- 无标题文档
查看论文信息

中文题名:

 

熔盐核废物脱氯处理及玻璃固化研究

    

姓名:

 董要港    

学号:

 1049721900511    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080500    

学科名称:

 工学 - 材料科学与工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 核废物玻璃固化    

第一导师姓名:

 徐凯    

第一导师院系:

 材料科学与工程学院    

完成日期:

 2022-06-25    

答辩日期:

 2022-05-19    

中文关键词:

 

核废物 ; 玻璃固化 ; 氯化物熔盐 ; 脱氯 ; 硼硅酸盐玻璃

    

中文摘要:

熔盐电解法乏燃料干法后处理技术因其工艺流程简单、放射性废物少等优势,已成为未来先进燃料循环最有前景的技术之一。在电解处理乏燃料过程中,氯化物熔盐常被用作电解质,因此电解结束后会产生大量氯化物熔盐核废物。此类废物被归为高放废物,需固化处理后进行处置。

玻璃固化是目前国际上唯一工业化应用的高放废物处理技术。然而,Cl在玻璃中的低溶解度,限制了该技术在氯化物熔盐核废物处理中的应用,因此氯化物熔盐核废物的处理仍是当前乏燃料干法后处理的难点之一。针对该难题,本文提出先利用草酸(H2C2O4)对熔盐核废物脱氯,再进行玻璃固化的两步法处理工艺,重点研究了H2C2O4对模拟氯化物熔盐核废物的脱氯工艺及脱氯机理。基于脱氯后废物化学组成,以硼硅酸盐玻璃为固化基材开展玻璃固化实验,依据玻璃固化体的化学稳定性,获得系列玻璃固化配方。最后,以模拟氟化物熔盐核废物为对象,验证了利用H2C2O4脱氟的可行性并对脱氟后废物进行了玻璃固化,具体研究结果如下:

(1)H2C2O4能高效去除模拟氯化物熔盐核废物中的Cl,当H2C2O4与Cl的摩尔比为2,热处理温度为300 °C时,脱氯效率可达99%。在脱氯过程中,废物中的Cl以HCl气体的形式去除,金属阳离子残留在废物中形成金属草酸盐,其在500 °C以上转化为金属碳酸盐。

(2)基于脱氯后废物成分,以SiO2、B2O3、CaO和Al2O3为玻璃添加剂,开展废物负载量为25—45 wt%的玻璃固化实验。7天产品一致性化学稳定性测试表明,当废物负载量低于35 wt%时,固化体的元素归一化浸出值小于2.0 g/m2。通过调整玻璃添加剂组成,对负载量为30 wt%的玻璃配方进行优化,28天静态抗浸出测试表明,优化后固化体的单位表面积总失重从~30 g/m2降低至15 g/m2以下,得到了满足我国核行业抗浸出性能要求的玻璃固化体。

(3)脱氟验证实验表明,H2C2O4亦能去除模拟氟化物熔盐核废物中的F。当H2C2O4与F的摩尔比为2,热处理温度为300 °C时,脱氟效率可达93%。废物中的金属阳离子形成金属草酸盐,其在500 °C以上转化为金属碳酸盐。脱氟后废物进行硼硅酸盐玻璃固化处理,废物负载量可达25 wt%以上。

 

参考文献:

[1] 王海洋, 荣健. 碳达峰、碳中和目标下中国核能发展路径分析[J]. 中国电力, 2021, 54(06): 86-94.

[2] 黄震, 谢晓敏. 碳中和愿景下的能源变革[J]. 中国科学院院刊, 2021, 36(09): 1010-1018.

[3] 洪哲, 赵善桂, 张春龙, 等. 我国乏燃料离堆贮存需求分析[J]. 核科学与工程, 2016, 36(03): 411-418.

[4] Inoue T, Koch L. Development of pyroprocessing and its future direction[J]. Nuclear Engineering and Technology, 2008, 40(3): 183-190.

[5] Eun H C, Yang H C, Cho Y Z, et al. Vacuum distillation of a mixture of LiCl-KCl eutectic salts and RE oxidative precipitates and a dechlorination and oxidation of RE oxychlorides[J]. Journal of Hazardous Materials, 2008, 160(2): 634-637.

[6] Williamson M A, Willit J L. Pyroprocessing flowsheets for recycling used nuclear fuel[J]. Nuclear Engineering and Technology, 2011, 43(4): 329-334.

[7] Ackerman J P, Johnson T R, Chow L S H, et al. Treatment of wastes in the IFR fuel cycle[J]. Progress in Nuclear Energy, 1997, 31(1): 141-154.

[8] Lee H S, Park G I, Kang K H, et al. Pyroprocessing technology development at KAERI[J]. Nuclear Engineering and Technology, 2011, 43(4): 317-328.

[9] Ojovan M I, Lee W E. An introduction to nuclear waste immobilization[M]. Newnes, 2013.

[10] Tan S, Hand R J. Incorporation and phase separation of Cl in alkaline earth aluminosilicate glasses[J]. Journal of Nuclear Materials, 2018, 516: 135-144.

[11] Zhao W, Li K, Lin P, et al. Dissolution of Cl in alkaline earth (Ca, Sr, Ba) aluminosilicate glasses[J]. Journal of Non-Crystalline Solids, 2019, 516: 56-62.

[12] Lewis M A, Fischer D F, Smith L J. Salt-occluded zeolites as an immobilization matrix for chloride waste salt[J]. Journal of the American Ceramic Society, 1993, 76(11): 2826-2832.

[13] Ackerman J P, Johnson T R, Chow L S H, et al. Treatment of wastes in the IFR fuel cycle[J]. Progress in Nuclear Energy, 1997, 31(1): 141-154.

[14] Bateman K J, Morrisona M C, Rappleye D S, et al. Scale up of ceramic waste forms for electrorefiner salts produced during spent fuel treatment[J]. Journal of Nuclear Fuel Cycle and Waste Technology, 2015, 13: 55-75.

[15] Riley B J. Electrochemical salt wasteform development: A review of salt treatment and immobilization options[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 9760-9774.

[16] Riley B J, Vienna J D, Frank S M, et al. Glass binder development for a glass-bonded sodalite ceramic waste form[J]. Journal of Nuclear Materials, 2017, 489: 42-63.

[17] Riley B J, Rieck B T, McCloy J S, et al. Tellurite glass as a waste form for mixed alkali-chloride waste streams: Candidate materials selection and initial testing[J]. Journal of Nuclear Materials, 2012, 424: 29-37.

[18] McCloy J S, Riley B J, Lipton A S, et al. Structure and chemistry in halide lead-tellurite glasses[J]. Journal of Physical Chemistry C, 2013, 117(7): 3456-3466.

[19] Riley B J, Kroll J O, Peterson J A, et al. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing[J]. Journal of Nuclear Materials, 2017, 495: 405-420.

[20] Park H S, Kim I T, Cho Y Z, et al. Stabilization/solidification of radioactive salt wastes by using xSiO2-yAl2O3-zP2O5 (SAP) materials at molten salt state[J]. Environmental Science & Technology, 2008, 42(24): 9357-9362.

[21] Park H S, Cho I H, Eun H C, et al. Characteristics of wasteform composing of phosphate and silicate to immobilize radioactive waste salt[J]. Environmental Science & Technology, 2011, 45(5): 1932-1939.

[22] Donze S, Montagne L, Palavit G, Thermal conversion of heavy metal chlorides (PbCl2, CdCl2) and alkaline chlorides (NaCl, KCl) into phosphate glasses[J]. Materials Chemistry, 2000, 12(7): 1921-1925.

[23] Riley B J, Peterson J A, Vienna J D, et al. Dehalogenation of electrochemical processing salt simulants with ammonium phosphates and immobilization of salt cations in an iron phosphate glass waste form[J]. Journal of Nuclear Materials, 2020, 529: 151949.

[24] 徐凯. 核废料玻璃固化国际研究进展[J]. 中国材料进展, 2016, (7): 481-488.

[25] Gin S, Abdelouas A, Criscenti L J, et al. An international initiative on long-term behavior of high-level nuclear waste glass[J]. Materials Today, 2013, 16: 243-248.

[26] 唐浩, 任一鸣, 邵浪, 等. 熔盐电解法乏燃料干法后处理技术研究进展[J]. 核化学与放射化学, 2017, 39(6): 385-396.

[27] Hur J M, Seo C S, Hong S S, et al. Metallization of U3O8 via catalytic electrochemical reduction with Li2O in LiCl molten salt[J]. Reaction Kinetics and Catalysis Letters, 2003, 80(2): 217-222.

[28] Yoshiharu S, Takashi O. Electrolytic reduction and electrorefining of uranium to develop pyrochemical reprocessing of oxide fuels[J]. Nuclear Technology, 2010, 171(3): 266-275.

[29] Benedict R, Goffa M, Teskea G, et al. Progress in electrometallurgical treatment of spent nuclear fuel[J]. Journal of Nuclear Science and Technology, 2002, 39: 749-752.

[30] Li S X, Herrmann S D, Goff K M, et al. Actinide recovery experiments with bench-scale liquid cadmium cathode in real fission product-laden molten salt[J]. Nuclear Technology, 2009, 165(2): 190-199.

[31] Li S X, Herrmann S D, Simpson M F. Electrochemical analysis of actinides and rare earth constituents in liquid cadmium cathode product from spent fuel electrorefining[J]. Nuclear Technology, 2010, 171(3): 292-299.

[32] Simpson M F, Sachdev P. Development of electrorefiner waste salt disposal process for the EBR-II spent fuel treatment project[J]. Nuclear Engineering and Technology, 2008, 40(3): 175-182.

[33] Priebe S, Bateman K. The ceramic waste form process at Idaho National Laboratory[J]. Nuclear Technology, 2008, 162(2): 199-207.

[34] National Research Council. Electrometallurgical techniques for DOE spent fuel treatment: Final report [M]. Macsource press, 2013.

[35] Keiser D D, Abraham D P, Sinkler W, et al. Actinide distribution in a stainless steel-15 wt% zirconium high-level nuclear waste form[J]. Journal of Nuclear Materials, 2000, 279(2): 234-244.

[36] Eun H C, Choi J H, Cho I H, et al. Purification of LiCl-KCl eutectic waste salt containing rare earth chlorides delivered from the pyrochemical process of used nuclear fuel using a reactive distillation process[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307(2): 1419-1427.

[37] Westphal B R, Marsden K C, Price J C, et al. On the development of a distillation process for the electrometallurgical treatment of irradiated spent nuclear fuel[J]. Nuclear Engineering and Technology, 2008, 40(3): 163-174.

[38] Eun H, Cho Y, Park H, et al. Study on a separation method of radionuclides (Ba, Sr) from LiCl salt wastes generated from the electroreduction process of spent nuclear fuel[J]. Journal of Radioanalytical & Nuclear Chemistry, 2012, 292(2): 531-535.

[39] Amamoto I, Kofuji H, Myochin M, et al. Precipitation behaviors of fission products by phosphate conversion in LiCl-KCl medium[J]. Nuclear Technology, 2010, 171(3): 316-324.

[40] Cho Y J, Yang H C, Eun H C, et al. Characteristics of oxidation reaction of rare-earth chlorides for precipitation in LiCl-KCl molten salt by oxygen sparging[J]. Journal of Nuclear Science and Technology, 2006, 43(10): 1280-1286.

[41] Hayashi H, Minato K. Stability of lanthanide oxides in LiCl-KCl eutectic melt[J]. The Journal of Physics and Chemistry of Solids, 2005, 66(2-4): 422-426.

[42] Cho Y Z, Park G H, Lee H S, et al. Concentration of cesium and strontium elements involved in a LiCl waste salt by a melt crystallization process[J]. Nuclear Technology, 2010, 171(3): 325-334.

[43] Ebert W E. Testing to evaluate the suitability of waste forms developed for electrometallurgically-treated spend sodium-bonded nuclear fuel for disposal in the Yucca Mountain repository, ANL-05/43[R]. Argonne National Laboratory-East: Argonne, IL, 2005.

[44] Ebert W L, Snyder C T, Riley B J, et al. Designing advanced ceramic waste forms for electrochemical processing salt waste, FCRD-MRWFD-2016-000038[R]. Fuel Cycle Research & Development, Argonne National Laboratory: Argonne, IL, 2016.

[45] McCloy J S, Riley B J, Lipton A S, et al. Structure and chemistry in halide lead-tellurite glasses[J]. Journal of Physical Chemistry C. 2013, 117(7): 3456-3466.

[46] Riley B J, Pierce D A, Crum J V, et al. Waste form evaluation for RECl3 and REOx fission products separated from used electrochemical salt[J]. Progress in Nuclear Energy, 2018, 104: 102-108.

[47] Riley B J, Scopus C S. Glass waste form options for rare-earth fission products from electrochemical reprocessing[J]. Journal of Non-Crystalline Solids, 2020, 545: 120161.

[48] Bagri P, Simpson M F. Occlusion and ion exchange of eutectic LiCl-KCl in H-Y zeolite[J]. Journal of Nuclear Fuel Cycle and Waste Technolog, 2015, 13: 45-53.

[49] Wasnik M S, Grant A K, Carlson K, et al. Dechlorination of molten chloride waste salt from electrorefining via ion-exchange using pelletized ultra-stable H-Y zeolite in a fluidized particle reactor[J]. Journal of Radioanalytical & Nuclear Chemistry, 2019, 320(2): 309-322.

[50] Wasnik M S, Livingston T C, Carlson K, et al. Kinetics of dechlorination of molten chloride salt using protonated ultrastable Y zeolite[J]. Industrial & Engineering Chemistry Research, 2019, 58(33): 15142-15150.

[51] Gardner L D, Wasnik M S, Riley B J, et al. Synthesis and characterization of sintered H-Y zeolite-derived waste forms for dehalogenated electrorefiner salt[J]. Ceramics International, 2020, 46(11): 17707-17716.

[52] 刘雅兰, 柴之芳, 石伟群. 干法后处理含盐废物陶瓷固化技术研究进展[J]. 无机材料学报, 2020, 35(3): 271-276.

[53] Cho I H, Park H S, Lee K R, et al. Treatment of radioactive waste salt by using synthetic silica-based phosphate composite for dechlorination and solidification[J]. Journal of Nuclear Materials, 2017, 493, 388-397.

[54] Lee K R, Riley B J, Park H S, et al. Investigation of physical and chemical properties for upgraded SAP (SiO2-Al2O3-P2O5) waste form to immobilize radioactive waste salt[J]. Journal of Nuclear Materials, 2019, 515: 382-391.

[55] Nash K L, Lumetta G J. Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment[M]. Oxford-Cambridge-Philadelphia-New Delhi: Woodhead Publishing Limited, 2011.

[56] Caurant D, Loiseau P, Majerus O, et al. Glass, glass-ceramics and ceramics for immobilization of highly radioactive nuclear wastes[M]. New York: Nova Science Publishers Inc, 2009.

[57] 王宇, 邢庆立, 孟保健, 等. 高放废物玻璃固化技术研究进展[J].中国建材科技, 2020, 29(4): 26-28.

[58] 罗上庚. 玻璃固化国际现状及发展前景[J]. 硅酸盐通报, 2003, (1): 42-49.

[59] 刘丽君, 张生栋. 放射性废物冷坩埚玻璃固化技术发展分析[J]. 原子能科学技术, 2015, 49(4): 589-596.

[60] 陈亚君, 陆燕. 国外高放废液玻璃固化技术概览[J]. 国外核新闻, 2018(02): 27-31.

[61] Lopukh D B, Martynov A P, Vavilov A V, et al. A new Russian way to vitrify radioactive waste by induction melting in cold crucibles[J]. Russian Electrical Engineering, 2019, 90(12): 802-806.

[62] Demine A V, Krylova N V, Polyektov P P, et al. High level liquid waste solidification using a “cold” crucible induction melter[J]. MRS Online Proceedings Library, 2000, 663(1): 27.

[63] Florenta L E. An innovation hybrid processinvolving plasma in a cold crucible melter devotedto the future intermediate level waste treatment: The SHIVA technology. Science and Technol-ogy, 2010, 73: 148-157.

[64] Jantzen C M, Marra J. High level waste (HLW) vitrification experience in the US: Application of glass product/process control to other HLW and hazardous wastes[J]. MRS Online Proceedings Library, 2008, 1107(1): 183.

[65] Vienna J D. Nuclear waste vitrification in the United States: Recent developments and future options[J]. International Journal of Applied Glass Science, 2010, 1(3): 309-321.

[66] 刘丽君, 郄东生, 李扬, 等. 冷坩埚玻璃固化模拟高放废液的24 h连续运行实验研究[J].原子能科学技术, 2018, 52(12): 2214-2221.

[67] 张华, 李宝军, 李扬, 等. 两步法冷坩埚玻璃固化原理实验装置完成72 h连续运行试验[J]. 中国原子能科学研究院年报, 2020, (0): 89.

[68] 钱敏, 凡思军, 薛天锋, 等. 高放废液硼硅酸盐玻璃固化配方研究进展[J]. 硅酸盐学报, 2021, 49(10): 2251-2265.

[69] 李秀英, 肖卓豪, 陶歆月, 等. 高水平放射性废物固化用磷酸盐玻璃的研究进展[J]. 材料导报, 2021, 35(5): 5032-5039.

[70] 王有群, 何辉, 林如山, 等. 无机氯化物熔盐在乏燃料干法后处理中的应用进展[J]. 无机盐工业, 2016, 48(8): 1-5.

[71] 朱洪法. 催化剂手册[M]. 北京: 金盾出版社, 2008.

[72] Valouma A, Verganelaki A, Tetoros I, et al. Magnesium oxide production from chrysotile asbestos detoxification with oxalic acid treatment[J]. Journal of Hazardous Materials, 2017, 336: 93-100.

[73] Siemer D D. Improving the integral fast reactor's proposed salt waste management system[J]. Nuclear Technology, 2012, 178: 341-352.

[74] Yang K, Zhu W, Scott S, et al. Immobilization of cesium and iodine into Cs3Bi2I9 perovskite-silica composites and core-shell waste forms with high waste loadings and chemical durability[J]. Journal of hazardous materials, 2021, 401: 123279.

[75] Harijan D K L, Chandra V, Yoon T, et al. Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole[J]. Journal of Hazardous Materials, 2018, 344: 576-584.

[76] Riley B J, Vienna J D, Strachan D M, et al. Materials and processes for the effective capture and immobilization of radioiodine: A review[J]. Journal of Nuclear Materials, 2016, 470: 307-326.

[77] 吴杰, 刘刈, 章晓崑, 等.含碘废物固化基材及固化方法综述[J]. 核化学与放射化学, 2020, 42(5): 311-318.

[78] Serp J, Allibert M, Benes O, et al. The molten salt reactor (MSR) in generation IV: Overview and perspectives[J]. Progress in Nuclear Energy, 2014, 77: 308-319.

[79] 阴慧琴. 腐蚀产物CrF3对LiF-NaF-KF熔盐物化性质的影响研究[D]. 中国: 中国科学院大学, 2015.

[80] Siemer D D. Molten salt breeder reactor waste management[J]. Nuclear Technology, 2014, 185: 100-108.

[81] Ojovan M I. Lee W E. An introduction to nuclear waste immobilization[M]. Amsterdam: Elsevier Science Publishers, 2014.

[82] 徐凯. 核废料玻璃固化国际研究进展[J]. 中国材料进展, 2016, 35(7): 481-488.

[83] Wang Z, Liu C, Fang G, et al. Vitrification of nuclear contaminated lead-boron polyethylene[J]. Journal of Non-Crystalline Solids, 2021, 564: 120832.

[84] Kiprianov A A, Pankratova N M. Investigation of fluorine binding by lithium barium alkali silicate glass[J]. Glass Physics and Chemistry, 2014, 40(2): 133-137.

[85] Sun Y, Xia X, Qiao Y, et al. Immobilization of simulated radioactive fluoride waste in phosphate glass[J]. Science China-Materials, 2016, 59(4): 279-286.

中图分类号:

 TL941    

条码号:

 002000034552    

馆藏号:

 TD10053286    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式