- 无标题文档
查看论文信息

中文题名:

 磁性纳米球的制备、性能及应用研究    

姓名:

 郭毅    

学号:

 1049721200310    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 材料学    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料学    

研究方向:

 先进高分子    

第一导师姓名:

 董丽杰    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-05-20    

答辩日期:

 2015-05-24    

中文关键词:

 磁性纳米球 ; 缓蚀剂 ; 防腐 ; 自修复 ; 防污    

中文摘要:

磁性纳米材料兼具磁性材料和纳米材料的双重特性,基于其易功能化的表面,在数据存储、生物医药及环境治理等很多领域具有非常广阔的应用前景。本文以磁性纳米球为模板,将不同结构的缓蚀剂分子装载于磁性纳米球,制备具有缓释能力的磁性纳米材料,进而将其分散于有机涂层中,使之在环境刺激下释放出缓蚀剂,实现对金属的防腐和自修复,并利用磁性纳米球在聚合物涂层中的纳米结构制备一类疏水、粗糙性表面而展现涂层的抗污能力。

本文采用溶剂热法制备了尺寸约为100 nm、结构疏松的CoFe2O4磁性纳米球。将苯并三唑(BTA)以共价结合的方式装载至其表面,得到CoFe2O4/BTA纳米球。利用聚乙烯亚胺(PEI)对CoFe2O4纳米球进行表面改性,进而与聚天冬氨酸钠(PASP)静电结合,得到CoFe2O4/PEI/PASP纳米球。同样采用静电结合法将聚丙烯酸钠(PAAS)和咪唑啉季铵盐(IQAS)依次装载至CoFe2O4/PEI表面,得到CoFe2O4/PEI/PAAS/IQAS纳米球,这四种纳米球在室温下均具有超顺磁性,饱和磁化强度依次为70.0 emu/g、65.0 emu/g、59.5 emu/g和45.4 emu/g。

将CoFe2O4/BTA、CoFe2O4/PEI/PASP和CoFe2O4/PEI/PAAS/IQAS纳米球分别掺杂在SBS中成膜,得到了表面平整、致密的有机涂层。测试结果表明,掺杂了磁性纳米球的涂层可以有效抑制铜片的阳极极化,增大样品阻抗,降低腐蚀电流,从而抑制铜片的腐蚀。CoFe2O4/PEI/PAAS/IQAS由于负载了两层缓蚀剂,具有双重防护作用,因而防腐性能最优。将CoFe2O4/PEI/PAAS/IQAS磁性纳米球掺杂于SBS涂层中,划痕后进行测试,结果表明,磁性纳米球表面装载的缓蚀剂只在腐蚀环境刺激下,打破与磁性纳米球之间的静电力而释放,从而抑制金属的进一步腐蚀,具有明显的自修复功能。

通过对玻片表面进行piranha溶液和硅烷化处理,将SEBS基层和结构层紧密涂覆在玻片表面,然后将掺杂了CoFe2O4/PEI/PAAS/IQAS磁性纳米球的PS-PDMS-PVMS涂层涂覆于其上,得到一种疏水性、纳米级粗糙的表面。测试结果表明,该防污涂层比较粗糙,且为疏水性表面,水接触角为114.5°,SEBS涂层样品在浸泡于BSA-FITC蛋白质溶液过程中会不断吸附蛋白质,而掺杂了磁性纳米球的PS-PDMS-PVMS涂层几乎不吸附蛋白质,具有明显的防污能力。

参考文献:

[1]Taketomi S, Takahashi H, Inaba N, et al. Experimental and theoretical investigations on agglomeration of magnetic colloidal particles in magnetic fluids[J]. Journal of the Physical Society of Japan, 1991, 60(5): 1689-1707.

[2]Tsang S C, Caps V, Paraskevas I, et al. Magnetically Separable, Carbon-Supported Nanocatalysts for the Manufacture of Fine Chemicals[J]. Angewandte Chemie, 2004, 116(42): 5763-5767.

[3]Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials, 2005, 26(18): 3995-4021.

[4]Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical applications[J]. Progress in Solid State Chemistry, 2006, 34(2): 237-247.

[5]Hyeon T. Chemical synthesis of magnetic nanoparticles[J]. Chemical Communications, 2003 (8): 927-934.

[6]Takafuji M, Ide S, Ihara H, et al. Preparation of poly (1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions[J]. Chemistry of materials, 2004, 16(10): 1977-1983.

[7]徐世芳, 李博. 地震学辞典[M]. 地震出版社, 2000.

[8]Jeong U, Teng X, Wang Y, et al. Superparamagnetic colloids: controlled synthesis and niche applications[J]. Advanced Materials, 2007, 19(1): 33-60.

[9]张洁. 磁性纳米材料在有机染料污染物分析检测及去除中的应用研究[D]. 西南大学, 2013.

[10]Huber D L. Synthesis, properties, and applications of iron nanoparticles[J]. Small, 2005, 1(5): 482-501.

[11]Suslick K S, Hyeon T, Fang M. Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies[J]. Chemistry of Materials, 1996, 8(8): 2172-2179.

[12]Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature nanotechnology, 2007, 2(9): 577-583.

[13]Giri J, Thakurta S G, Bellare J, et al. Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles[J]. Journal of magnetism and magnetic materials, 2005, 293(1): 62-68.

[14]李民勤, 徐慧显. 葡聚糖磁性毫微粒的制备[J]. 高等学校化学学报, 1996, 17(1): 147-150.

[15]Rabelo D, Lima E C D, Tavares Filho N, et al. Synthesis of manganese ferrite nanoparticles in macroporous styrene-divinylbenzene copolymer[J]. Journal of Magnetism and Magnetic Materials, 2004, 272: E1205-E1206.

[16]Zhao D L, Wang X X, Zeng X W, et al. Preparation and inductive heating property of Fe3O4-chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia[J]. Journal of Alloys and Compounds, 2009, 477(1): 739-743.

[17]Purushotham S, Ramanujan R V. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy[J]. Acta biomaterialia, 2010, 6(2): 502-510.

[18]Hong R Y, Feng B, Liu G, et al. Preparation and characterization of Fe3O4/polystyrene composite particles via inverse emulsion polymerization[J]. Journal of Alloys and compounds, 2009, 476(1): 612-618.

[19]Mahdavian A R, Ashjari M, Mobarakeh H S. Nanocomposite particles with core-shell morphology. I. Preparation and characterization of Fe3O4-poly (butyl acrylate-styrene) particles via miniemulsion polymerization[J]. Journal of applied polymer science, 2008, 110(2): 1242-1249.

[20]Deng H, Li X, Peng Q, et al. Monodisperse Magnetic Single-Crystal Ferrite Microspheres[J]. Angewandte Chemie, 2005, 117(18): 2842-2845.

[21]Xuan S, Wang F, Wang Y X J, et al. Facile synthesis of size-controllable monodispersed ferrite nanospheres[J]. Journal of Materials Chemistry, 2010, 20(24): 5086-5094.

[22]Sun Y, Duan L, Guo Z, et al. An improved way to prepare superparamagnetic magnetite-silica core-shell nanoparticles for possible biological application[J]. Journal of magnetism and magnetic Materials, 2005, 285(1): 65-70.

[23]Luo B, Song X J, Zhang F, et al. Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters[J]. Langmuir, 2009, 26(3): 1674-1679.

[24]Deng Y, Qi D, Deng C, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@ SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. Journal of the American Chemical Society, 2008, 130(1): 28-29.

[25]Yi D K, Lee S S, Papaefthymiou G C, et al. Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites[J]. Chemistry of Materials, 2006, 18(3): 614-619.

[26]Ang K H, Alexandrou I, Mathur N D, et al. The effect of carbon encapsulation on the magnetic properties of Ni nanoparticles produced by arc discharge in deionized water[J]. Nanotechnology, 2004, 15(5): 520.

[27]Nesper R, Ivantchenko A, Krumeich F. Synthesis and Characterization of Carbon-Based Nanoparticles and Highly Magnetic Nanoparticles with Carbon Coatings[J]. Advanced Functional Materials, 2006, 16(2): 296-305.

[28]Chan H B S, Ellis B L, Sharma H L, et al. Carbon-Encapsulated Radioactive 99mTc Nanoparticles[J]. Advanced Materials, 2004, 16(2): 144-149.

[29]Lu A H, Li W C, Matoussevitch N, et al. Highly stable carbon-protected cobalt nanoparticles and graphite shells[J]. Chemical communications, 2005 (1): 98-100.

[30]Xia H B, Yi J, Foo P S, et al. Facile fabrication of water-soluble magnetic nanoparticles and their spherical aggregates[J]. Chemistry of materials, 2007, 19(16): 4087-4091.

[31]Liu J, Sun Z, Deng Y, et al. Highly Water-Dispersible Biocompatible Magnetite Particles with Low Cytotoxicity Stabilized by Citrate Groups[J]. Angewandte Chemie, 2009, 121(32): 5989-5993.

[32]Liu C, Huang P M. Atomic force microscopy and surface characteristics of iron oxides formed in citrate solutions[J]. Soil Science Society of America Journal, 1999, 63(1): 65-72.

[33]Deng Y, Cai Y, Sun Z, et al. Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system[J]. Journal of the American Chemical Society, 2010, 132(24): 8466-8473.

[34]Shen X C, Fang X Z, Zhou Y H, et al. Synthesis and characterization of 3-aminopropyltriethoxysilane-modified superparamagnetic magnetite nanoparticles[J]. molecules, 2004, 5: 11.

[35]Liu X, Kaminski M D, Chen H, et al. Synthesis and characterization of highly-magnetic biodegradable poly (D, L-lactide-co-glycolide) nanospheres[J]. Journal of controlled release, 2007, 119(1): 52-58.

[36]Ge J, Hu Y, Biasini M, et al. Superparamagnetic magnetite colloidal nanocrystal clusters[J]. Angewandte Chemie International Edition, 2007, 46(23): 4342-4345.

[37]Dong L, Liu S, Gao H, et al. Self-Assembled FeCo/Gelatin Nanospheres with Rapid Magnetic Response and High Biomolecule-Loading Capacity[J]. Small, 2009, 5(10): 1153-1157.

[38]Li D, Tang J, Wei C, et al. Doxorubicin-Conjugated Mesoporous Magnetic Colloidal Nanocrystal Clusters Stabilized by Polysaccharide as a Smart Anticancer Drug Vehicle[J]. small, 2012, 8(17): 2690-2697.

[39]何毅, 徐中浩, 陈航宇, 等. 金属材料防腐技术的研究进展[J]. 应用化工, 2013, 42(11): 2065-2067.

[40]孙跃, 胡津. 金属腐蚀与控制[M]. 哈尔滨工业大学出版社, 2003.

[41]张天胜, 张浩, 高红. 缓蚀剂[M]. 化学工业出版社, 2008.

[42]火时中. 电化学保护[M]. 化学工业出版社, 1988.

[43]Kuznetsov Y I. Current state of the theory of metal corrosion inhibition[J]. Protection of metals, 2002, 38(2): 103-111.

[44]康永, 柴秀娟. 有机高分子缓蚀剂的研究进展[J]. 全面腐蚀控制, 2011, 25(1): 13-16.

[45]Andreeva D V, Fix D, M?hwald H, et al. Self-Healing Anticorrosion Coatings Based on pH-Sensitive Polyelectrolyte/Inhibitor Sandwichlike Nanostructures[J]. Advanced Materials, 2008, 20(14): 2789-2794.

[46]王过之. 纳米防腐涂料原理及实践[J]. 涂料涂装与电镀, 2004, 2: 3-9.

[47]高伟. 纳米改性环氧防腐涂料的制备与性能评价[D]. 西南石油大学, 2012.

[48]48. Choi W, Ko J Y, Park H, et al. Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone[J]. Applied Catalysis B: Environmental, 2001, 31(3): 209-220.

[49]王磊, 朱保华. 磁性吸波材料的研究进展及展望[J]. 电工材料, 2011 (2): 37-40.

[50]涂国荣, 刘翔峰, 杜光旭, 等. Fe3O4 纳米材料的制备与性能测定[J]. 精细化工, 2004, 21(9): 641-644.

[51]Borisova D, Mo?hwald H, Shchukin D G. Mesoporous silica nanoparticles for active corrosion protection[J]. ACS nano, 2011, 5(3): 1939-1946.

[52]Zheludkevich M L, Shchukin D G, Yasakau K A, et al. Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor[J]. Chemistry of Materials, 2007, 19(3): 402-411.

[53]Abdullayev E, Price R, Shchukin D, et al. Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole[J]. ACS applied materials & interfaces, 2009, 1(7): 1437-1443.

[54]Arunchandran C, Ramya S, George R P, et al. Self-healing corrosion resistive coatings based on inhibitor loaded TiO2 nanocontainers[J]. Journal of The Electrochemical Society, 2012, 159(11): C552-C559.

[55]Horne R A. Marine Chemistry; the structure of water and the chemistry of the hydrosphere[J]. 1969.

[56]胡起升. 船舶无毒防污涂料研究现状及应用[J]. 新技术新工艺, 2009, 12: 101-103.

[57]Chambers L D, Stokes K R, Walsh F C, et al. Modern approaches to marine antifouling coatings[J]. Surface and Coatings Technology, 2006, 201(6): 3642-3652.

[58]Xu Z, Ouyang Q, Yi D. Antifouling Method of Marine Fouling Organisms-A Review[J]. Corrosion Science and Protection Technology, 2012, 24(3).

[59]Holm E R, Haslbeck E G, Horinek A A. Evaluation of brushes for removal of fouling from fouling-release surfaces, using a hydraulic cleaning device[J]. Biofouling, 2003, 19(5): 297-305.

[60]Guo S, Lee H P, Khoo B C. Inhibitory effect of ultrasound on barnacle (Amphibalanus amphitrite) cyprid settlement[J]. Journal of Experimental Marine Biology and Ecology, 2011, 409(1): 253-258.

[61]Chen C, Xiang L, Liu H. Adhesion mechanism and prevention of marine biofouling barnacle[J]. Marine environmental science, 2012, 31(4).

[62]Qiao H Y P. The Prevention Method and Research Development of Marine Fouling [J]. Total Corrosion, 2004, 1: 001.

[63]孙洁, 曹京宜, 唐聿明, 等. 含氧化亚铜的防污涂层中铜离子的释放及其在涂层体系中的分布[J]. 涂料工业, 2014, 44(8): 19-23.

[64]陈光宇, 沈培康. 低表面能、驱避型防污涂料及其使用方法. 中国专利, CN99122500.7, 2001.

[65]Stupak M E, Garc??a M T, Pérez M C. Nontoxic alternative compounds for marine antifouling paints[J]. International biodeterioration & biodegradation, 2003, 52(1): 49-52.

[66]桂泰江. 海洋防污涂料的现状及发展趋势[J]. 现代涂料与涂装, 2005, 5: 28-29.

[67]Champ M A. A review of organotin regulatory strategies, pending actions, related costs and benefits[J]. Science of the Total Environment, 2000, 258(1): 21-71.

[68]王华进, 王丹, 姜清淮, 等. 水性无毒硅酸盐防污涂料的研制[J]. 中国涂料, 2012, 27(5): 39-42.

[69]Kim J, Delio R, Dordick J S. Protease-Containing Silicates as Active Antifouling Materials[J]. Biotechnology progress, 2002, 18(3): 551-555.

[70]Carman M L, Estes T G, Feinberg A W, et al. Engineered antifouling microtopographies–correlating wettability with cell attachment[J]. Biofouling, 2006, 22(1): 11-21.

[71]Scardino A J, Guenther J, De Nys R. Attachment point theory revisited: the fouling response to a microtextured matrix[J]. Biofouling, 2008, 24(1): 45-53.

[72]郑振荣, 顾振亚, 霍瑞亭, 等. 防污自洁聚偏氟乙烯膜的制备与表征[J]. 建筑材料学报, 2010, 13(1): 36-41.

[73]边蕴静. 低表面能防污涂料的防污特性理论分析[J]. 中国涂料, 2000 (5): 36-39.

[74]Nendza M. Hazard assessment of silicone oils (polydimethylsiloxanes, PDMS) used in antifouling-/foul-release-products in the marine environment[J]. Marine pollution bulletin, 2007, 54(8): 1190-1196.

[75]Eaton P, Estarlich F F, Ewen R J, et al. Combined nanoindentation and adhesion force mapping using the atomic force microscope: investigations of a filled polysiloxane coating[J]. Langmuir, 2002, 18(25): 10011-10015.

[76]Majumdar P, Webster D C. Influence of solvent composition and degree of reaction on the formation of surface microtopography in a thermoset siloxane-urethane system[J]. Polymer, 2006, 47(11): 4172-4181.

[77]Sommer S, Ekin A, Webster D C, et al. A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly (dimethylsiloxane) (PDMS) macromers[J]. Biofouling, 2010, 26(8): 961-972.

[78]Beigbeder A, Degee P, Conlan S L, et al. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings[J]. Biofouling, 2008, 24(4): 291-302.

[79]Brady R F, Bonafede S J, Schmidt D L. Self-assembled water-borne fluoropolymer coatings for marine fouling resistance[J]. Surface coatings international, 1999, 82(12): 582-585.

[80]Li X, Andruzzi L, Chiellini E, et al. Semifluorinated aromatic side-group polystyrene-based block copolymers: bulk structure and surface orientation studies[J]. Macromolecules, 2002, 35(21): 8078-8087.

[81]Li Y, Su Y, Zhao X, et al. Surface fluorination of polyamide nanofiltration membrane for enhanced antifouling property[J]. Journal of Membrane Science, 2014, 455: 15-23.

[82]Wen X W, Pei S P, Li H, et al. Study on an antifouling and blood compatible poly (ethylene-vinyl acetate) material with fluorinated surface structure[J]. Journal of materials science, 2010, 45(10): 2788-2797.

[83]Irani F, Jannesari A, Bastani S. Surface properties of pristine and fluorinated multiwalled carbon nanotube/poly (dimethylsiloxane) composites[J]. Industrial & Engineering Chemistry Research, 2013, 52(16): 5648-5654.

[84]Mielczarski J A, Mielczarski E, Galli G, et al. The Surface-Segregated Nanostructure of Fluorinated Copolymer-Poly (dimethylsiloxane) Blend Films[J]. Langmuir, 2009, 26(4): 2871-2876.

[85]Martinelli E, Suffredini M, Galli G, et al. Amphiphilic block copolymer/poly (dimethyl- siloxane)(PDMS) blends and nanocomposites for improved fouling-release[J]. Biofouling, 2011, 27(5): 529-541.

[86]Krishnan S, Wang N, Ober C K, et al. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva[J]. Biomacromolecules, 2006, 7(5): 1449-1462.

[87]Park D, Weinman C J, Finlay J A, et al. Amphiphilic surface active triblock copolymers with mixed hydrophobic and hydrophilic side chains for tuned marine fouling-release properties[J]. Langmuir, 2010, 26(12): 9772-9781.

[88]Sundaram H S, Cho Y, Dimitriou M D, et al. Fluorinated amphiphilic polymers and their blends for fouling-release applications: the benefits of a triblock copolymer surface[J]. ACS applied materials & interfaces, 2011, 3(9): 3366-3374.

[89]Zhao X, Su Y, Li Y, et al. Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances[J]. Journal of Membrane Science, 2014, 450: 111-123.

[90]Lee J Y, Buxton G A, Balazs A C. Using nanoparticles to create self-healing composites[J]. The Journal of chemical physics, 2004, 121(11): 5531-5540.

[91]Rodriguez E D, Luo X, Mather P T. Linear/network poly (ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH)[J]. ACS applied materials & interfaces, 2011, 3(2): 152-161.

[92]Billiet S, Hillewaere X K D, Teixeira R F A, et al. Chemistry of Crosslinking Processes for Self-Healing Polymers[J]. Macromolecular rapid communications, 2013, 34(4): 290-309.

[93]Blaiszik B J, Caruso M M, McIlroy D A, et al. Microcapsules filled with reactive solutions for self-healing materials[J]. Polymer, 2009, 50(4): 990-997.

[94]Andreeva D V, Fix D, M?hwald H, et al. Self-Healing Anticorrosion Coatings Based on pH-Sensitive Polyelectrolyte/Inhibitor Sandwichlike Nanostructures[J]. Advanced Materials, 2008, 20(14): 2789-2794.

中图分类号:

 TB383    

馆藏号:

 TB383/0310/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式