- 无标题文档
查看论文信息

中文题名:

 

矢量涡旋光束的倏逝波及自旋-轨道相互作用的研究

    

姓名:

 黄帆    

学号:

 1049721802424    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070207    

学科名称:

 理学 - 物理学 - 光学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 武汉理工大学    

院系:

 理学院    

专业:

 物理学    

研究方向:

 光学    

第一导师姓名:

 贾信庭    

第一导师院系:

 武汉理工大学    

完成日期:

 2021-05-26    

答辩日期:

 2021-06-01    

中文关键词:

 

矢量涡旋光束 ; 高阶庞加莱球 ; 倏逝波 ; 自旋-轨道相互作用 ; 矢量结构

    

中文摘要:

矢量涡旋光束是一种同时具有偏振态空间变化和螺旋波前结构的新型光束。由于其新颖的光学特性,矢量涡旋光束在超分辨率成像、精密度量、光通信和激光加工等领域有着巨大的应用前景。早期人们对矢量涡旋光束的研究主要集中在柱矢量涡旋光束,随着全庞加莱球、高阶庞加莱球等偏振表征方式的提出,人们已经创建了许多具有奇特结构的矢量涡旋光束。与传统的均匀偏振光束不同,矢量涡旋光束在聚焦场、散射场和倏逝波等高度非均匀场中可以展现出非凡的自旋-轨道相互作用。本文基于衍射角谱理论,分别对高阶庞加莱球矢量涡旋拉盖尔-高斯光束近场的倏逝波和自旋-轨道相互作用,远场的矢量结构和角动量的演化特性进行了理论研究。本文的主要研究内容如下:

(1)介绍了常见的两种偏振态表征方式,即斯托克斯系数和琼斯矢量表示法。进一步介绍了用来表征传统均匀偏振光束偏振态的庞加莱球,以及用来表征矢量涡旋光束任意偏振态的高阶庞加莱球。根据衍射角谱理论,给出了单色电磁波在自由空间中传输的一般描述。基于Parseval定理,提供了倏逝波和传播波光强平面积分在麦克斯韦方程中的一般精确解。推导并分析了傍轴和非傍轴情形中的光学角动量的一般表述形式。

(2)基于衍射角谱理论和Parseval定理分析了高阶庞加莱球矢量涡旋拉盖尔-高斯光束的近场特性。其倏逝波和传播波的光强分布直观地给出了矢量涡旋光束在近场中的传输特性。详细分析了拓扑荷、椭圆率角和束腰宽度等自由度对倏逝波在总光场中的贡献的影响。经过计算发现,较高的拓扑荷数、径向阶数等自由度对倏逝波和传播波的光场分布模式有很大的影响。研究了近场中非傍轴情形由倏逝波引起的自旋-轨道相互作用。结果表明,近场中矢量涡旋光束的轨道角动量同时包含横向电场和纵向电场的贡献,倏逝波中的横向自旋角动量和横向偏振态相关,且由于量子自旋霍尔效应存在自旋方向锁定的现象。这些结果可能为矢量涡旋光束在亚波长结构中的研究和应用提供帮助。

(3)基于衍射角谱理论和稳相法推导并分析了远场高阶庞加莱球矢量涡旋拉盖尔-高斯光束的TE项和TM项电磁场的解析形式模型。通过观察TE项、TM项和总能流密度来分析矢量涡旋光束在远场中矢量结构的演化特性。拓扑荷、椭圆率角等自由度对TE项和TM项能流密度分布有很大的影响,而当束腰宽度减小到接近一个波长时,总能流密度的柱对称性分布被打破。通过改变拓扑荷、椭圆率角等自由度可实现对自旋角动量和轨道角动量的调控,且TE项和TM项电场间的干涉也能产生轨道角动量。这些工作有望为矢量涡旋光束在远场中的传输特性和角动量密度调控相关研究提供有用的信息。

参考文献:

[1]吕乃光著. 傅里叶光学[M]. 北京: 机械工业出版社, 2005.

[2]Maiman T H. 5–stimulated optical radiation in ruby[J]. Essentials of Lasers, 1969, 187(187): 134-136.

[3]钱朝阳. 结构光场的传输特性及其应用[D]. 杭州: 浙江理工大学, 2010.

[4]Andrew F, Angela D, Melanie M. Creation and detection of optical modes with spatial light modulators[J]. Advances in Optics and Photonics, 2016, 8(2): 200-227.

[5]Gori F. Polarization basis for vortex beams[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 2001, 18(7): 1612.

[6]Xu Y H, Zhang H F, Li Q, et al. High-quality vector vortex arrays by holographic and geometric phase control[J]. Journal of Physics D: Applied Physics, 2020, 53(46): 465101.

[7]Milione G, Evans S, Nolan D A, et al. Higher order Pancharatnam-Berry phase and the angular momentum of Light[J]. Physical Review Letters, 2012, 108(19): 190401.

[8]Zhou J X, Liu Y C, Ke Y G. Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases[J]. Optics Letters, 2015, 40(13): 3193-3196.

[9]Xu Y H, Zhang H F, Li Q, et al. Generation of terahertz vector beams using dielectric metasurfaces via spin-decoupled phase control[J]. Nanophotonics, 2020, 9(10): 3393-3402.

[10]Bliokh K Y, Rodri?guez-Fortun?o F J, Nori F, et al. Spin–orbit interactions of light[J]. Nature Photonics, 2015, 9(12): 796-808.

[11]Bliokh K Y, Nori F. Transverse and longitudinal angular momenta of light[J]. Physics Reports-Review Section of Physics Letters, 2015, 592: 1-38.

[12]Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87.

[13]贾信庭. 轴对称偏振光束特性的研究[D]. 武汉: 华中科技大学, 2011.

[14]Wang X L, Li Y N, Chen J, et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 2010, 18(10): 10786-10795.

[15]Chen R P, Chew K H, Dai C Q, et al. Optical spin-to-orbital angular momentum conversion in the near field of a highly nonparaxial optical field with hybrid states of polarization[J]. Physical Review A, 2017, 96(5): 053862.

[16]Milione G, Sztul H I, Nolan D A, et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 2011, 107(5): 053601.

[17]Yi X N, Liu Y C, Ling X H, et al. Hybrid-order Poincaré sphere[J]. Physical Review A, 2015, 91(2): 023801.

[18]Beckley A M, Brown T G, Alonso M A. Full Poincaré beams[J]. Optics Express, 2010, 18(10): 10777-10785.

[19]Carmelo R, Bienvenu N, Andrew F. A review of complex vector light fields and their applications[J]. Journal of Optics, 2018, 20(12): 123001.

[20]孙喜博. 新型矢量涡旋光场的调控及非线性效应研究[D]. 北京: 中国工程物理研究院, 2020.

[21]Allen L, Beijersbergen M W, Spreeuw R J, et al. Orbital angular momentum of light and transformation of Laguerre Gaussian Laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189.

[22]Pachava S, Dharmavarapu R, Vijayakumar A, et al. Generation and decomposition of scalar and vector modes carrying orbital angular momentum: a review[J]. Optical Engineering, 2020, 59(4): 041205.

[23]Poynting J H. The wave motion of a revolving shaft, and a suggestion as an angular momentum in a beam of circularly polarized beam[J]. Proceedings of the Royal Society of London, 1909, 82(557): 560-567.

[24]Beth R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50: 115-125.

[25]Onoda M, Murakami S, Nagaosa N. Hall effect of light[J]. Physical Review Letters, 2004, 93(8): 083901.

[26]Ling X, Zhou X, Huang K, et al. Recent advances in the spin Hall effect of light[J]. Reports on Progress in Physics. 2017, 80(6): 066401.

[27]Li M, Yan S, Yao B, et al. Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations[J]. Optics Express, 2016, 24(18): 20604.

[28]Niemimen T A, Stilgoe A B, Heckenberg N R, et al. Angular momentum of a strongly focused Gaussian beam[J]. Journal of Optics A-Pure and Applied Optics, 2008, 10(11): 115005.

[29]Yu P, Liu Y, Wang Z, et al. Interplay between spin and orbital angular momenta in tightly focused higher-order Poincaré sphere beams[J]. Annalen der Physik, 2020, 532(8): 2000110.

[30]Hadj M O E, Stratton T, Dolan S R. Scattering from compact objects: Regge poles and the complex angular momentum method[J]. Physical Review D, 2020, 101(10): 104035.

[31]Bekshaev A Y. Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows[J]. Journal of Optics, 2012, 15(4): 1180-1186.

[32]Bliokh K Y, Bekshaev A Y, Nori F. Extraordinary momentum and spin in evanescent waves[J]. Nature Communications, 2014, 5: 3300.

[33]Wei L, Rodríguez-Fortuo F J. Momentum-Space geometric structure of helical evanescent waves and its implications on near-field directionality[J]. Physical Review Applied, 2020, 13(1): 14008.

[34]Chen R P, Chew K H, Dai C Q, et al. Optical spin-to-orbital angular momentum conversion in the near field of a highly nonparaxial optical field with hybrid states of polarization[J]. Physical Review A, 2017, 96(5): 053862.

[35]Bliokh K Y, Smirnova D, Nori F. Quantum spin Hall effect of light[J]. Science, 2015, 348(6242): 1448-1451.

[36]Bekshaev A Y, Bliokh K Y, Nori F. Transverse spin and momentum in two-wave interference[J]. Physical Review X, 2014, 5(1): 011039.

[37]Bliokh K Y, Ostrovskaya E A, Alonso M A, et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems[J]. Optics Express, 2011, 19(27): 26132-26149.

[38]Zhao Y, Yang C X, Zhu J X, et al. Optical spin-to-orbital angular momentum conversion in structured optical fields[J]. Chinese Physics B, 2020, 29(6): 067301.

[39]Fu S H, Guo C H, Liu G H, et al. Spin-orbit optical Hall effect[J]. Physical Review Letters, 2019, 123(24): 243904.

[40]Chen R P, Li G Q. The evanescent wavefield part of a cylindrical vector beam[J]. Optics Express, 2013, 21(19): 22246-22254.

[41]Pohl D. Operation of a ruby laser in the purely transverse electric mode TE01[J]. Applied Physics Letters, 1972, 20(7): 266-267.

[42]Mushiake Y, Matsumura K, Nakajima N. Generation of radially polarized optical beam mode by laser oscillation[J]. Proceedings of the IEEE, 1972, 60(9): 1107-1109.

[43]Biss D O, Brown T G. Polarization-vortex-driven second-harmonic generation[J]. Optics Letters, 2003, 28(11): 923-925.

[44]Jia X T, Wang Y Q, Li B. Nonparaxial analyses of radially polarized beams diffracted at a circular aperture[J]. Optics Express, 2010, 18(7): 7064-7075.

[45]彭宗毅. 矢量涡旋光束的调控及传输特性研究[D]. 武汉: 武汉理工大学, 2020.

[46]Wei C, Wu D, Liang C H, et al. Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincaré beam[J]. Optics Express, 2015, 21(19): 24331-24341.

[47]Naidoo D, Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 2016, 10(5): 327-332.

[48]Liu Y C, Ke Y G, Zhou J X, et al. Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements[J]. Scientific Reports, 2017, 7: 44096.

[49]Liu Z, Liu Y, Ke Y, et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere[J]. Photonics Research, 2017, 5(1): 15-21.

[50]Lou K, Qian S X, Ren Z C, et al. Femtosecond laser processing by using patterned vector optical fields[J]. Scientific Reports, 2013, 3: 2281.

[51]Li Lin, Chang C L, Yuan X Z, et al. Generation of optical vortex array along arbitrary curvilinear arrangement[J]. Optics Express, 2018, 26(8): 9798-9812.

[52]Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156.

[53]Kozawa Y, Sato S. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams[J]. Optics Express, 2010, 5(10): 10828-10833.

[54]Li M, Yan S H, Yan B L, et al. Intrinsic optical torque of cylindrical vector beams on Rayleigh absorptive spherical particles[J]. Journal of the Optical Society of A-Optics Image Science and Vision, 2014, 31(8), 1710–1715.

[55]Chen R, Agarwal K, Sheppard C J, et al. Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system[J]. Optics Letters, 2013, 38(16): 3111-3114.

[56]Torok P, Munro P. The use of Gauss-Laguerre vector beams in STED microscopy[J]. Optics Express, 2004, 12(15): 3605-3617.

[57]Neugebauer M, Wozniak P, Bag A, et al. Polarization-controlled directional scattering for nanoscopic position sensing[J]. Nature Communications, 2016, 7: 11286.

[58]Fatemi F K. Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems[J]. Optics Express, 2011, 19(25): 25143-25150.

[59]王伟, 李晓记, 任亚萍, 等. 自由空间轨道角动量无线光通信研究进展[J]. 光通信技术, 2019, 43(04): 12-17.

[60]D’Ambrosio V, Carvacho G, Graffitti F, et al. Entangled vector vortex beams[J]. Physical Review A, 2016, 94(3): 030304.

[61]Li P Y, Wang B, Zhang X D. High-dimensional encoding based on classical nonseparability[J]. Optics Express, 2016, 24(13): 15143-15159.

[62]Padgett M, Courtial J, Allen L. Light's orbital angular momentum[J]. Physics Today, 2004, 57(5): 35-40.

[63]Berry M. Paraxial beams of spinning light[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1998, 3487: 6-11.

[64]O'Neil A T, Macvicar I, Allen L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam[J]. Physical Review Letters, 2002, 88(5): 053601.

[65]Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 2002, 88(25): 257901.

[66]罗海陆, 文双春. 光自旋霍尔效应及其研究进展[J]. 物理, 2012, 41(06): 367-373.

[67]Shao Z K, Zhu J B, Chen Y J, et al. Spin-orbit interaction of light induced by transverse spin angular momentum engineering[J]. Nature Communications, 2018, 9: 926.

[68]Belinfante, F J. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields[J]. Physica, 1940, 7(5): 449–474.

[69]Bliokh K Y, Nori F. Spatio-temporal vortex beams and angular momentum[J]. Physical review A, 2012, 86(3): 2733-2737.

[70]Pas’ko V, Soskin M, Vasnetsov M. Transversal optical vortex[J]. Optics Communications, 2001, 198(1-3): 49-56.

[71]Chong A, Wan C H, Chen J, et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum[J]. Nature Photonics, 2020, 14(6): 350-355.

[72]万晨皓, Andy Chong, 詹其文. 光子飓风——具有光子横向轨道角动量的时空涡旋[J]. 物理, 2020, 49(4): 254-256.

[73]Martinez-Herrero R, Mejias P M, Juvells I, et al. Transverse and longitudinal components of the propagating and evanescent waves associated to radially polarized nonparaxial fields[J]. Applied Physics B-Lasers and Optics, 2012, 106(1): 151-159.

[74]Cui X, Wang C, Jia X. Nonparaxial propagation of vector vortex beams diffracted by a circular aperture[J]. Journal of the Optical Society of America A-Optics Image Science and Vision, 2019, 36(1): 115-123.

[75]Jia X T, Li B, Wang Y Q. Analyses of a radially polarized vector beam in the source region[J]. Journal of Modern Optics. 2010, 57(1): 51-57.

[76]Gradshteyn I, Ryzhik I. Table of Integrals, Series, and Products[M]. New York: Academic Press, 2007.

中图分类号:

 O183.1    

条码号:

 002000063024    

馆藏号:

 TD10049677    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式