- 无标题文档
查看论文信息

中文题名:

 

钆掺杂β-TCP骨修复材料的合成和性能表征

    

姓名:

 Monika Bielec    

学号:

 2016Y90200052    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0831    

学科名称:

 工学 - 生物医学工程(可授工学、理学、医学学位)    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 生物医学工程    

研究方向:

 生物医学材料    

第一导师姓名:

 戴红莲    

第一导师院系:

 材料复合新技术国家重点实验室    

完成日期:

 2022-03-02    

答辩日期:

 2021-12-02    

中文关键词:

 

骨再生 ; &beta ; 磷酸三钙 ; 生物材料 ; 骨诱导 ; 磁性

    

中文摘要:

      骨缺损不仅由机械损伤引起,也可由肿瘤、感染或肌肉骨骼疾病引起。骨修复材料作为一种可促进骨再生的缺陷填充物,已成为当前骨再生医学的研究热点。相关研究重点涉及骨移植术后使用磁共振成像技术显影,需要造影剂增强信号强度来获得高质量图像。磁性骨修复材料能够在无需使用造影剂的情况下进行直接磁共振成像,骨科诊疗一体化领域具有重要意义。

       本研究合成了具有磁性的掺钆β-TCP生物材料,也证实了该材料的生物相容性以及具有相当强的磁性,使其在骨植入术后生物成像方面的应用成为可能。

        本文的主要研究内容如下:

1. 采用三种方法合成掺钆β磷酸三钙:湿沉淀法、低温法和溶剂热法,并分析了不同反应参数对合成的影响。通过比较选择出纯度、原子比和形貌最佳的样品,从而寻找到最佳合成方法,并确认该方法结果的可重复性以便进一步研究。

2. 通过生物相容性试验检测材料对成骨细胞的影响,证实其作为骨再生材料的适用性。

3. 在磁共振成像检测中证实了材料的磁性,该材料显示出了比纯β-TCP样品更高的磁化率。

       综上所述,本研究初步证实了合成的掺钆β-TCP材料在骨植入相关应用中具有潜力,可以兼具促骨再生以及植入部位术后诊断。

参考文献:

[1] Salinas A, Esbrit P, Vallet-Regí M. A tissue engineering approach based on the use of bioceramics for bone repair. Biomater. Sci. 2013, 1(1), 40-51, DOI: 10.1039/C2BM00071G

[2] Hartigan B, Cohen M. Use of bone graft substitutes and bioactive materials in treatment of distal radius fractures. Hand Clin. 2005, 21(3), 449-454, DOI: 10.1016/j.hcl.2005.02.006

[3] Marini F, Brandi M. Genetic determinants of osteoporosis: common bases to cardiovascular diseases? Int. J. of Hypertens. 2010, 1-16, DOI: 10.4061/2010/394579

[4] Noor Z. Nanohydroxyapatite application to osteoporosis management. J. Osteoporos. 2013, 1-6, DOI: 10.1155/2013/679025

[5] Kini U, Nandeesh B N. Physiology of bone formation, remodeling, and metabolism. In: Radionuclide and hybrid bone imaging; Fogelman I., Gnanasegaran G., van der Wall H., Eds.; Springer: Berlin, Heidelberg; 2012; pp. 29 – 57, DOI: 10.1007/978-3-642-02400-9_2

[6] Wang W, Yeung K. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact. Mater. 2017, 2(4), 224-247, DOI: 10.1016/j.bioactmat.2017.05.007

[7] Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J. Orthop. Surg. Res. 2014, 9(1), 18, 10.1186/1749-799X-9-18

[8] Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Mater., 2017,10(4),334, DOI: 10.3390/ma10040334

[9] Kumar P, Dehiya B S, Sindhu A. Bioceramics for Hard Tissue Engineering Applications: A Review. Int J Appl Eng Res 2018, 13(5), 2744-2752

[10] Habraken W, HabibovicP, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future? Mater. Today, 2016, 19(2), 69-87, DOI: 10.1016/ j.mattod.2015.10.008

[11] Canillas M, Pena P, de Aza A, Rodríguez M. Calcium phosphates for biomedical applications. Bol Soc Esp Ceram V 2017, 56(3), 91-112, DOI: 10.1016/j.mattod.2015.10.008

[12] Daculsi G, Fellah B H, Miramond T. The essential role of calcium phosphate bioceramics in bone regeneration. In: Advances in Calcium Phosphate Biomaterials; Ben-Nissan B., Eds; Springer Series in Biomaterials Science and Engineering, vol 2: Berlin, 2014; pp. 71–96, DOI: 10.1007/978-3-642-53980-0_4

[13] Rey C, Combes C, Drouet C, Glimcher M. Bone mineral: update on chemical composition and structure. Osteoporos. Int. 2009; 20(6), 1013-1021, DOI: 10.1186/1749-799X-9-18

[14] Szurkowska K, Laskus A, Kolmas J. Hydroxyapatite-Based Materials for Potential Use in Bone Tissue Infections, in: Hydroxyapatite - advances in composite nanomaterials, biomedical applications and its technological facets, IntechOpen 2018, DOI: 10.5772/ intechopen.71604

[15] Gibson I R. Synthetic hydroxyapatite for bone-healing applications, in: Hydroxyapatite (HAp) for biomedical applications; M. Mucalo, Eds; Academic Press Ltd- Elsevier Science Ltd., 2015; pp. 269-287, DOI: 10.1016/B978-1-78242-033-0.00012-2

[16] Ogose A, Hotta T, Kawashima H, Kondo N, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 72(1), 94-101, DOI: 10.1002/jbm.b.30136

[17] van Vugt T A, Geurts J A P, Arts J J, Lindfors N C. Biomaterials in treatment of orthopedic infections. In: Management of Periprosthetic Joint Infections (PJIS), 1st. ed.; Arts JJC, J. Geurts, Eds.; Amsterdam: Woodhead Publishing Limited, 2017, pp. 41-68, DOI: 10.1016/B978-0-08-100205-6.00003-3

[18] Rolvien T, Barvencik F, Klatte T O, Busse B, et al. ?-TCP bone substitutes in tibial plateau depression fractures. Knee. 2017, 24(5), 1138-1145, DOI: 10.1016/j.knee. 2017.06.010

[19] Wei L F, Wu G, Deng L Q, Liu Y L. Bone Morphogenetic Protein-2 Incorporated Beta- Tricalcium Phosphate Enhanced Bone Regeneration of Critical-Sized Bone Defects in Rats. Key Engineering Materials 2018, 782, 283-288, DOI: 10.4028/www.scientific.net/KEM. 782.283

[20] Dorozhkin S. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010, 6(3), 715-734, DOI: 10.1016/j.actbio.2009.10.031

[21] Florencio-Silva, R, da Silva Sasso G, Sasso-Cerri, E, Sim?es M J, et al. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015, 2015:421746, DOI: 10.1155/2015/421746

[22] Bohner M. Resorbable biomaterials as bone graft substitutes. Mater Today 2010, 13(1-2), 24-30, DOI: 10.1016/S1369-7021(10)70014-6

[23] Brandt J, Henning S, Michler G, Hein W, et al. Nanocrystalline hydroxyapatite for bone repair: an animal study. J. Mater. Sci.: Mater. Med. 2010, 21(1), 283–294, DOI: 10.1007/ s10856-009-3859-1

[24] Guo X Y, Gough J E, Xiao P, Liu J, et al. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J. of Biomed Mater. Res. 2007, 82A(4), 1022-1032, DOI: 10.1002/jbm.a.31200

[25] Li B, Liu Z, Yang J, Yi Z, et al. Preparation of bioactive β-tricalcium phosphate microspheres as bone graft substitute materials. Mater Sci Eng 2017, C, 70, 1200-1205, DOI: 10.1016/j.msec.2016.03.040

[26] Thomas K, Cook S. An evaluation of variables influencing implant fixation by direct bone apposition. J.Biomed. Mater. Res., 1985, 19(8), 875-901, DOI: 10.1002/jbm.820190802

[27] Zan Q, Zhuang Y, Dong L, Wang C, et al. Improving bioactivity of porous β-tcp ceramics by forming bone-like apatite layer on the surfaces of pore walls. Key Eng. Mater.,2012, 512-515, 1815-1820, DOI: 10.4028/www.scientific.net/KEM.512-515.1815

[28] Liu H, Webster T. Nanomedicine for implants, a review of studies and necessary experimental tools. Biomaterials 2007, 28(2), 354-369, DOI: 10.1016/j.biomaterials. 2006.08.049

[29] Nordstr?m E G, Sanchez-Munoz O L. Physics of Bone Bonding Mechanism of Different Surface Bioactive Ceramic Materials in Vitro and In Vivo. Biomed Mater Eng 2001, 11(3), 221-231

[30] Daculsi G, Fellah B, Miramond T, Durand M. Osteoconduction, osteogenicity, osteoinduction, what are the fundamental properties for a smart bone substitutes. IRBM 2013, 3(4-5), 346-348, DOI: 10.1016/j.irbm.2013.07.001

[31] Michel J, Penna, M, Kochen J, Cheung H. Recent advances in hydroxyapatite scaffolds containing mesenchymal stem cells. Stem Cells Int. 2015, 2015: 305217, DOI: 10.1155/2015/305217

[32] Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30(10), 546-554, DOI: 10.1016/j.tibtech.2012.07.005

[33] Li J, Hong J, Zheng Q, Guo X, et al. Repair of rat cranial bone efects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. J. Orthop. Res. 2011, 29(11), 1745-52, DOI: 10.1002/jor.21439

[34] Garcia P, Pieruschka A, Klein M, Tami A, et al. Temporal and spatial vascularization patterns of unions and nonunions: role of vascular endothelial growth factor and bone morphogenetic proteins. J Bone Joint Surg Am 2012, 94(1), 49-58, DOI: 10.2106/JBJS.J. 00795

[35] Orii H, Sotome S, Chen J, Wang J, et al. K. Beta-tricalcium phosphate (beta-tcp) graft combined with bone marrow stromal cells (mscs) for posterolateral spine fusion. J. Med. Dent. Sci. 2005, 52, 51–57, DOI: 10.11480/jmds.520107

[36] Sulaiman S B, Keong T K, Cheng C K, Saim A B, et al. Tricalcium phosphate/ hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone, Indian J Med Res. 2013; 137(6), 1093–1101, PMID: 23852290

[37] Wongwitwichot P, Kaewsrichan J, Chua K H, Ruszymah B H. Comparison of tcp and tcp/ha hybrid scaffolds for osteoconductive activity. Open Biomed Eng J. 2010, 4, 279-85, DOI: 10.2174/1874120701004010279

[38] Cheng L J, Ye F, Yang R N, Lu X F, et al. Osteoinduction of hydroxyapatite/β-tricalcium phosphate bioceramics in mice with a fractured fibula. Acta Biomaterialia. 2010, 6(4), 1569-1574, DOI: 10.1016/j.actbio.2009.10.050

[39] Yuan H, Fernandes H, Habibovic P, de Boer J, et al. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc. Natl. Acad. Sci. 2010, 107(31), 13614-13619, DOI: 10.1073/pnas.1003600107

[40] Kondo N, Ogose A, Tokunaga K, Umezu H, et al. Osteoinduction with highly purified β- tricalcium phosphate in dog dorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials 2006, 27(25), 4419-4427, DOI: 10.1016/ j.biomaterials.2006.04.016

[41] Ariizumi T, Ogose A, Kondo N, Kawashima H, et al. The role of microstructure of highly purified beta-tricalcium phosphate for osteoinduction in canine dorsal muscles. J Biomater Nanobiotechnol 2013, 4(02), 189-193, DOI: 10.4236/jbnb.2013.42023

[42] Hing K A, Best S M, Bonfield W. Characterization of porous hydroxyapatite. J Mater Sci Mater Med. 1999, 10(3), 135-45, DOI: 10.1023/A:1008929305897

[43] Case E, Smith I, Baumann M. Microcracking and porosity in calcium phosphates and the implications for bone tissue engineering. Mater Sci Eng 2005, A, 390(1-2), 246-254, DOI: 10.1016/j.msea.2004.08.021

[44] García-Páez I, Carrodeguas R, De Aza A, Baudín C, et al. Effect of mg and si co- substitution on microstructure and strength of tricalcium phosphate ceramics. J. Mech. Behav. Biomed. Mater. 2014, 30, 1-15, DOI: 10.1016/j.jmbbm.2013.10.011.

[45] Basirun WJ, Nasiri-Tabrizi V, Baradaran S. Overview of hydroxyapatite–graphene nanoplatelets composite as bone graft substitute: mechanical behavior and in-vitro biofunctionality. Critical reviews in solid state and materials sciences 2018, 4(3), 177-212, DOI: 0.1080/10408436.2017.1333951

[46] Shuai C, Yang B, Peng S, Min A. Improved mechanical properties of beta-tricalcium phosphate by addition of akermanite and 45s5 bioglass, Mater Res Innov 2013, 18(2), 69-73, DOI: 10.1179/1432891714Z.000000000382

[47] Adzila S, Ramesh S, Sopyan I. Properties of Magnesium Doped Nanocrystalline Hydroxyapatite Synthesise By Mechanochemical Method, ARPN J. Eng. Appl. Sci. 2016, 11(24), 14097-14100

[48] Xue W, Dahlquist K, Banerjee A, Bandyopadhyay A, et al. Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants. J. Mater. Sci. Mater. Med. 2008, 19(7), 2669-77, DOI: 10.1007/s10856-008-3395-4

[49] Li Y, Ooi C P, Ning C P, Khor K A. Synthesis and characterization of Neodymium(III) and Gadolinium(III)-substituted hydroxyapatite as biomaterials. Int. J. Appl. Ceram. Tec. 2008, 6(4), 501 – 512, DOI: 10.1111/j.1744-7402.2008.02293.x

[50] Rau J V, Wu V M, Graziani V, Fadeeva I V, et al. The bone building blues: self-hardening copper-doped calcium phosphate cement and its in vitro assessment against mammalian cells and bacteria. Mater Sci Eng C. Mater Biol Appl 2017, 79, 270–279, DOI: 10.1016/j.msec. 2017.05.052

[51] Rau J V, Fosca M, Graziani V, Egorov A A, et al. Silver-Doped calcium phosphate bone cements with antibacterial properties. J. Funct. Biomater 2016, 7(10), DOI: 10.3390/ jfb7020010

[52] Gao W M, Guo Y P, Hu L, Chen Y Q, et al. Synthesis and characterization of Tb3+-doped ha nanoparticles used as biological florescent probe. Appl. Mech. Mater. 2014, 687-691, 4426-4429, DOI: 10.4028/www.scientific.net/AMM.687-691.4426

[53] Tajuddin H A, WanHassan W M S, Abdul Sani S F, Shaharin N S. Thermoluminescent properties of Dy doped calcium borate based glass for dose measurement subjected to photon irradiation. EPJ Web of Conferences 2017, 156(11), 00002, DOI: 10.1051/epjconf/ 201715600002

[54] Oesterle A, Boehm A V, Müller F A. Photoluminescent Eu3+-doped calcium phosphate bone cement and its mechanical properties. Materials (Basel) 2018, 11(9), 1610, DOI: 10.3390/ma11091610

[55] Silva F R, Lima N B, Guilhen, S N, Courrolc L C, et al. Evaluation of europium-doped HA/Β-TCP ratio fluorescence in biphasic calcium phosphate nanocomposites controlled by the ph value during the synthesis, J. Lumin 2016, 180, 77-182, DOI: 10.1016/j.jlumin. 2016.08.030

[56] Madhukumar K, Varma H K, Komath M, Elias T S, et al. Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium. Bull. Mater. Sci. 2007, 30(5), 527-534, DOI: 10.1007/s12034-007-0082-x

[57] Tesch A, Wenisch C, Herrmann K H, Reichenbach J R, et al. Luminomagnetic Eu3+ and Dy3+ doped Hydroxyapatite For Multimodal Imaging. Mater. Sci. Eng. C 2017, 81, 422–431, DOI: 10.1016/j.msec.2017.08.032

[58] Liu Z G, Wang Q, Yao S W, Yang, L R, et al. Synthesis and characterization of Tb3/Gd3 dual-doped multifunctional hydroxyapatite nanoparticles. Ceram. Int. 2014, 40(2), 2613-2617, DOI: 10.1016/j.ceramint.2013.10.070

[59] Zhu G X, Zhao R B, Lia Y L, Tang R K. Multifunctional Gd,Ce,Tb co-doped β-tricalcium phosphate porous nanospheres for sustained drug release and bioimaging. J. Mater. Chem. B 2016, 4, 3903-3910, DOI: 10.1039/C5TB02767E

[60] Meenambal , Poojar P, Geethanath S, Kannan S. Substitutional limit of gadolinium in beta-tricalcium phosphate and its magnetic resonance imaging characteristics. J. Biomed. Mat. Res. 2017, DOI: 10.1002/jbm.b.33775

[61] Meenambal R, Kumar P N, Poojar P, Geethanath S, et al. Simultaneous substitutions of Gd3 + and Dy3 + in β-Ca3(PO4)2 as a potential multifunctional bio-probe. Materials & Design 2017, 120, 336-344, DOI: 10.1016/j.matdes.2017.02.013

[62] Meenambal R, Kannan S. Cosubstitution of Lanthanides (Gd3+/Dy3+/Yb3+) in β- Ca3(PO4)2 for Upconversion Luminescence, CT/MRI Multimodal Imaging. ASC Biomaterials Science and Engineering 2018, 4 (1), 47–56, DOI: 10.1021/acsbiomaterials. 7b00742

[63] Khouri A, Elaatmani M, Della Ventura G, Sodo A, et al. Synthesis, structure refinement and vibrational spectroscopy of new rare-earth tricalcium phosphates Ca9RE (PO4)7 (RE = La, Pr, Nd, Eu, Gd, Dy, Tm, Yb). Cer. Int. 2017, 43 (17), 15645-15653, DOI: 10.1016/j.ceramint. 2017.08.121

[64] Nakashima K, Yamauchi J. Magnetic properties of gadolinium-doped b-tricalcium phosphate. J. Alloys. Compd. 2006, 408-412, 761-765, DOI: 10.1016/j.jallcom.2004.12.080

[65] Cipreste M F, Peres A M, Cotta A A, Aragón F H, et al. Synthesis and characterization of 159Gd-doped hydroxyapatite nanorods for bioapplications as theranostic systems. Mater. Chem. Phys. 2016, 181, 301-311, DOI: 10.1016/j.matchemphys.2016.06.063

[66] Zarinfar A, Shafaei M, Ziaie F. Synthesis; characterization and thermoluminescence properties of nano-structure gadolinium doped hydroxyapatite (HAP:Gd). Procedia Materials Science 2015, 11, 293-298, DOI: 10.1016/j.mspro.2015.11.075

[67] Webster T J, Massa-Schlueter E A, Smith J L, Slamovich E B. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials 2004, 25(11), 2111-21.

[68] Coelho1, Sooraj Hussain N, Gomes P, Garcia M, Lopes M A, et al. Development and Characterization of Lanthanides Doped Hydroxyapatite Composites for Bone Tissue Application. Current Trends on Glass and Ceramic Materials, 2012, 87-115

[69] Guo D G, Wang A H, Han Y, Xu K W. Characterization, physicochemical properties and biocompatibility of La-incorporated apatites. Acta Biomater 2009;5(9):3512-23.

[70] Rogosnitzky M, Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 2016, 29(3), 365-376, DOI: 10.1039/b516376p

[71] Kolmas J, Groszyk E, Kwiatkowska-Róz?ycka D. Substituted hydroxyapatites with antibacterial properties. Biomed. Res. Int. 2014, DOI: 10.1155/2014/178123

[72] Ladinsky G A, Wehrli F W. Noninvasive assessment of bone microarchitecture by MRI. Current Osteoporosis Reports 2006, 4 (4),140–147,

[73] Bottrill M, Kwoka L, Long N J. Lanthanides in magnetic resonance imaging. Chem. Soc. Rev. 2006, 35, 557-571, DOI: 10.1007/s11914-996-0022-5

[74] Hernández L, Parra J, Vázquez B, Bravo A L, et al. Injectable acrylic bone cements for vertebroplasty based on a radiopaque hydroxyapatite. Bioactivity and biocompatibility. J. Biomed. Mater. Res. B. Appl. Biomater. 2009, 88(1), 103-14, DOI: 10.1002/jbm.b.31156

Chapter 2

[75] Santos M H, de Oliveira M, de Freitas Souza P, Mansur H S, et al. Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Mater. Res. 2004, 7(4), 625-630, DOI: 10.1590/S1516-14392004000400017

[76] Massit A, El Idrissi B C, Yamni K. Synthesis and characterization of nano-sized β- tricalcium phosphate: effects of the aging time. Appl. Chem. 2014, 7(7), 57-61, ISSN: 2278-5736

[77] Smolen D, Chudoba T, Malka I, Kedzierska A, et al. Highly biocompatible, nanocrystalline hydroxyapatite synthesized in a solvothermal process driven by high energy density microwave radiation. Int. J. Nanomedicine 2013, 8, 653–668, DOI: 10.2147/ IJN.S39299

[78] Manafi S A, Joughehdoust S. Synthesis of hydroxyapatite nanostructure by hydrothermal condition for biomedical application. Iranian. J. Pharm. Sci. 2009, 5(2), 89-94

[79] Toyama T, Nakashima K, Yasue T. Hydrothermal Synthesis of BETA-Tricalcium Phosphate from Amorphous Calcium Phosphate. Journal of the Ceramic Society of Japan 2002, 110, 716-721, DOI: 10.2109/jcersj.110.716

[80] Balamurugan A, Michel J, Faure J, Benhayoune H, et al. Synthesis and structural analysis of sol gel derived stoicheometric monophasic hydroxyapatite. Ceram.-Silik 2006, 50(1), 27-31, ISSN: 1804-5847

[81] Ruiz-Aguilara C, Olivares-Pintob U, Aguilar-Reyesa E A, López-Juárezc R, et al. Characterization of ?-tricalcium phosphate powders synthesized by sol–gel and mechanosynthesis. Bol. Soc. Esp. Ceram. V. 2018, 57, 213–220, DOI: doi.org/10.1016/ j.bsecv.2018.04.004

[82] Raucci M G, Guarino V, Ambrosio L. Biomimetic strategies for bone repair and regeneration. J. Funct. Biomater. 2012, 3(3), 688-705, DOI: 10.3390/jfb3030688

[83] Kumar Nayak A, Hydroxyapatite synthesis methodologies: an overview. Int. J. Chemtech Res. 2010, 2(2), 903-907, ISSN : 0974-4290

[84] Singh J, Singh H, Batra U. Magnesium Doped Hydroxyapatite, Synthesis, characterization and bioactivity evaluation. biomaterials science: processing, properties, and applications. Ceram. Trans. 2015, 254, 161-174, DOI: 10.1002/9781119190134.ch15

[85] Shanmugam S, Gopal B. Copper substituted hydroxyapatite and fluorapatite: synthesis, characterization and antimicrobial properties. Ceram Int. 2014, 40(10), 15655-15662, DOI: 10.1016/j.ceramint.2014.07.086

[86] Ciobanu C S, Iconaru S L, Massuyeau F, Constantin L V, et al. Synthesis, structure, and luminescent properties of europium-doped hydroxyapatite nanocrystalline powders. J. Nanomater., 2012, DOI: 10.1155/2012/942801

[87] Bandgar S S, Kolekar T V, Shirguppikar S S, Shinde M A, et al.Synthesis, characterization of silver doped hydroxyapatite nanoparticles for biomedical applications. Der. Pharma. Chemica 2017, 9(3), 78-84, ISSN 0975-413X

[88] Raynaud S, Champion E, Bernache-Assollant D, Thomas P. Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powders. Biomaterials 2002, 23(4), 1065-1072, DOI: 10.1016/S0142-9612(01)00218-6

[89] Destainville A, Champion E, Bernache-Assollant D, Laborde E. Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate. Mater. Chem. Phys. 2003, 80, 269–277, DOI: 10.1016/S0254-0584(02)00466-2

[90] Kwon S H, Jun Y K, Hong S H, Kim H E. Synthesis and dissolution behavior of β-tcp and ha/β-tcp composite powders. J. Eur. Ceram. Soc. 2003, 23(7), 1039-1045, DOI: 10.1016/ S0955-2219(02)00263-7

[91]104. Abadi M B H, Ghasemi I, Khavandi A, Shokrgozar M A, et al. Synthesis of nano Β-TCP and the effects on the mechanical and biological properties of β-tcp/hdpe/uhmwpe nanocomposites. Polym. Composite 2010, 31(10), 1745 – 1753, DOI: 10.1002/pc.20965

[92] Othman R, Mustafa Z, Kien P T, Ishak N F. Parameters affecting the synthesis of β- tricalcium phosphate powder using a wet precipitation method. J. Mech. Eng. Sci. 2017, 11(4), 3197-3205, DOI: 10.15282/jmes.11.4.2017.22.0288

[93] Teh Y C, Tan C Y, Ramesh S, Purbolaksono J, et al. Effect of calcination on the sintering behaviour of hydroxyapatite. Ceram.-Silik. 2014, 58(4), 320-325

[94] Gozaliana A, Behnamghadera A, Dalirib M, Moshkforoush A. Synthesis and thermal behavior of Mg-doped calcium phosphate nanopowders via the sol gel method. Scientica Iranica 2011, 18(6), 1614-1622, DOI: 10.1016/j.scient.2011.11.014

[95] Ebrahimi M, Botelho M. Biphasic calcium phosphates (bcp) of hydroxyapatite (ha) and tricalcium phosphate (tcp) as bone substitutes: importance of physicochemical characterizations in biomaterials studies. Mehdi 2016, 10, 93-97, DOI: 10.1016/j.dib. 2016.11.080

[96] Rakovsky A, Gotman I, Rabkin E, Gutmanas E Y. Strong bioresorbable Ca phosphate- PLA nanocomposites with uniform phase distribution by attrition milling and high pressure consolidation. DOI: doi.org/10.1016/j.jmbbm.2012.11.004

[97] Chicot D, Tricoteaux A, Lesage J, Leriche A, et al. Mechanical Properties of Porosity- Free Beta Tricalcium Phosphate (β-TCP) Ceramic by Sharp and Spherical Indentations. DOI: 10.4236/njgc.2013.31004

[98] Liu D, Zuo Y, Meng W, Chen M, et al. Fabrication of biodegradable nano-sized β-TCP/ Mg composite by a novel melt shearing technology. DOI: 10.1016/j.msec.2012.03.017

[99] Tao J H, Pan H H, Zhai L, Wang R et al. Controls of Tricalcium Phosphate Single- Crystal Formation from Its Amorphous Precursor by Interfacial Energy;Crystal Growth & Design. Journal of Materials Chemistry 2009, 9(7), 3154-3160, DOI: 10.1039/c5tb02767e

[100] Galea L, Bohner M, Thuering J, Doebelin N, et al. Control of the size, shape and composition of highly uniform, non-agglomerated, sub-micrometer β-tricalcium phosphate and dicalcium phosphate platelets. Biomaterials 2013, 34 (27), 6388-401

Chapter 3

[101] Arthanari S, Rajendran N. Surface characteristics, corrosion resistance and MG63 osteoblast-like cells attachment behaviour of nano SiO2-ZrO2 coated 316L stainless steel. RSC Advances 2015 DOI:10.1039/C5RA01881A

[102]114.Park S H, Nam Y, Choi H S, Woo S T. Quantification of Gadolinium Concentration Using GRE and UTE Sequences. iMRI 2017, 21, 171-176, DOI: 10.13104/imri. 2017.21.3.171

[103] Elster A, Sobol W, Hinson W. Pseudolayering of Gd-DTPA in the urinary bladder. Radiology 1990, 174, 379-281

[104] 116. Faruch Bilfeld M, Lapèguea F, Bruna C, Bakouche S, et al. Bone abnormalities of the knee: MRI features . Diagnostic and Interventional Imaging 2016 97, 779—788, DOI: 10.1016/j.diii.2016.02.011

中图分类号:

 R318.08    

条码号:

 002000063651    

馆藏号:

 TD10050394    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式