- 无标题文档
查看论文信息

中文题名:

 基于功率匹配的低速船机性能试验和仿真优化研究    

姓名:

 刘海强    

学号:

 104971120190    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082402    

学科名称:

 轮机工程    

学生类型:

 博士    

学位:

 工学博士    

学校:

 武汉理工大学    

院系:

 能源与动力工程学院    

专业:

 轮机工程    

研究方向:

 内燃机性能优化与排放控制    

第一导师姓名:

 吕林    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-09-01    

答辩日期:

 2015-11-29    

中文关键词:

 小缸径低速二冲程船用柴油机 ; 功率匹配 ; 性能试验 ; 扫气和燃烧 ; 仿真计算    

中文摘要:

由于燃油经济性、运行可靠性和维护周期等绝对优势,以及大功率、低转速的输出,低速二冲程船用柴油机一直是大载重吨位船舶理想的推进动力。在过去的30多年里,国内依靠引进专利许可证制造的低速二冲程船用柴油机满足了国内造船业的持续发展,而其技术开发、应用和推广却集中在欧洲的瓦锡兰、曼恩,以及日本的三菱。

国内在低速二冲程船用柴油机领域积累了大量制造技术和工艺等方面的经验,但由于关键技术的突破必须依靠应用理论和基础性能试验研究。低速船机设计和选型阶段需要明确应用和功率匹配问题,调试和测试阶段往往遇到性能试验和分析问题,原型设计完成后则会在仿真计算的基础上进行性能优化和分析预测。鉴于此,本文以低速二冲程电控船用柴油机为研究对象,在系统分析和研究设计配套阶段产品的功率匹配和应用、调试和测试阶段性能试验,以及仿真模型计算和性能优化等问题的基础上,进行基于功率匹配的低速二冲程船用柴油机性能试验和仿真优化研究。主要内容如下。

低速二冲程船用柴油机功率匹配设计和应用研究。产品在设计阶段必须明确适配范围,低速二冲程船用柴油机的功率匹配区域决定了其适用的功率范围。本文在剖析典型低速二冲程船用柴油机功率匹配区域的性能特征、关键控制参数基础上,提出基于等平均有效压力曲线、螺旋桨效率、燃油消耗率,以及NOx排放的功率匹配区域的设计原则和基本方法。通过对功率匹配区域的应用分析,引出关键控制参数的设定和调整对功率匹配点和匹配区域的重要影响,得到功率匹配区域的设计和应用必须依托于关键控制参数对低速二冲程船用柴油机性能影响规律的研究。

小缸径低速二冲程电控船用柴油机性能试验研究。由于性能试验研究为功率匹配设计提供了依据,本文以功率匹配区域的设计和应用为核心和基础,以小缸径低速二冲程电控船用柴油机为研究对象,基于螺旋桨推进特性曲线,进行多目标、多参数、多工况点的性能试验研究,得到确定功率匹配区域设计和应用的关键控制参数对整机性能的影响规律。最后基于多参数、多目标的性能试验结论得到兼顾燃油经济性和NOx排放性的25%、50%、75%和100%负荷下各关键控制参数的优化组合,并进行了螺旋桨特性试验。

基于AVL FIRE的低速二冲程船用柴油机性能仿真和优化研究。围绕功率匹配区域的设计和应用,以小缸径低速二冲程电控船用柴油机为研究对象,基于AVL FIRE仿真计算平台建立计算模型。基于该模型进行75%负荷小缸径低速二冲程船用柴油机缸内气体流动、油雾混合、燃烧和污染物生成等过程的仿真计算研究,以及75%负荷和50%负荷下不同预喷油角度、预喷油量和排气门关闭角度对缸内燃烧压力、放热率以及NO生成的影响规律的仿真计算研究,为合理组织和设计影响扫气过程、燃烧过程的关键控制参数提供依据。计算和优化结果表明通过调整关键控制参数和优化缸内燃烧过程可以更好的进行功率匹配区域的设计和应用。

综上所述,基于功率匹配的小缸径低速二冲程电控船用柴油机性能试验和仿真优化研究,提出了基于等平均有效压力曲线、螺旋桨效率、燃油消耗率和NOx排放进行功率匹配区域设计的基本原则和一般方法,进行了小缸径低速二冲程船用柴油机多目标、多参数、多工况的性能试验研究和扫气-燃烧仿真计算研究。性能试验和仿真计算研究结果为功率匹配区域和匹配区域内工况点的设计和应用提供了依据和技术路线,同时也为低速船机调试、交付过程中的性能优化试验提供技术指导。

 

参考文献:

[1] 孙培廷. 船舶柴油机[M]. 大连:大连海事大学出版社,2008.

[2] 许维达. 柴油机动力装置匹配[M]. 北京:机械工业出版社,2005.

[3] 陆金铭. 船舶动力装置设计[M]. 北京:国防工业出版社,2006.

[4] 黄少竹. 船舶柴油机[M]. 大连海事大学出版社. 2006.

[5] Dragsted J. The first 50 years of turbocharged 2 stroke crosshead marine diesel engine [M]. Germany:CIMAC Central Secretariat. 2012.

[6] MAN B&W Diesel A/S. MAN B&W Two-stroke engine production introduction [M]. Augsburg:MAN B&W Diesel A/S, 2013.

[7] W?rtsil?. W?rtsil? two-stroke engine production introduction [M]. Winterthur:W?rtsil?, 2012.

[8] Mitsubishi. Mitsubishi two-stroke engine production introduction [M]. Nagasaki:Mitsubishi, 2012.

[9] W?rtsil?, W?rtsil? Corporation Annual report 2012. Vassa:W?rtsil?, 2012.

[10] W?rtsil?, W?rtsil? Corporation Annual report 2013. Vaasa:W?rtsil?, 2013.

[11] W?rtsil?, W?rtsil? Corporation Annual report 2014. Vaassa:W?rtsil?, 2014.

[12] 陈绍纲. 轮机工程手册[M]. 北京:人民交通出版社,1992.

[13] 高鹗,任文江. 船舶动力装置设计[M]. 上海:上海交通大学出版社,1991.

[14] David T. Brown. A history of the sulzer low-speed marine diesel engine [M]. Winterthur, Sulzer Brothers Ltd., 2010.

[15] 朱树文. 船舶动力装置原理与设计[M]. 上海:上海交通大学出版社,1985.

[16] 张晓怀,罗自来,常汉宝. 船用大功率柴油机共轨喷射系统匹配研究[J]. 内燃机,2012(5): 18-22.

[17] 张晓怀,罗自来 黄康. 船用大功率柴油机电控喷油器仿真与优化设计研究[J]. 内燃 机与配件,2012(8): 13-17.

[18] 尹成彬,欧大生,张晓怀,周加东. 船用共轨柴油机燃油喷射系统控制策略研究[J]. 柴油机,2012,34(5):22-27.

[19] W?rtsil?. RT-flex50 flex system. Winterthur:W?rtsil?,2010.

[20] MAN B&W Diesel A/S. ME engine, the concept and its execution. Augsburg:MAN B&W Diesel A/S, 2008.

[21] MAN B&W Diesel A/S. ME engines, the new generation of diesel engines. Augsburg:MAN B&W Diesel A/S, 2006.

[22] W?rtsil?. RT-flex35 new flex system. Winterthur:W?rtsil?,2010.

[23] W?rtsil?. RT-flex50-D marine installation manual. Winterthur:W?rtsil?,2010.

[24] 何建元. 柴油机共轨式燃油系统及电控喷油器的仿真研究[D]. 哈尔滨:哈尔滨工程大学,2007.

[25] Kyrtatos N P. HERCULES A-B-C, A 10-year major R&D effort towards the next generation large marine diesel engines [C]. Transport Research Arena-Europe, 2012.

[26] Kyrtatos N P, Hellberg L, Poensgen C. Ten years after:results from the major programme HERCULES A-B-C on marine engine R&D [C]. 27th CIMAC Congress, Shanghai, 2013, No.18.

[27] Kyrtatos N P, Matti Kleimola, Ralf Marquard. The HERCULES project: a major R&D effort for marine engines of high efficiency and low emissions [C]. CIMAC, 2007 No.31.

[28] Kyrtatos N P. The international project HERCULES for next generation marine engines[C]. STG 05 ISME 05, 2005.

[29] Uleme. HERCULES-B short presentation[C]. Denmark, 2009

[30] Kyrtatos N, Hellberg L, Poensgen C. Hercules-B:The continuation of a major R&D effort towards the next – generation marine diesel engines [C]. CIMAC 2010 Paper No.32.

[31] Kyrtatos N. HERCULES-C overview and final results[C]. Final Meeting, MAN Museum Augsburg, 2014

[32] Kyrtatos N P. HERCULES-C Project, Interim presentation of overall project results report, Denmark, 2013.

[33] Herrmann K, Schulz R, Weisser G. Development of a reference experiment for large diesel engine combustion system optimization [C]. CIMAC Paper No.98, 2007.

[34] Rotz B, Herrmann K, Weisser G, et al. Impact of evaporation, swirl and fuel quality on the characteristics of sprays typical of large 2-stroke marine diesel engine combustion systems [C]. ILASS – Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, Portugal, September, 2011.

[35] Herrmann K, Rotz B, Schulz R, et al. Reference data generation of spray characteristics in relation to large 2-stroke marine diesel engines using a novel spray combustion chamber concept [C]. ILASS – Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010.

[36] Herrmann K, Rotz B, Weisser G, et al. Impact of evaporation, swirl and fuel quality on the characteristics of sprays typical of large 2-stroke marine diesel engine combustion systems[C]. ILASS-Europe 2012, 25th European Conference on Liquid Atomization and Spray Systems, Estoril, Portugal, September 2012.

[37] Herrmann K, Schulz R, Weisser G. Development of a reference experiment for large diesel engine combustion system optimization [C], CIMAC Congress, 2010, Paper No. 98.

[38] Schulz R, Hensel S, Herrmann K, et al. Development of spray and combustion simulation tools and application to large two-stroke diesel engine combustion systems. 27th CIMAC Congress, Shanghai 2013, Paper No. 259.

[39] Herrman K. Hercules spray combustion chamber. BFE Projekt –Nr.100706/ Verfugungs- Nr.150822, 2007.

[40] Herrmann K, Rotz B V, Schulz R, et al. A spray combustion chamber facility for investigationsin relation to large 2-stroke marine diesel engine combustion system optimization [C]. Paper-ISME111, 2011.

[41] Mayer S, Hult J, Nogenmyr K J, et al. Advanced optical development tools for two-stroke marine diesel engines [C]. 27th CIMAC Congress, Shanghai 2013, Paper No. 53.

[42] Han Zhiyu, Uludogan A, Hampson G J, et al. Mechanism of soot and nox emission reduction using multiple-injection in a diesel engine [C]. SAE Technical Paper Series 960633.

[43] MAN-B&W Diesel A/S. MAN Diesel & Turbo and W?rtsil? initiate HERCULES-2 research project. trade-press-releases, 2014.

[44] Thurnheera T, Edenhausera D, Soltica P., et al. Sankowskic. Experimental investigation on different injection strategies in a heavy-duty diesel engine:emissions and loss analysis [J]. Energy Conversion and Management, 2011, 52(1):457-467.

[45] Mancaruso E, Merola S S, Vaglieco B M. Study of the multi-injection combustion process in a transparent direct injection common rail diesel engine by means of optical techniques [J]. International Journal of Engine Research. 2008, 9(6):483-498.

[46] Chung N H, Oh B G, Sunwoo M H. Modelling and injection rate estimation of common-rail injectors for direct-injection diesel engines [J]. International Journal of Engine Research. 2008, 222(6):1089-1101.

[47] Desantes J M, Benajes J, Molina S, et al. The modification of the fuel injection rate in heavy-duty diesel engines. part 1:effects on engine performance and emissions [J]. Applied Thermal Engineering 2004, 24(5):2701-2708.

[48] Desantes J M, Benajes J, Molina S, et al. The modification of the fuel injection rate in heavy-duty diesel engines. part 2: effects on combustion [J]. Applied Thermal Engineering 2004, 24(5): 2709-2714.

[49] Choi C Y, Reitz R D. An experimental study on the effects of oxygenated fuel blends and multiple injection strategies on DI diesel engine emissions [J]. Fuel 1999, 78(11): 1303-1317

[50] Lechner G A, Jacobs T J, Chryssakis C A, et al. Evaluation of a narrow spray cone angle, advanced injection timing strategy to achieve partially premixed compression ignition combustion in a diesel engine [C]. SAE transactions,2005-01-0167.

[51] Chryssakis C, Assanis D N, A unified fuelspray breakup model for internal combustion engine applications [J]. Atomization and Sprays, Vol.18, No. 5, pp. 375-426, 2008

[52] Nehmer D A, Reitz R D. Measurement of the effect of injection rate and split injections on diesel engine soot and NOx emissions [C]. SAE transactions,1994,Vol103: 1030-1041

[53] Payri F, Benajes J, Arrègle J, et al. Combustion and exhaust emissions in a heavy-duty diesel engine with increased premixed combustion phase by means of injection retarding [J]. Oil & Gas Science and Technology. 2006, 61(2): 247-258.

[54] Walter B, Gatellier B. Near zero NOx emissions and high fuel efficiency diesel engine:the naditm concept using dual mode combustion [J]. Oil & Gas Science and Technology. 2003, 58(1):101-114.

[55] Shimazaki N, Minato A, Nishimura T. Premixed diesel combustion using direct injection near top dead centre [J]. International Journal of Engine Research. 2007, 8(3):259-270

[56] Carlucci P, Ficarella A, Laforgia D. Effects of pilot injection parameters on combustion for common rail diesel engines [C]. SAE transactions, 2003, 112:932-943

[57] Tennison P J, Reitz R. An experimental investigation of the effects of common-rail injection system parameters on emissions and performance in a high-speed direct-injection diesel engine [J]. Journal of engineering for gas turbines and power 2001, 123(1):167-174

[58] Tanakaa T, Andoa A, Ishizakab K. Study on pilot injection of di diesel engine using common-rail injection system [J]. JSAE transactions, 2002, 23(3):297-302.

[59] Lechner G A, Jacobs T J, Chryssakis C A, et al. Evaluation of a narrow spray cone angle, advanced injection timing strategy to achieve partially premixed compression ignition combustion in a diesel engine [J]. SAE Transactions, 2009-01-1448.

[60] Abe S, Igashira T, Sakakibara Y, et al. Development of pilot injection system equipped with piezo-electric actuator for diesel engine [J]. JSAE Review, 1994, 15(3):201-208.

[61] Nakakita K, Kondoh T, Ohsawa K, et al.Optimization of pilot injection pattern and its effect on diesel combustion with high-pressure injection [J]. JSME international journal. Series B, fluids and thermal engineering, 1994, 37(4):966-973.

[62] Carlucci P, Ficarella A, Laforgia D. Effects of pilot injection parameters on combustion for common rail diesel engines [J]. SAE Transactions, 2003, 112(3):932-943

[63] Chryssakis C, Pantazis K, Kaiktsis L. Combustion modeling with heavy fuel oil for large marine diesel engine applications [C]. CIMAC Paper No. 236, 2010.

[64] Pantazis K, Chryssakis C, Kaiktsis L. Development and validation of a CFD heavy fuel oil model [C]. 20th Int. Multidimensional Engine Modeling User’s Group Meeting at the SAE Congress, April 12, 2010, Detroit, MI.

[65] Fink C, Buchholz B, Niendorf M., et al. Injection spray analyses from medium speed engines using marine fuels [C]. ILASS-Europe 2008, Lake Como, Italy, September 2008.

[66] Steernberg K, Forget S. The effects of a changing oil industry on marine fuel quality and how new and old analytical techniques can be used to ensure predictable performance in marine diesel engines [C]. Paper No. 198, CIMAC congress, Vienna, 2007.

[67] Goldsworthy L. Computational fluid dynamics modelling of residual fuel oil combustion in the context of marine diesel engines [J]. Int. J. Engine Research, 2006, 7:181- 199, 2006.

[68] Kyriakides N, Chryssakis C, Kaiktsis L. Influence of heavy fuel properties on spray atomization for marine diesel engine applications [C]. SAE 2009-01-1858.

[69] Andreadis P, Chryssakis C, Kaiktsis L. Optimization of injection characteristics in a large marine diesel engine using evolutionary algorithms, presented [C]. SAE World Congress, 2009-01-1448, Detroit, MI, April 2009.

[70] Kontoulis P, Chryssakis C, Kaiktsis L. Evaluation of pilot injections in a large two-stroke marine diesel engine, using CFD and T-φ mapping [C]. COMODIA 2008, Sapporo, Japan, July, 2008.

[71] Pananakis E, Kontoulis P, Chryssakis C, et al. Investigation of fuel injection strategies for partially premixed compression ignition combustion in two-stroke marine diesel engines [C]. ILASS-Europe 2013, 25th European Conference on Liquid Atomization and Spray Systems, Chania, Greece, 1-4 September 2013.

[72] Kontoulis P, Chryssakis C, Kaiktsis L. Analysis of combustion and emissions in a large two-stroke marine diesel engine, using CFD and T-φ mapping [C]. 18th Int. Multidimensional Engine Modeling User’s Group Meeting at the SAE Congress, April 13, 2008, Detroit, MI.

[73] Andreadis P, Zompanakis A, Chryssakis C, et al. Effects of the fuel injection parameters on the performance and emissions formation in a large-bore marine diesel engine [J]. International Journal of Engine Research, February 1, 2011 12: 14-29.

[74] Caspar Ask Christiansen. Heat transfer in two-stroke diesel engines for large ship propulsion [D], Technical University of Denmark, 2012.

[75] Bjarke Skovgard Dam. Experimental and numerical investigations of sprays in two-stroke diesel engines [D]. Technical University of Denmark, 2007.

[76] Andersen F H. Numerical simulation of the flow in fuel nozzles for two-stroke diesel engines [D]. Technical University of Denmark, 2011.

[77] Haider S. Experimental and numerical study of swirling flow in scavenging process for 2-stroke marine diesel engines [D]. Technical University of Denmark, 2011.

[78] Sigurdsson E, Ingvorsen K M, Jensen M V, et al. Numerical analysis of the scavenge flow and convective heat transfer in large two-stroke marine diesel engines. Applied Energy, 2014,123: 37-46.

[79] Haider S, Schnipper T, Obeidat A, et al. PIV study of the effect of piston position on the in-cylinder swirling flow during the scavenging process in large two-stroke marine diesel engines [J]. Journal of Marine Science and Technology. 2013, 18(1):133-143.

[80] Ingvorsen K M, Meyer K E, Walther J H, et al. Turbulent swirling flow in a model of a uniflow-scavenged two-stroke engine. Experiments in Fluids. March 2013, 54:1494

[81] Hemmingsen C S, Ingvorsen K M, Walther J H, et al. Swirling flow in a two-stroke marine diesel engine [C] // Logg K A, Mardal Oslo. Proceedings of the 26th Nordic Seminar on Computational Mechanics, 2013.

[82] Obeidat A, Haider S, Ingvorsen K M. Influence of piston displacement on the scavenging and swirling flow in two-stroke diesel engines [C] // Eriksson A, Tibert G. 23rd Nordic Seminar on Computational Mechanics. NSCM-23 KTH, Stockholm, 2010.

[83] Ingvorsen K M, Meyer K E, Walther J H, et al. Phase-locked stereoscopic piv measurements of the turbulent swirling flow in a dynamic model of a uniflow-scavenged two-stroke engine cylinder [C]. 10th International Symposium on Particle Image Velocimetry - PIV13, Delft, the Netherlands, July 1-3, 2013.

[84] 张乔斌,张晓东,薛红军. 某型船用高压共轨大功率柴油机喷射特性研究[J]. 船舶工程, 2010, 32(1):26-29.

[85] 林开进.喷油规律对船用柴油机性能影响的数值模拟[D].大连:大连海事大学,2011.

[86] 吴春杰. 二冲程柴油机气口结构对扫气过程影响的数值模拟研究[D].大连:大连理工大学,2001.

[87] 章悦. 二冲程柴油机的气体流动和内部EGR的数值模拟[D].上海:上海海事大学, 2006.

[88] 钱承炬,陈石,颜富纯,等. 二冲程内燃机扫气流场的数值模拟[J]. 大连理工大学学报, 1996, 36(5):566-572.

[89] 王海燕,张均东,曾鸿.大型低速柴油机工作过程建模与仿真[J].大连海事大学学报, 2006, 32(2):1-4.

[90] 王海燕,张伟,周海涛. 船用大型低速电控柴油机的容积法模型[J].内燃机学报, 2008, 26(5): 452-457.

[91] 刘勤安,段树林,邢辉,等. 大型低速船用柴油机工作过程数值模拟及优化[J]. 大连海事大学学报, 2011, 37(3):107-122.

[92] 刘勤安. 大型低速柴油机配气相位的优化计算[J]. 内燃机, 2011(2): 33-39.

[93] 杨国豪. 船用低速智能柴油机工作过程建模与仿真研究[D]. 大连:大连海事大学,2012.

[94] 舒畅. 船用大功率低速智能化柴油机可变排气正时特性研究[D]. 武汉: 武汉理工大学,2012.

[95] 舒畅,杨建国. 低速大功率智能化柴油机排气门系统的特性分析[J]. 船海工程, 2009, 38(5):81-84.

[96] 郭蕴华,石侠红,杨建国. 船用大型低速电控柴油机的容积法模型[J]. 武汉理工大学学报交通科学与工程版), 2012,36(4):840-845.

[97] 张俊军,吴朝晖,王伟,等. 米勒循环船用低速柴油机燃烧与排放试验研究[J]. 铁道机车车辆, 2011, 31:280-283.

[98] 张俊军,吴朝晖,胡朝霞,等. 船用低速二冲程柴油机燃烧与排放数值模拟研究[J].柴油机, 2012,34(2):20-26.

[99] 赵伟,舒歌群,张韦,等. 富氧燃烧对柴油机低温燃烧反应机理影响的数值分析[J]. 西安交通大学学报, 2012, 46(3):69-75.

[100] 苏万华. 高密度-低温柴油机燃烧理论与技术的研究与进展[J]. 内燃机学报, 2008, 26(S) :1-8.

[101] 张翔宇.柴油机低温燃烧燃烧及排放特性的试验研究[D].天津:天津大学,2010.

[102] 张全长.柴油机低温燃烧基础理论和燃烧控制策略的试验研究[D].天津:天津大学,2010.

[103] 文华. 基于 CFD 的柴油机喷雾混合过程的多维数值模拟[D].武汉:华中科技大学,2004.

[104] 张志强,赵福全,胡宗杰,等. 基于长管法的柴油多次喷油规律及喷雾特性[J].内燃机学报, 2012,30(4):330-336.

[105] 冯立岩. 基于柴油预混合压燃的碰撞喷雾及燃烧数值模拟[D].大连:大连理工大学, 2005.

[106] 杨德胜. 基于分散低温预混合燃烧概念的柴油机TR燃烧系统的研究[D].大连:大连理工大学, 2005.

[107] 张全长,尧命发,郑尊清,等.进气氧浓度对柴油机低温燃烧影响的试验研究[J].内燃机学报, 2009,27(4):298-305.

[108] 张玉.进气温度对高密度-低温柴油机燃烧的数据模拟[J].重型汽车,2011,5:17-20.

[109] 苏万华,鹿盈盈,于文斌,等.柴油机高密度-低温燃烧的数值模拟[J].燃烧科学与技术, 2010,16(3):192-170.

[110] 张全长,雒婧,尧命发,等.进气成分对柴油机低温燃烧影响的试验和数值模拟[J].内燃机学报,2011,29(6):481-489.

[111] 孙培廷. 船用柴油机[M]. 大连:大连海事大学出版社,2002.

[112] 高鹗,任文江. 船舶动力装置设计[M]. 上海:上海交通大学出版社,1991.

[113] 盛振邦,刘应中. 船舶原理[M]. 上海:上海交通大学出版社,2004.

[114] W?rtsil?. W?rtsil? RT-flex electronic-controlled common-rail engine technology & benefits[C]. Winterthur:W?rtsil?,2010.

[115] W?rtsil?. RT-flex engine marine installation manual [C]. Winterthur:W?rtsil?,2008.

[116] MAN Diesel & Turbo. Marine engine IMO Tier II programme[M], 2nd Edition 2013, Augsburg:MAN B&W Diesel A/S, 2013.

[117] 刘海强,吕林. 船舶机桨匹配设计与分析计算平台研究[J]. 船海工程, 2008(3) :56-58.

[118] 吴恒. 船舶动力装置技术管理[M]. 大连:大连海事大学出版社,1999.

[119] 刘海强. 船机桨匹配与冷却系统优化研究[D],武汉:武汉理工大学,2007.

[120] W?rtsil?. netGTD. Winterthur:W?rtsil?,2012.

[121] MAN-B&W. CEAS. Augsburg:MAN B&W Diesel A/S, 2013.

[122] 周龙保. 内燃机学[M]. 西安:西安交通大学出版社,2008.

[123] International Association of Classification Societies. Requirements concerning machinery Installations [M]. IACS Req. 2012.

[124] 中国船级社. 钢质海船入级规范[M]. 北京:人民交通出版社,2012.

[125] 谢光明.船舶降速航行的经济性和排放变化分析[D]. 大连:大连海事大学,2009.

[126] 李胜. 船舶主机降速节能研究[D].大连:大连海事大学,2011.

[127] Eran Sher. Handbook of air pollution from internal combustion engines, pollutant formation and control, chapter 14, air pollution from large two-stroke diesel engines and technologies to control it [M]. Academic Press, 1998:477-534,

[128] Marine Environment Protection Committee. Report of the marine environment protection committee on its 57th session [C]. IMO, 2008.

[129] Hoffmann Mark. Literature review of state-of-the-art in numerical optimization [C]. HERCULES-C Project Report, 2012.

[130] Thevenin D, Janiga G. Optimization and computational fluid dynamics [M]. Berlin:Springer Verlag, 2008.

[131] 林锉云,董加礼. 多目标优化的方法与理论[M]. 长春:吉林教育出版社,1992.

[132] 张永娇. 基于进化算法的多目标优化问题研究[D]. 沈阳:沈阳工业大学,2014.

[133] Dumele H, Stangl T. Automated map optimization of a large-bore diesel engine [C]. SAE Technical Paper, 2011-01-0705.

[134] Senecal P K, Reitz R D. Optimization of diesel engine emissions and fuel efficiency using genetic algorithms and computational fluid dynamics [C]. Eighth ICLASS, Pasadena, CA., July 2000.

[135] T.Hiroyasu, M.Miki, J.Kamiura, et al. Multi-objective optimization of diesel engine emissions and fuel economy using genetic algorithms and phenomenological model [C]. 02FFL-183, 2003.

[136] Senecal P. K., Reitz R. D. A methodology for engine design using multi-dimensional modelling and genetic algorithms with validation through experiments [J]. International J. of Engine Research, 2000(3):229-248.

[137] Zitzler E, Laumanns M, ThieleL. Improving the performance of the strength pareto evolutionary algorithm [C]. Technical Report 103, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH) Zurich, 2001.

[138] Pratab A, Deb K, Agrawal S. et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization [C]. NSGAII, In Kan-GAL Report 200001, Indian Institute of Technology, Kanpur, India, 2000.

[139] Hiroyasu H, Miao H Y, Hiroyasu T, et al. Genetic algorithms optimization of diesel engine emissions and fuel efficiency with air swirl, EGR, Injection timing and multiple injections [C]. SAE Technical Paper, 2003-01-1853.

[140] Andreadis P, Chryssakis C, Kaiktsis L. Optimization of injection characteristics in a large marine diesel engine using evolutionary algorithms [C]. SAE Technical Paper, 2009-01-1448.

[141] National Technical University of Athens. Intrudction of EASY, the evolutionary algorithms system V2.0 [C]. National Technical University of Athens presentation, 2012.

[142] 中国船级社. 船用柴油机氮氧化物排放试验及检验指南[M]. 北京:人民交通出版社, 2008.

[143] 钱作勤,茅云生,王忠俊. 船用柴油机NOx排放的计算分析与研究[J]. 造船技术, 2005(1):26-30.

[144] 王忠俊. 船用柴油机氮氧化物(NOx)排放测试分析研究[D]. 武汉:武汉理工大学,2004.

[145] W?rtsil? Switzerland Ltd. Technical circular to licensees 7381 imo tier II NOx emissions regulations: compliance by w?rtsil? low-speed marine engines [M]. Winterthur: W?rtsil?, 2012.

[146] AVL. Combustion module AVL FIRE Version 2013.

[147] 郑金保,缪雪龙,王先勇,等. 柴油机预混合燃烧循环变动特性研究[J].内燃机工程, 2011, 32(1): 85~94.

[148] Liu Haiqiang, Lu Lin, Wang Zhongjun. The evaluation of fuel injection strategies on performance of small bore two-stroke marine diesel engine [C]. Proceedings of the Twenty-fourth (2014) International Ocean and Polar Engineering Conference, Busan, 2014: 663-666.

[149] Liu Haiqiang, Lu Lin, Wang Zhongjun. Evaluation analysis of scavenging process of two-stroke marine diesel engine by experiment and simulation [J]. Journal of Thermal Science and Technology (JTST), 2014, 9(2):1-9.

[150] 解茂昭. 内燃机计算燃烧学[M]. 大连: 大连理工大学出版社, 2005.

[151] 李江波,熊文,衣正尧. 主机选型中基于降低燃油消耗量的设计分析[J]. 船海工程, 2013(4):4-7.

中图分类号:

 U664.121    

馆藏号:

 U664.121/B190/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式