structural, linear and nonlinear optical properties of 1, 4, 5, 8-naphthalene tetracarboxylic dianhydride thin films[J]. Journal of Molecular Structure, 2019, 1178, 408-419.

[151] Kortekaas L, Lancia F, Steen J D, et al. Reversible charge trapping in bis-carbazole-diimide redox polymers with complete luminescence quenching enabling nondestructive read-out by resonance raman spectroscopy[J]. The Journal of Physical Chemistry C, 2017, 121(27), 14688-14702.

[152] Zhanpeisov N U, Nishio S, Fukumura H. Density functional theory study of vibrational properties of the 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) molecule: IR, Raman, and UV-vis spectra[J]. International Journal of Quantum Chemistry, 2005, 105(4), 368-375.

[153] Wang Y, Liu Z, Wang C, et al. Π-conjugated polyimide-based organic cathodes with extremely-long cycling life for rechargeable magnesium batteries[J]. Energy Storage Materials, 2020, 26, 494-502.

[154] Luo Z, Liu L, Ning J, et al. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2018, 57(30), 9443-9446.

[155] Guo Z, Ma Y, Dong X, et al. An environmentally friendly and flexible aqueous zinc battery using an organic cathode[J]. Angewandte Chemie International Edition, 2018, 57(36), 11737-11741.

[156] Yue X, Liu H, Liu P. Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries[J]. Chemical Communications, 2019, 55(11), 1647-1650.

[157] He P, Yan M Y, Zhang G B, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode[J]. Advanced Energy Materials, 2017, 7(11), 1601920.

[158] Liu J P, Xu P T, Liang J M, et al. Boosting aqueous zinc-ion storage in MoS2 via controllable phase[J]. Chemical Engineering Journal, 2020, 389, 124405.

[159] Wang J Q, Liu J, Hu M M, et al. A flexible, electrochromic, rechargeable Zn//ppy battery with a short circuit chromatic warning function[J]. Journal of Materials Chemistry A, 2018, 6(24), 11113-11118.

[160] Brezesinski T, Wang J, Polleux J, et al. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors[J]. Journal of the American Chemical Society, 2009, 131(5), 1802-1809.

[161] Brezesinski T, Wang J, Tolbert S H, et al. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors[J]. Nature Materials, 2010, 9(2), 146-151.

[162] Augustyn V, Come J, Lowe M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6), 518-522.

[163] Adil M, Sarkar A, Roy A, et al. Practical aqueous calcium-ion battery full-cells for future stationary storage[J]. ACS Applied Materials & Interfaces, 2020, 12(10), 11489-11503.

[164] Wang F, Fan X, Gao T, et al. High-voltage aqueous magnesium ion batteries[J]. ACS Central Science, 2017, 3(10), 1121-1128.

[165] Ren W, Chen X, Zhao C. Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage[J]. Advanced Energy Materials, 2018, 8(24), 1801413.

[166] Ren Z H, Yu J, Li Y J, et al. Tunable free-standing ultrathin porous nickel film for high performance flexible nickel-metal hydride batteries[J]. Advanced Energy Materials, 2018, 8(12), 1702467.

[167] Xu Y, Lin Z, Zhong X, et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications, 2014, 5, 4554.

[168] Gogotsi Y, Simon P. True performance metrics in electrochemical energy storage[J]. Science, 2011, 334(6058), 917-918.

[169] Cui F Z, Liu Z C, Ma D L, et al. Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors[J]. Chemical Engineering Journal, 2021, 405, 127038.

[170] Wang M T, Wang H Q, Zhang H M, et al. Aqueous K-ion battery incorporating environment-friendly organic compound and berlin green[J]. Journal of Energy Chemistry, 2020, 48, 14-20.

[171] Zhang H Y, Ye K, Zhu K, et al. Assembly of aqueous rechargeable magnesium ions battery capacitor: The nanowire Mg-OMS-2/graphene as cathode and activated carbon as anode[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8), 6727-6735.

[172] Zheng X, Ahmad T, Chen W. Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries[J]. Energy Storage Materials, 2021, 39, 365-394.

[173] Zhao R, Yang Y, Liu G, et al. Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes[J]. Advanced Functional Materials, 2020, 31(2), 2001867.

[174] Yan B, Li X, Bai Z, et al. A review of atomic layer deposition providing high performance lithium sulfur batteries[J]. Journal of Power Sources, 2017, 338, 34-48.

[175] Jung Y S, Lu P, Cavanagh A S, et al. Unexpected improved performance of ald coated LiCoO2/graphite Li-ion batteries[J]. Advanced Energy Materials, 2013, 3(2), 213-219.

[176] He H B, Tong H, Song X Y, et al. Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(16), 7836-7846.

[177] Kaliyappan K, Liu J, Xiao B, et al. Enhanced performance of P2-Na0.66(Mn0.54Co0.13Ni0.13)O2 cathode for sodium-ion batteries by ultrathin metal oxide coatings via atomic layer deposition[J]. Advanced Functional Materials, 2017, 27(37), 1701870.

[178] Grechko M, Hasegawa T, D'angelo F, et al. Coupling between intra- and intermolecular motions in liquid water revealed by two-dimensional terahertz-infrared-visible spectroscopy[J]. Nature Communications, 2018, 9(1), 885.

[179] Wang L, Wu W, Sun W, et al. Partially dehydrated zinc hydroxide sulfate nanoplates reinforced coating for corrosion protection[J]. Chemical Engineering Journal, 2019, 373, 8-22.

[180] Machovsky M, Kuritka I, Sedlak J, et al. Hexagonal ZnO porous plates prepared from microwave synthesized layered zinc hydroxide sulphate via thermal decomposition[J]. Materials research bulletin, 2013, 48(10), 4002-4007.

[181] He H, Liu J. Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes[J]. Journal of Materials Chemistry A, 2020, 8(42), 22100-22110.

[182] Chen P, Yuan X, Xia Y, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries[J]. Advanced Science, 2021, 8(11), e2100309.

[183] Wang Y, Chen Y, Liu W, et al. Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode[J]. Journal of Materials Chemistry A, 2021, 9(13), 8452-8461.

[184] Hieu L T, So S, Kim I T, et al. Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life[J]. Chemical Engineering Journal, 2021, 411, 128584.

[185] Lu Q, Liu C, Du Y, et al. Uniform Zn deposition achieved by ag coating for improved aqueous zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(14), 16869-16875.

[186] Yan H, Li S, Nan Y, et al. Ultrafast zinc-ion-conductor interface toward high-rate and stable zinc metal batteries[J]. Advanced Energy Materials, 2021, 11(18), 2100186.

[187] Zhang Q, Luan J, Huang X, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode[J]. Nature Communications, 2020, 11(1), 3961.

[188] Hong L, Wang L Y, Wang Y, et al. Toward hydrogen-free and dendrite-free aqueous zinc batteries: Formation of zincophilic protective layer on Zn anodes[J]. Advanced Science, 2022, 9(6), e2104866.

[189] Wang Y, Guo T, Yin J, et al. Controlled deposition of zinc-metal anodes via selectively polarized ferroelectric polymers[J]. Advanced Matererials, 2022, 34(4), e2106937.

[190] Hao J, Yuan L, Ye C, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents[J]. Angewandte Chemie International Edition, 2021, 60(13), 7366-7375.

[191] Huang J, Wang Z, Hou M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018, 9(1), 2906.

[192] He Y, Ren X, Xu Y, et al. Origin of lithium whisker formation and growth under stress[J]. Nature Nanotechnology, 2019, 14(11), 1042-1047.

[193] Etxebarria A, Koch S L, Bondarchuk O, et al. Work function evolution in Li anode processing[J]. Advanced Energy Materials, 2020, 10(24), 2000520.

[194] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16), 11169-11186.

[195] Blochl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24), 17953-17979.

[196] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3), 1758-1775.

[197] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. PhysIcal Review Letters, 1996, 77(18), 3865-3868.

[198] Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15), 154104.

[199] Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22), 9901-9904.

[200] Li B, Xue J, Han C, et al. A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries[J]. Journal of Colloid and Interface Science, 2021, 599, 467-475.

[201] Yuan W, Ma G, Nie X, et al. In-situ construction of a hydroxide-based solid electrolyte interphase for robust zinc anodes[J]. Chemical Engineering Journal, 2022, 431, 134076.

[202] Yan J, Ye M, Zhang Y, et al. Layered zirconium phosphate-based artificial solid electrolyte interface with zinc ion channels towards dendrite-free Zn metal anodes[J]. Chemical Engineering Journal, 2022, 432, 134227.

[203] Zhou M, Guo S, Fang G, et al. Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte[J]. Journal of Energy Chemistry, 2021, 55, 549-556.

[204] Guo Z, Fan L, Zhao C, et al. A dynamic and self-adapting interface coating for stable Zn-metal anodes[J]. Advanced Matererials, 2022, 34(2), e2105133.

[205] Xu X, Chen Y, Zheng D, et al. Ultra-fast and scalable saline immersion strategy enabling uniform Zn nucleation and deposition for high-performance Zn-ion batteries[J]. Small, 2021, 17(33), e2101901.

[206] Mu Y, Zhou T, Li D, et al. Highly stable and durable Zn-metal anode coated by Bi-functional protective layer suppressing uncontrollable dendrites growth and corrosion[J]. Chemical Engineering Journal, 2022, 430, 132839.

[207] Han X, Leng H, Qi Y, et al. Hydrophilic silica spheres layer as ions shunt for enhanced Zn metal anode[J]. Chemical Engineering Journal, 2022, 431, 133931.

[208] Zhang L, Zhang B, Zhang T, et al. Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries[J]. Advanced Functional Materials, 2021, 31(26), 2100186.

[209] Liu X, Yang F, Xu W, et al. Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes[J]. Advanced Science, 2020, 7(21), 2002173.

[210] Liu H, Wang J G, Hua W, et al. Building ohmic contact interfaces toward ultrastable Zn metal anodes[J]. Advanced Science, 2021, 8(23), e2102612.

[211] Zheng J, Cao Z, Ming F, et al. Preferred orientation of TiN coatings enables stable zinc anodes[J]. ACS Energy Letters, 2021, 7(1), 197-203.

[212] Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory[J]. Journal of Computational Chemistry, 2011, 32(7), 1456-1465.

[213] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12), 5188-5192.

[214] Ibrahim M a M, Bakdash R S. Zinc coatings of high hardness on steel by electrodeposition from glutamate complex baths[J]. Transactions of the IMF, 2014, 92(4), 218-226.

[215] Zapata-Loría A D, Pech-Canul M A. Corrosion inhibition of aluminum in 0.1 M HCl solution by glutamic acid[J]. Chemical Engineering Communications, 2014, 201(7), 855-869.

[216] Li M, Yuan Q, Gao X, et al. Understanding the differential depression of tetrasodium glutamate diacetate on the separation of specularite and chlorite: Experimental and DFT study[J]. Minerals Engineering, 2020, 159, 106629.

[217] Qiu M, Ma L, Sun P, et al. Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode[J]. Nano-Micro Letters, 2021, 14(1), 31.

[218] Guo Y, Niu P, Liu Y, et al. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes[J]. Advanced Materials, 2019, 31(27), e1900342.

[219] Wang N, Zhai S, Ma Y, et al. Tridentate citrate chelation towards stable fiber zinc-polypyrrole battery with hybrid mechanism[J]. Energy Storage Materials, 2021, 43, 585-594.

[220] Abdulla J, Cao J, Zhang D, et al. Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(5), 4602-4609.

[221] Guan K, Tao L, Yang R, et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries[J]. Advanced Energy Materials, 2022, 12(9), 2103557.

[222] Han D, Wang Z, Lu H, et al. A self-regulated interface toward highly reversible aqueous zinc batteries[J]. Advanced Energy Materials, 2022, 12(9), 2102982.

[223] Zhang S J, Hao J, Luo D, et al. Dual-function electrolyte additive for highly reversible Zn anode[J]. Advanced Energy Materials, 2021, 11(37), 2102010.

[224] An Y, Tian Y, Zhang K, et al. Stable aqueous anode-free zinc batteries enabled by interfacial engineering[J]. Advanced Functional Materials, 2021, 31(26), 2101886.

[225] Hao J, Long J, Li B, et al. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive[J]. Advanced Functional Materials, 2019, 29(34), 1903605.

[226] Ma L, Chen S, Li X, et al. Liquid-free all-solid-state zinc batteries and encapsulation-free flexible batteries enabled by in situ constructed polymer electrolyte[J]. Angewandte Chemie International Edition, 2020, 59(52), 23836-23844.

[227] Ma L, Pollard T P, Zhang Y, et al. Functionalized phosphonium cations enable zinc metal reversibility in aqueous electrolytes[J]. Angewandte Chemie International Edition, 2021, 60(22), 12438-12445.

[228] Zhang Q, Ma Y, Lu Y, et al. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode[J]. Angewandte Chemie International Edition, 2021, 60(43), 23357-23364.

[229] Ma L, Chen S, Li H, et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(Ⅲ) rich-electrode[J]. Energy & Environmental Science, 2018, 11(9), 2521-2530.

[230] Zeng X, Xie K, Liu S, et al. Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA cm−2 and 30 mA h cm−2[J]. Energy & Environmental Science, 2021, 14(11), 5947-5957.

[231] Xu Y, Zhu J, Feng J, et al. A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive[J]. Energy Storage Materials, 2021, 38, 299-308.

[232] Zhou T, Mu Y, Chen L, et al. Toward stable zinc aqueous rechargeable batteries by anode morphology modulation via polyaspartic acid additive[J]. Energy Storage Materials, 2022, 45, 777-785.

[233] Cao L, Li D, Hu E, et al. Solvation structure design for aqueous Zn metal batteries[J]. Journal of the American Chemical Society, 2020, 142(51), 21404-21409.

[234] Cao L, Li D, Pollard T, et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries[J]. Nature Nanotechnology, 2021, 16(8), 902-910.

[235] Feng D, Cao F, Hou L, et al. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives[J]. Small, 2021, 17(42), e2103195.

[236] Hou Z, Dong M, Xiong Y, et al. A high-energy and long-life aqueous Zn/birnessite battery via reversible water and Zn2+ coinsertion[J]. Small, 2020, 16(26), e2001228.

中图分类号:

 TM912    

条码号:

 002000069439    

馆藏号:

 TD10057428    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式