- 无标题文档
查看论文信息

中文题名:

 

基于探地雷达的隧道衬砌信号处理与空洞检测方法研究

    

姓名:

 向傲    

学号:

 1049721904211    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081000    

学科名称:

 工学 - 信息与通信工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 信息工程学院    

专业:

 信息与通信工程    

研究方向:

 模式识别信号处理    

第一导师姓名:

 王琳    

第一导师院系:

 信息工程学院    

完成日期:

 2022-06-18    

答辩日期:

 2022-05-14    

中文关键词:

 

隧道衬砌 ; 探地雷达 ; 小波域奇异值滤波 ; 支持向量机 ; 空洞检测

    

中文摘要:

随着我国隧道工程数量逐年增加,对于隧道工程的检测需求日益增大。然而微破损检测方法,对隧道衬砌结构伤害较大,无法保证隧道的运营安全,而探地雷达(Ground Penetrating Radar,GPR)能够快速、高效、非破坏性地检测地下目标,是一种适用于隧道衬砌结构中病害普查检测的手段。由于隧道衬砌结构的探测环境易受干扰,且地下空洞呈现的形态种类多,导致在人工判读和解译探地雷达回波图像中的目标时常常出现漏读和误读,且识别效率过低。

针对上述问题,本文以隧道衬砌结构中空洞病害为对象,对空洞目标回波特性进行分析,保留目标回波信号的同时滤除其他类型的噪声。同时,基于支持向量机分类算法,以及频率-波速基尔霍夫(Frequency-wavenumber Kirchhoff,F-K)偏移成像算法,实现空洞病害区域自动辨识检测。本文的主要研究内容如下:

(1)隧道衬砌探地雷达回波信号去噪算法研究。针对探地雷达回波中去直耦波的需求,采用奇异值(Singular Value Decomposition,SVD)变换替代霍林特(Karhunen-Loeve Transform,KL)变换,改进目前主流的小波域KL滤波算法,提出一种更具有普适性、准确性的直耦波滤波方法,即小波域SVD滤波算法,基于正演模拟技术,对小波域KL滤波算法与小波域SVD滤波算法去噪性能进行量化分析,验证本文方法的优越性。

(2)隧道衬砌结构空洞病害数据集构建。针对空洞病害数据集缺失,分析空洞病害信号与非空洞病害信号典型识别特征,构建空洞病害不平衡数据集。针对传统不平衡数据集处理方法,提出了聚类蚁群的合成少数类过采样算法(Ant Colony Clustering Synthetic Minority Oversampling Technology,ACC-SMETO),解决传统采样算法缺陷。通过支持向量机模型对比其他传统采样算法,验证本文算法的有效性以及优越性。

(3)隧道衬砌空洞病害区域检测方法研究。针对隧道衬砌结构中空洞病害区域检测问题,将空洞病害区域检测划分为两个步骤,首先在空洞病害数据集基础上确定支持向量机分类模型最优参数组合,提高空洞病害区域水平范围识别精度,再结合F-K偏移算法确定空洞病害区域水平范围,并采用图像形态学处理,在模拟仿真探地雷达回波以及实测数据上实现空洞病害检测,通过交并比指标以及视觉检验,验证本文所提出的空洞检测方法的可行性以及有效性。

(4)隧道衬砌典型探地雷达信号处理与空洞检测方法应用。针对目前主流软件对探地雷达回波数据作预处理以及去噪、空洞病害的自动检测不足问题,设计隧道衬砌结构空洞病害探地雷达回波信号去噪与自动解译处理应用软件。基于Matlab的GUI平台对探地雷达回波数据噪声进行处理,集成支持向量机与F-K偏移成像算法空洞病害区域自动识别检测方法,结合铁科院实测数据,实现软件自动解译功能。

参考文献:

[1] 吴静, 韩燕华, 黄丽珍. 山岭区公路隧道施工安全保障及常见问题处理——评《隧道施工地质灾害与致灾构造及其致灾模式》[J]. 中国安全科学学报, 2021, 31(02): 185-197.

[2] 田四明, 王伟, 杨昌宇, 等. 中国铁路隧道 40 年发展与展望[J]. 隧道建设(中英文), 2021, 41(11): 1903-1930.

[3] Liu C, Wang S, Guo W, et al. Investigation of the deformation characteristics and bearing capacity of a segment structure of a shield tunnel with cracks[J]. KSCE Journal of Civil Engineering, 2022, 26(1): 381-393.

[4] 卢博瑶, 方聪, 张浩, 等. 冲孔灌注桩工程基桩钻芯法检测分析[J]. 建筑结构, 2018, 48(S2): 865-867.

[5] 王楠. 回弹法在C50~C60混凝土抗压强度检测应用中的探讨[J]. 建筑结构, 2020, 50(S2): 654-657.

[6] Shao W, Bouzerdoum A, Phung S L. Signal classification for ground penetrating radar using sparse kernel feature selection[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2017, 7(12): 4670-4680.

[7] 舒志乐. 隧道衬砌内空洞探地雷达探测正检测研究[D]. 重庆: 重庆大学, 2010.

[8] Irving J, Knigth R. Numerical modeling of ground-penetarting rader in 2-D using MATLAB[J]. Computer & Geosciences, 2006, 32(9): 1247-1258.

[9] Okada K, Inagaki M, Saito Y. Volume calculation of voids behind tunnel lining by use of ground penetrating radar[J]. Technical Report of Ieice Sane,1995, 95:29-34.

[10] Siggins A F, Whiteley R J. Laboratory simulation of high-frequency GPR responses of damaged tunnel liners[C]. Eighth International Conference on Ground Penetrating Radar. International Society for Optics and Photonics, 2000, 4084: 805-811.

[11] Tešić K, Baričević A, Serdar M. Non-destructive corrosion inspection of reinforced roncrete using ground-penetrating radar: a review[J]. Materials, 2021, 14(4): 975.

[12] Sudakova M, Sadurtdinov M, Skvortsov A, et al. Using ground penetrating radar for permafrost monitoring from 2015–2017 at calm sites in the Pechora River Delta[J]. Remote Sensing, 2021, 13(16): 3271.

[13] 王力. 地质环境超前探测与成像技术研究综述[J]. 煤炭技术, 2021, 40(06): 83-85.

[14] Yan J, Bo W, Zhao X, et al. Application of ground penetrating radar in reservoir leakage detection in complex geological areas[C]. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 706(1): 1-8.

[15] 刘红存. 探地雷达在长途野营拉练场地环境中的应用探讨[J]. 现代雷达, 2021, 43(10): 105-106.

[16] 程琦, 张世文, 罗明, 等. 基于探地雷达粉煤灰充填复垦土壤含水率检测[J]. 地球物理学进展, 2021, 36(5): 2159-2167.

[17] 王栩, 王志辉, 陈昌昕, 等. 城市地下空间地球物理探测技术与应用[J]. 地球物理学进展, 2021, 36(5): 2204-2214.

[18] 王敬朋, 王金满, 张雅馥. 探地雷达技术探测土壤特性的研究进展[J]. 土壤通报, 2021, 52(1): 242-252.

[19] 冯德山, 戴前伟, 何继善, 等. 探地雷达 GPR 正演模拟的时域有限差分实现[J]. 地球物理学进展, 2006 (02): 630-636.

[20] 谢勇勇, 廖红建, 昝月稳. 探地雷达检测铁路路基病害的二维正演模拟[J]. 浙江大学学报(工学版), 2010, 44(10): 1907-1911.

[21] 李静和, 何展翔, 杨俊, 等. 曲波域统计量自适应阈值探地雷达数据去噪技术[J]. 物理学报, 2019, 68(9): 74-83.

[22] 戴前伟, 成沁宇, 冯德山. 基于FastICA的低信噪比探地雷达信号去噪[J]. 物探化探计算技术, 2017, 39(06): 727-735.

[23] 杨天春, 张辉, 李好. 探地雷达信号的KL变换处理分析[J]. 湖南科技大学学报(自然科学版), 2013, 28(02): 66-69.

[24] Feng D, Liu S, Yang J,et al.The noise attenuation and stochastic clutter removal of ground penetrating radar based on the K-SVD dictionary learning[J]. IEEE Access, 2021, 9: 1-11.

[25] Wang X, Liu S. Noise suppressing and direct wave arrivals removal in GPR data based on shearlet transform[J]. Signal Processing, 2017, 132: 227-242.

[26] Ni Z K, Pan J, Shi C, et al. DL-based clutter removal in migrated GPR data for detection of buried target[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.

[27] Feng D, Wang X ,Wang X,et al. Deep convolutional denoising autoencoders with network structure optimization for the high-fidelity attenuation of random gpr noise[J]. Remote Sensing, 2021, 13(9): 1761-1783.

[28] Xue W, Luo Y, Yang Y, et al. Noise suppression for GPR data based on SVD of window-length-optimized hankel matrix[J]. Sensors (Basel, Switzerland), 2019, 19(17): 3807-3832.

[29] 许军才, 刘立桥, 任青文, 等. 探地雷达信号的EEMD时域分析方法[J]. 合肥工业大学学报: 自然科学版, 2015, 38(5): 639-642.

[30] 王超, 林振荣, 李洁. HHT 在探地雷达检测路基质量中的应用[J]. 地球物理学进展, 2021, 36(4): 1711-1716.

[31] 董烈乾, 汪长辉, 李长芬, 等. 利用自适应中值滤波方法压制混叠噪声[J]. 地球物理学进展, 2018, 33(4): 1475-1479.

[32] Xie X, Zhai J, Zhou B. Back-fill grouting quality evaluation of the shield tunnel using ground penetrating radar with bi-frequency back projection method[J]. Automation in Construction, 2021, 121: 1-9.

[33] Montiel-Zafra V, Canadas-Quesada F J, Vera-Candeas P, et al. A novel method to remove GPR background noise based on the similarity of non-neighboring regions[J]. Journal of Applied Geophysics, 2017, 144: 188-203.

[34] Todkar S S, Le Bastard C, Baltazart V, et al. Comparative study of classification algorithms to detect interlayer debondings within pavement structures from step-frequency radar data[C]. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2018:6820-6823.

[35] Saghafi A, Jazayeri S, Esmaeili S, et al. Real‐time object detection using power spectral density of ground‐penetrating radar data[J]. Structural Control and Health Monitoring, 2019, 26(6): 2354-2365.

[36] Jazayeri S, Saghafi A, Esmaeili S, et al. Automatic object detection using dynamic time warping on ground penetrating radar signals[J]. Expert Systems with Applications, 2019, 122: 102-107.

[37] 吕玉增, 王洪华, 龚俊波. 探地雷达逆时偏移在隧道衬砌空洞成像中的应用[J]. 应用地球物理: 英文版, 2020, 17(2): 277-284.

[38] 高翔. 浅埋地层探地雷达信号处理与目标识别研究[D]. 山东: 中国海洋大学. 2011

[39] 覃尧. 道路塌陷GPR预警检测技术[D]. 湖南: 国防科学技术大学. 2015

[40] Kumlu D, Erer I. Detection of buried objects in ground penetrating radar data using incremental nonnegative matrix factorization[J]. Remote Sensing Letters, 2019, 10(7-9):649-658.

[41] Abeynayake C, Son V, Shovon M H I, et al. Machine learning based automatic target recognition algorithm applicable to ground penetrating radar data[C]. Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIV.International Society for Optics and Photonics, 2019, 11012: 1-17.

[42] Li S, Wang C, Sun P, et al. A localization method for concealed cracks in the road base based on ground penetrating radar[J]. Advances in Mechanical Engineering, 2016, 8(12)1-10.

[43] Zhou X, Chen H, Li J. An automatic GPR B-scan image interpreting model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6):3398-3412.

[44] 杜攀峰, 廖立坚, 杨新安. 铁路路基病害的智能识别[J]. 铁道学报, 2010, 32(03): 142-146.

[45] J. Dong, V. Stankovic and N. Davidson. Target detection and recognition of ground penetrating radar using morphological image analysis and graph laplacian regularisation[C]. 2021 Sensor Signal Processing for Defence Conference (SSPD), 2021:1-5.

[46] Chen L, Zou H, Liu C, et al. Ground penetrating radar target recognition method for deep neural network based on fisher criterion[J]. International Journal of Earth Sciences and Engineering, 2015, 8(6), 3000-3009.

[47] Zhang S, Ren Q, Lei W, et al. Underground target detection and location estimation based on scattering curve feature recognition network[C]. Seventh Asia Pacific Conference on Optics Manufacture and 2021 International Forum of Young Scientists on Advanced Optical Manufacturing (APCOM and YSAOM 2021). SPIE, 2022, 12166: 1475-1481.

[48] Jie Y, Fubin S, Pengli Z, et al. Application of deep learning in ground penetrating radar image recognition[C]. 2021 International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA). IEEE, 2021:16-20.

[49] Yang S, Wang Z, Wang J, et al. Defect segmentation: mapping tunnel lining internal defects with ground penetrating radar data using a convolutional neural network[J]. Construction and Building Materials, 2022, 319: 1-13.

[50] Hao T, Zhao J. A brief review of the hyperbola signature recognition techniques for ground penetrating radar[J]. Acta Electonica Sinica, 2019, 47(6): 1366-1372.

[51] Krysiński L, Sudyka J. Typology of reflections in the assessment of the interlayer bonding condition of the bituminous pavement by the use of an impulse high-frequency ground-penetrating radar[J]. Nondestructive Testing and Evaluation, 2012, 27(3): 219-227.

[52] 吴学礼, 闫枫, 甄然, 等. 基于小波变换和K-SVD的探地雷达杂波抑制研究[J]. 河北科技大学学报, 2021, 42(02): 111-118.

[53] 高永涛, 徐俊. 基于小波域KL变换的地质雷达信号处理技术[J]. 科学技术与工程, 2018, 18(10): 161-166.

[54] Ji J, Yu M, Guo R. Fast finite-difference time-domain (FDTD) method of two dimensional target scattering calculation by two-level hierarchical approach[J]. Optik, 2020, 203: 1-8.

[55] Ji J, Ma Y, Guo N. Numerical calculation of the reflection, absorption and transmission of a nonuniform plasma slab based on FDTD[J]. Optik, 2018, 165: 240-247.

[56] 姜化冰. 探地雷达地下空洞目标探测研究[D]. 黑龙江: 哈尔滨工业大学, 2016.

[57] Nowruzi F E, Kapoor P, Kolhatkar D, et al. How much real data do we actually need: analyzing object detection performance using synthetic and real data[J]. arXiv preprint arXiv:1907. 07061, 2019: 1-11.

[58] Wang L, Han M, Li X, et al. Review of classification methods on unbalanced data sets[J]. IEEE Access, 2021, 9: 1-22.

[59] Li X, Zhou Q. Research on improving smote algorithms for unbalanced data set classification[C]. 2019 International Conference on Electronic Engineering and Informatics (EEI). IEEE, 2019: 476-480.

[60] Xiang A, Wang L. Research on path planning of UAV forest fire fighting based on improved ant colony algorithm[C]. 2021 7th International Conference on Computing and Artificial Intelligence. 2021: 289-295.

[61] Kim K. Normalized class coherence change-based KNN for classification of imbalanced data[J]. Pattern Recognition, 2021, 120: 1-11.

[62] 杜婷. 基于属性选择的朴素贝叶斯分类研究与应用[D]. 安徽: 中国科学技术大学, 2016.

[63] 高永涛, 徐俊, 吴顺川, 吕建华, 陈文. 基于GPR反射波信号多维分析的隧道病害智能辨识[J]. 工程科学学报, 2018, 40(03): 293-301.

[64] Moodi M, Ghazvini M, Moodi H. A hybrid intelligent approach to detect android botnet using smart self-adaptive learning-based PSO-SVM[J]. Knowledge-Based Systems, 2021,222:1-16.

[65] 黄英双, 曹辉. 改进人工蜂群算法优化支持向量机及应用[J]. 计算机应用与软件, 2021, 38(02): 258-263.

[66] 徐俊. 地下工程结构多类型缺陷的雷达信号自动辨识方法与工程应用[D]. 北京: 北京科技大学, 2019.

[67] 刘康. 基于MATLAB的探地雷达数据处理研究及软件开发[D]. 北京: 中国地质大学(北京), 2011.

中图分类号:

 U455.91    

条码号:

 002000064403    

馆藏号:

 TD10052626    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式