- 无标题文档
查看论文信息

中文题名:

 

EPND油基超滑材料的热氧化行为与氧化安定性提升

    

姓名:

 谌敬夫    

学号:

 1049732003967    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082300    

学科名称:

 工学 - 交通运输工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 交通与物流工程学院    

专业:

 交通运输    

研究方向:

 运输机械运用工程    

第一导师姓名:

 李克    

第一导师院系:

 交通与物流工程学院    

完成日期:

 2023-05-24    

答辩日期:

 2023-05-16    

中文关键词:

 

油基超滑 ; 1 ; 3-二酮 ; 热氧化行为 ; 氧化机理 ; 抗氧化剂适配性

    

中文摘要:

超滑概念(摩擦系数<0.01)于上世纪90年代提出,近年来1,3-二酮EPND(1-(4-乙基苯基)壬烷-1,3-二酮)油基润滑材料被发现在实验中可以达到超滑,在精密仪表、微型电机等精密机械领域具有很好的应用前景。然而,因为EPND存在不饱和键,导致其氧化安定性较差,限制了其在较高温度下的应用,并影响其在终身润滑条件下的润滑稳定性。

本论文首先对EPND的热氧化行为进行了分析,并与同粘度商业仪表油4121的氧化安定性进行比较。将三种不同作用机理的抗氧化剂(纳米沸石、胺类抗氧化剂和酚类抗氧化剂)与EPND进行复配,通过相容性分析、红外光谱以及抗氧化性能测试对EPND与这三种抗氧化剂的匹配性进行了研究。将匹配性最佳的抗氧化剂按照三种不同质量分数与EPND进行复配,研究其在不同掺杂量条件下对EPND氧化安定性和摩擦磨损性能的影响规律。主要结论如下:

(1)通过烘箱加速氧化实验研究EPND的热氧化行为,红外光谱分析证实EPND由于1,3-二酮官能团中羰基的不饱和性,在较高温度下易生成羧酸类氧化产物;随着氧化时间的增加,油液的酸值和动力粘度均不断增大;将EPND与同粘度商业精密仪表油4121进行氧化安定性的横向比较,高压差示扫描量热分析(PDSC)发现EPND在氧化起始温度和氧化诱导时间方面均存在明显差距。

(2)三种抗氧化剂(掺杂量均为1%)与EPND匹配性研究表明,由于EPND粘度较低,氧化产物吸附剂纳米沸石粉末在EPND中无法稳定分散;基于自由基捕获作用的胺类和酚类抗氧化剂均可溶于EPND,但胺类抗氧化剂在EPND中生成了不稳定的微量物质;因此,在三种抗氧化剂中酚类与EPND的相容性最佳。通过烘箱加速氧化实验和PDSC,证实了酚类抗氧化剂可以显著减小EPND氧化过程引起的油液酸值和粘度变化,并提高氧化起始温度、延长氧化诱导时间。

(3)通过研究酚类抗氧化剂(掺杂量0.5%、1%和2%)对EPND氧化起始温度、氧化诱导时间、摩擦系数和磨斑直径的影响规律,发现当酚类抗氧化剂的掺杂量为0.5%时,可以在不影响EPND超滑性能的条件下,将其氧化安定性提升至与商业精密仪表油4121同等水平。

参考文献:

[1] 温诗铸, 黄平. 摩擦学原理[M]. 北京: 清华大学出版社, 2002.

[2] 于烨平, 谢凤, 胡建强. 润滑油的氧化安定性[J]. 合成润滑材料, 2003,2(3):36-39.

[3]郑发正, 徐新, 白雪亮. 润滑油的氧化与对策[J]. 合成润滑材料, 2008,3(4):30-32.

[4] Celis J, Achanta S. Nanotribology of MEMS / NEMS[J]. Nanoscience and Technology, 2015, 27(2):631-656.

[5] Meyer E, Gnecco E. Superlubricity on the nanometer scale[J]. Friction 2015,2(2):106-113.

[6] 万谦. 蓖麻油基低温润滑油基础油的研制及性能表征[D]. 武汉: 华中科技大学, 2019.

[7] Qian X, Xiang Y, Shang H, et al. Thermal-oxidation mechanism of dioctyl adipate base oil[J]. Friction, 2016, 4(1): 29-38.

[8] Colclough T. Role of additives and transition metals in lubricating oil oxidation[J]. Ind. Eng. Chem. Res., 1987(26): 1888-1895.

[9] Schmitz R P H, Eisentrager A, Lindvogt T, et al. Increase of the toxic potential of synthetic ester lubricant oil by usage: Application of aquatic bioassays and chemical analsis[J]. Chemosphere, 1998,36(7): 1513-1522.

[10] Perez J M. Oxidative properties of lubricants using thermal analysis[J]. Thermochimica Acta, 2000, 23(10): 47-56.

[11] Santos J, Santos, Souza A, et al. Thermoanalytical and rheological characterization of automotive mineral lubricants after thermal degradation[J]. Fuel, 2004, 83(10): 2393-2399.

[12] Nader B, Kar K, Morgan T, et al. Development and tribological properties of new cyclotriphosphazene high temperature lubricants for aircraft gas turbine engines[J]. Tribology Transactions, 1992, 35(7): 1514-1522.

[13] Beran. Effect of chemical structure on the hydrolytic stability of lubricating base oils[J]. Tribology International, 2010, 43(12): 2372-2377.

[14] Sarin A, Arora R, Singh N P, et al. Influence of metal contaminants on oxidation stability of Jatropha biodiesel[J]. Energy, 2009, 34(9): 1271-1275.

[15] Singh A, Gandra R T, Schneider E W, et al. Lubricant degradation and related wear of a steel pin in lubricated sliding against a steel disc[J]. ACS Applied Materials & Interfaces, 2011(3): 2512-2521.

[16] Beaver B, Gao L, Burgess-Clifford C, et al. On the mechanisms of formation of thermal oxidative deposits in jet fuels. are unified mechanisms possible for both storage and thermal oxidative deposit formation for middle distillate fuels?[J]. Energy & Fuels, 2005.19(4): 1574-1579.

[17] Commodo M, Wong O, Fabris I, et al. Spectroscopic study of aviation jet fuel thermal oxidative stability[J]. Energy & Fuels, 2010, 25(10): 1271-1275..

[18] Diaby M, Singhal P, Ousmane M, et al. Impact factors for the degradation of engine oil causing carbonaceous deposits in the piston's grooves of diesel engines[J]. Fuel, 2013.107(9): 90-101.

[19] Egharevba F, Maduako A U C. Assessment of oxidation in automotive crankcase lube oil: effects of metal and water activity[J]. Industrial & Engineering Chemistry Research, 2002,41(14): 3473-3481.

[20] Pereira Ferreira H B, Sanches Barbeira P J. Voltammetric determination of zinc in lubricating oils[J]. Energy & Fuels, 2009,23(6): 3048-3053.

[21] Hayashi Y, Komiya N, Suzuki K, et al. Copper-catalyzed aerobic oxidative functionalization of c–h bonds of alkanes in the presence of acetaldehyde under mild conditions[J]. Tetrahedron Letters, 2013,54(21): 2706-2709.

[22] Konieczny A, Mondal K, Wiltowski T, et al. Catalyst development for thermocatalytic decomposition of methane to hydrogen[Z]. 2008, 15(6): 127-134.

[23] Jung H, Kittelson D B, Zachariah M R. The influence of engine lubricating oil on diesel nanoparticle emissions and kinetics of oxidation[R].2003, 13(20): 1375-1381..

[24] Fox N J, Stachowiak G W. Vegetable oil-based lubricants—A review of oxidation[J]. Tribology International, 2007,40(7): 1035-1046.

[25] The Lubrizol Corporation; Patent Issued for Viscosity Improver Compositions Providing Improved Low Temperature Characteristics to Lubricating Oil[J]. Journal of Engineering, 2013, 34(9): 1271-1275..

[26] Shishkin Y L. Fractional and component analysis of crude oils by the method of dynamic Microdistillation—Differential scanning calorimetry coupled with thermogravimetry[J]. Thermochimica Acta, 2006,441(2): 162-167.

[27] 龙芬. 红外光谱测定润滑油中多种类型抗氧化剂含量的应用[J]. 化学工程与装备, 2010(08):190-196.

[28] 罗一, 孔庆伟, 曲景平. 金属离子的配位作用影响芳胺抗氧化性能的理论研究[J]. 润滑油, 2014,29(05):58-64.

[29] 张洁华, 陈闽杰, 喻薇. 基于抗氧化性指标的在用油剩余寿命红外光谱评定法[J]. 润滑与密封, 2013(09):92-94.

[30] Kouame S, Liu E. Characterization of fully and partially additized lubricant deposits by Temperature Programmed Oxidation[J]. Tribology International, 2014,72(8): 58-64.

[31] 费逸伟, 郭峰, 杨宏伟, 姚婷. 润滑油热氧化安定性试验方法标准比较分析[J]. 化工时刊, 2015,29(02):37-41.

[32] 张梅, 李久盛, 李建群. 利用PDSC考察环境友好润滑油基础油氧化安定性的研究[J]. 润滑与密封, 2006(12):152-154.

[33] Mascolo G, Rausa R, Bagnuolo G, et al. Thermal degradation of synthetic lubricants under oxidative pyrolytic conditions[J]. Journal of Analytical and Applied Pyrolysis, 2006(75): 167-173.

[34] Siouris S, Wilson C W. Thermodynamic Properties of Pentaerythritol-Based Species Involved In Degradation Of Aviation Gas Turbine Lubricants[J]. Ind. Eng. Chem. Res., 2010,49(23): 12294-12301.

[35] 陈立波, 郭绍辉, 李术元等. 航空润滑油热氧化衰变的高压差示扫描量热法分析[J]. 分析测试学报, 2003(02):72-74.

[36] 李静, 王会东, 周旭光. 基础油的氧化安定性及抗氧化感受性[J]. 汽车工艺与材料, 2005(2):34-37.

[37] Colclough T. Role of Additives and Transition Metals in Lubricating Oil Oxidation[J]. Ind. Eng. Chem. Res., 1987(26): 1888-1895.

[38] Egharevba F, Maduako A. Assessment of Oxidation in Automotive Crankcase Lube Oil: Effects of Metal and Water Activity[J]. Industrial & Engineering Chemistry Research, 2002,41(14): 3473-3481.

[39] Chayasti, Elias. Mcclements and E. Decker.Role of Physical Structures in Bulk Oils on Lipid Oxidation [J]. Food Science and Nutrition, 2007, 32(12): 299-317.

[40] Choe E. Mechanisms and Factors for Edible Oil Oxidation[J]. Food Science and Food Safety, 2006, 15(6): 169-186.

[41] Paz. Catalytic Effect of Solid Metals on Thermal Stability of Olive Oils[J]. American Oil Chemists’ Society, 2000, 16(8): 127-130.

[42] Akbarzadeh S, Khonsari M M. On the prediction of running-in behavior in mixed-lubrication line contact[J]. Journal of Tribology, 2010,132(3):132102.

[43] Michel M. Liquid-crystal science from 1888 to 1922: Building a revolution[J]. chemical physics and physical chemistry, 2014, 15(7): 1245-1250.

[44] Ermakov S F, Myshkin N K, Kolesnikov V I, et al. On the mechanism of cholesteric liquid crystal lubricity in metal joint friction[J]. Journal of Friction and Wear, 2015, 36(6): 496-501.

[45] W. Chayasti, R. Elias, D. Mcclements and E. Decker,“Role of Physical Structures in Bulk Oils on Lipid Oxidation”, Critical Reviews in Food Science and Nutrition.2007, 56(18): 299-317.

[46] Seong Y, Dong K. Molecular orientation of liquid crystals on topographic nanopatterns[J]. Acs Applied Materials & Interfaces, 2016, 8(27): 17707-17712.

[47] Paz Antolín I.,Molero Meneses M.. Catalytic effect of metals on thermal stability of olive oils[J]. Grasas y Aceites,2001,52(6): 127-136.

[48] Gao Y, Jiang Y, Jing W, et al. Cholesteryl liquid crystals as oil-based lubricant additives: Effect of mesogenic phases and structures on tribological characteristics[J]. Langmuir, 2019, 35(21): 6981-6992.

[49] 薛卫国, 李涛, 周旭光. 受阻酚类润滑油抗氧化剂的性能研究[J]. 合成材料老化与应用, 2013,42(06):28-32.

[50] 彭兴隆, 郭峰, 费逸伟. 润滑油自由基捕捉剂型抗氧化剂作用机理研究[J]. 当代化工, 2015,44(05:)1003-1005.

[51] 金永亮. 酯类油热氧化机理及其抗氧化剂的制备与性能研究[D]. 武汉: 机械科学研究总院, 2020.

[52] 李沿芳. ZDDP系列产品(T204、T205)研制及其应用[J]. 润滑油,1992(04):16-20.

[53] 雒建斌, 张朝辉, 温诗铸. 薄膜润滑研究的回顾与展望[J]. 中国工程科学, 2003(07):84-89.

[54] Albuquerque, R.Q.; Calzaferri, G. Proton activity inside the channels of zeolite[J]. Chem. A Eur. 2007,13(10): 8939–8952.

[55] Zaarour, M.; Dong, B.; Naydenova, I.; Retoux, R.; Mintova, S. Progress in zeolite synthesis promotes advanced applications[J]. Microporous Mesoporous Mater. 2014, 189(15): 11–21.

[56] Mintova, S.; Jaber, M.; Valtchev, V. Nanosized microporous crystals: Emerging applications[J]. Chem. Soc. Rev.2015, 44(12): 7207–7233.

[57] Fois, E.; Tabacchi, G.; Calzaferri, G. Interactions, behavior, and stability of fluorenone inside zeolite nanochannels[J]. Phys. Chem. 2010, 114(16): 10572–10579.

[58] Antioxidants; New Antioxidants Findings from University of Malaya Discussed (Zeolite nanoparticles as effective antioxidant additive for the preservation of palm oil-based lubricant)[J]. Nanotechnology Weekly,2016.

[59] Gerardo Majano,Eng-Poh Ng,Louwanda Lakiss. Nanosized molecular sieves utilized as an environmentally friendly alternative to antioxidants for lubricant oils[J]. Green chemistry, 2011, 13(9):125-129.

[60] 曹珍, 王文, 陶德华. 润滑油添加剂摩擦学性能的试验研究[J]. 轴承, 2010(6):32-34,54.

[61] 徐瑞峰. 苯三唑衍生物缓蚀机理的理论计算及性能研究[J]. 润滑油, 2017,32(3):58-64.

[62] Cotton J B.Proceedings of the 2nd International Congress onMetallic Corrosion[J].National Association of Corrosion Engineers, 1963, 22(3): 590-596.

[63] 吴盼茜, 雷全, 张思怡等. 吸热型碳氢燃料热稳定添加剂研究进展[J]. 石油学报(石油加工), 2022,38(02):480-492.

[64] Robert E. Morris,Thomas Evans,Janet M. Hughes,John E. Colbert. Examination of Liquid-Phase Oxidation of Jet Fuel at Operational Temperatures[J]. Petroleum Science and Technology, 2007, 24(9): 57-62.

[65] Robert E. Morris, M. Towhid Hasan,Timothy C. K. Su,Margaret A. Wechter,Noel H. Turner and John A. Schreifels. Significance of Copper Complex Thermal Stability in the Use of Metal Deactivators at Elevated Temperatures[J]. Energy Fuels, 1998, 12(2): 98-105.

[66] Pande Seetar G.,Hardy Dennis R.. Effects of Extended Duration Testing and Time of Addition of N,N’-Disalicylidene-1,2-propanediamine on Jet Fuel Thermal Stability As Determined Using the Gravimetric JFTOT[J]. Energy & Fuels,1998,12(1): 108-112.

[67] Hirano M, Shinjo K. Atomistic locking and friction[J]. Physical Review B Condensed Matter, 1990, 41(17): 11837-11851.

[68] Cahangirov S, Ciraci S. Superlubricity in layered nanostructures[J].Springer International Publishing, 2015, 21(3):463-487.

[69] Meyer E, Gnecco E. Superlubricity on the nanometer scale[J]. Friction 2015, 2(2):106-113.

[70] Yongliang Jin,Jian Li,Bingxue Cheng,Dan Jia,Jiesong Tu,Shengpeng Zhan,Lian Liu,Haitao Duan. Thermal oxidation behavior of trimethylolpropane trioleate base oil when exposed to iron surfaces[J]. Industrial Lubrication and Tribology,2019,72(3): 98-105.

[71] Liu D, Li K, Zhang S, et al. Anti-spreading behavior of 1,3-diketone lubricating oil on steel surfaces[J]. Tribology International, 2018,121:108-113.

[72] Li K, Zhang S, Liu D, et al. Superlubricity of 1,3-diketone based on autonomous viscosity control at various velocities[J]. Tribology International, 2018,126:127-132.

[73] Yang J, Yuan Y, Li K, et al. Ultralow friction of 5CB liquid crystal on steel surfaces using a 1,3-diketone additive[J]. Wear, 2021,480-481:203934.

[74] 刘德双. 1,3-二酮用于精密润滑的研究[D]. 武汉: 武汉理工大学, 2018.

[75] Li K, Amann T, Walter M, et al. Ultralow friction induced by tribochemical reactions: A novel mechanism of lubrication on steel surfaces[J]. Langmuir, 2013, 29 (17): 5207-5213.

[76] Li K, Jiang J, Amann T, et al. Evaluation of 1,3-diketone as a novel friction modifier for lubricating oils[J]. Wear, 2020,452-453:203299.

[77] 苏玲. 碱木质素-PVA基交联薄膜的制备与性能研究[D]. 哈尔滨: 东北林业大学, 2015.

[78] Sarkar D K. Pharmaceutical Emulsions: A Drug Developer's Toolbag [M]. John Wiley & Sons, 2013, 10(5): 119-125.

[79] Wu D, Zhu H, Wang L, et al. Critical Issues in Nanofluids Preparation, Characterization and Thermal Conductivity[J]. Current Nanoscience, 2009, 5(1): 103-112.

[80] Tan Kok-Hou,Cham Hooi-Ying,Awala Hussein.Effect of extra-framework cations of LTL nanozeolites to inhibit oil oxidation[J]. Nanoscale research letters, 2015, 10(1): 138-146.

中图分类号:

 TH117.2    

条码号:

 002000074256    

馆藏号:

 YD10002417    

馆藏位置:

 203    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式