- 无标题文档
查看论文信息

中文题名:

 

等离子体技术降解金橙G试验研究

    

姓名:

 梅龙杰    

学号:

 1049731803326    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081403    

学科名称:

 工学 - 土木工程 - 市政工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 武汉理工大学    

院系:

 土木工程与建筑学院    

专业:

 建筑与土木工程    

第一导师姓名:

 桑稳姣    

第一导师院系:

 武汉理工大学    

完成日期:

 2021-05-30    

答辩日期:

 2021-05-22    

中文关键词:

 

介质阻挡放电等离子体 ; 金橙G ; 氧化剂 ; 石墨相氮化碳 ; 降解机理

    

中文摘要:

金橙G是一种典型的偶氮染料,已被普遍应用于食品、医药、印染、纺织和化妆品等行业,具有危险性、毒性和致癌等性质。现有的废水处理方法包括吸附、混凝和膜分离等,但无法高效的从水中去除金橙G,并容易造成二次污染。低温等离子体是一种高级氧化技术,对水中有机物有着显著的降解作用,近年来受到国内外研究者的广泛关注。

本文采用介质阻挡放电(DBD)等离子体技术处理金橙G废水,首先对等离子体降解金橙G的反应条件、处理效果、降解机理开展了试验研究和分析。之后研究了等离子体技术协同高效氧化剂降解金橙G的处理效果和等离子体技术协同g-C3N4降解金橙G的处理效果,得到的主要结论如下:

(1)考察了输入电压、金橙G初始浓度、溶液初始pH对金橙G降解效果的影响。结果表明在输入电压为70V,金橙G的降解率达到56.7%,能量产率为0.137g/kWh。在金橙G初始浓度分别为100mg/L、200mg/L和300mg/L时,反应10min后的降解率分别为56.7%、41.8%和31.9%。在酸性(pH=2.95)和碱性(pH=10.87)条件下,金橙G的降解率更高,达到了77.4%和63.7%。同时,研究了DBD/Fe2+体系降解金橙G的效果,结果表明在添加0.10mM Fe2+后,金橙G的降解率提升至93.6%。DBD/Fe2+体系降解金橙G的效果受输入电压、金橙G初始浓度和溶液初始pH的影响。

(2)常见阴离子对等离子体降解金橙G的影响。在反应10min后,Cl-、SO42-和NO3-对单独DBD体系降解金橙G都呈现出抑制作用,并且抑制效果随着阴离子浓度变大而提升,HCO3-和PO43-则对单独DBD体系降解金橙G表现出在阴离子低浓度情况下抑制金橙G降解,在高浓度促进金橙G降解的现象。在DBD/Fe2+体系中,Cl-、HCO3-、SO42-、NO3-和PO43-抑制金橙G的降解。

(3)研究了反应条件对DBD等离子体协同氧化剂降解金橙G的影响。对比分析了DBD/PS、DBD/SPC和DBD/Fe(VI)三个体系降解金橙G的降解效果。结果表明对应的三个体系对金橙G的降解率,由单独的DBD体系的56.7%提升至64.6%、81.7%和96.5%。对应的三个体系的协同因子分别为1.27,1.81和2.94。对应的三个体系的TOC去除率分别可达到26.3%、36.3%和37.2%,比单独DBD体系的TOC去除率提高了10.6%,20.6%和21.5%。研究结果表明反应10min后,DBD/PS体系在输入电压为80V时,最大能量产率为0.162g/kWh;DBD/SPC体系和DBD/Fe(VI)体系在输入电压为70V时,最大能量产率为0.198g/kWh和0.234g/kWh。在DBD/PS体系中较合适的PS投加量为0.15mM;在DBD/SPC体系和DBD/Fe(VI)体系中较合适的SPC和Fe(VI)投加量为0.10mM。在DBD/PS体系中,酸性条件下更有利于金橙G的降解,在酸性(pH=3.27)条件下,反应10min后,金橙G的降解率达到了74.5%;而DBD/SPC体系和DBD/Fe(VI)体系能在较宽pH范围(pH=4-10)对金橙G废水保持稳定的氧化降解效果。

(4)单独DBD体系和DBD/Fe2+体系降解路径与机理分析。通过UV-Vis吸收光谱及LC-MS的检测结果推测出12种中间产物,探求DBD/Fe2+体系降解金橙G可能的降解路径,结合TOC矿化结果,可知金橙G被降解为小分子物质并最终矿化为CO2和H2O。基于以上分析和自由基捕获试验,可以得出单独DBD体系和DBD/ Fe2+体系降解金橙G的主要活性物质是•OH。

(5)研究了DBD等离子体协同氧化剂降解金橙G的机理。自由基捕获剂试验表明在DBD/PS体系中,•OH和•SO4-负责金橙G的氧化降解,并且•OH是降解过程中的主要自由基;在DBD/SPC体系中,•OH、•CO3-、•O2-对金橙G的降解均有贡献,其中•OH的贡献最大,•O2-最小;在DBD/Fe(VI)体系中,起主要作用的自由基是•OH,也有部分金橙G分子被•O2-氧化降解。

(6)研究DBD等离子体协同g-C3N4降解金橙G的影响因素和反应机理。通过表征分析得出以硫脲为前驱体制备的g-C3N4光催化性能最好。在输入电压为80V时,反应10min后的金橙G降解率达到75.3%,能量产率为0.160g/kWh。g-C3N4投加量为0.5g/L时经济效益最好。DBD/g-C3N4体系能在较宽pH范围内对金橙G进行氧化降解。此外,制备的g-C3N4光催化材料在经历四次重复实验后,表现出较高的稳定性和可重复利用性。自由基捕获剂试验表明在DBD/g-C3N4体系中,•OH、•O2-和h+都对金橙G的降解起作用,其中以•OH和•O2-为主。

参考文献:

[1] Demirbas A. Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review[J]. Journal of Hazardous Materials, 2009, 167(1-3): 1-9.

[2] 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94.

[3] Ponnusami V, Vikram S, Srivastava S N. Guava (Psidium guaiava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions[J]. Journal of Hazardous Materials, 2008, 152(1): 276-286.

[4] DanielaSuteu, DoinaBilba, FloricaDoroftei, et al. Sorption of Brilliant Red HE-3B Reactive Dye from Aqueous Solution onto Seashells Waste: Equilibrium and Kinetic Studies[J]. Separation Science and Technology, 2011, 46(9): 1462-1471.

[5] 杨清香, 贾振杰, 杨敏. 微生物染料脱色研究进展[J]. 微生物学通报, 2006, 44: 144-148.

[6] Barredo-Damas S , Alcaina-Miranda M I , Iborra-Clar M I , et al. Study of the UF process as pretreatment of NF membranes for textile wastewater reuse[J]. Desalination, 2006, 200(1-3): 745-747.

[7] Namasivayam C , Kavitha D . Removal of Congo Red from Water by Adsorption onto Activated Carbon Prepared from Coir Pith, an Agricultural Solid Waste[J]. Dyes & Pigments, 2002, 54(1): 47-58.

[8] Rodríguez Couto S. Dye removal by immobilised fungi.[J]. Biotechnology Advances, 2009, 27(3): 227-235.

[9] Ju D J , Byun I G , Park J J , et al. Biosorption of Reactive Dye (Rhodamine-B) from an Aqueous Solution Using Dried Biomass of Activated Sludge[J]. Bioresource Technology, 2008, 99(17): 7971-7975.

[10] Alaa F , Adham E Z , Saeed A M , et al. Modeling and optimizing Acid Orange 142 degradation in aqueous solution by non-thermal plasma[J]. Chemosphere, 2018, 210: 102-109.

[11] Mathur N, Bhatnagar P. Mutagenicity assessment of textile dyes from Sanganer (Rajasthan) [J]. Journal of Environmental Biology, 2007, 28(1): 123-126.

[12] Nidheesh P , Gandhimathi R , Ramesh S. Degradation of dyes from aqueous solution by Fenton processes: a review[J]. Environmental Science & Pollution Research, 2013, 20(4): 2099-2132.

[13] 曾杭成, 张国亮, 孟琴, 等. 超滤/反渗透双膜技术深度处理印染废水[J]. 环境工程学报, 2008, (8): 1021-1025.

[14] Ilyes J, SabeurK, Sami S, et al. Preparation of a new ceramic microfiltration membrane from mineral fly ash:Application to the treatment of the textile dying effluents[J]. Powder Technology, 2010, 208(2): 427-432.

[15] 陈玉峰. 物理法处理染料废水的研究进展[J]. 河北化工, 2013, 36(3): 72-74.

[16] 季雪琴, 吕黎, 陈芬, 等. 秸秆生物炭对有机染料的吸附作用及机制[J]. 环境科学学报, 2016, 5: 1648-1654.

[17] Ghaedi M, Hekmati J A, Khodadoust S, et al. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow[J]. Spectrochimica Acta Part A, 2012, 90: 22-27.

[18] 黄万抚, 严思明, 丁声强. 膜分离技术在印染废水中的应用及发展趋势[J]. 有色金属科学与工程, 2012, 3(2): 41-45.

[19] 刘恩华, 王家富, 魏飞. 管式超滤+纳滤技术处理分散染料废水中试研究[J]. 水处理技术, 2015, 41(2): 96-99.

[20] 王慧, 周月霞, 柏仕杰, 等. 染料废水生物法处理技术的研究进展[J]. 厦门大学学报(自然科学版), 2008, 2: 286-290.

[21] IsiK M , Sponza D T. Anaerobic/aerobic treatment of a simulated textile wastewater[J]. Separation & Purification Technology, 2008, 60(1): 64-72.

[22] 郭晓楠. 絮凝法处理模拟染料废水工艺的研究[J]. 环境与发展, 2019, 31(2): 124-125.

[23] 杨振北, 刘欣亚, 吴玉婷, 等. 电化学氧化处理模拟染料废水[J]. 印染, 2019, 45(7): 11-16.

[24] Sun Y , Meng L , Liu R , et al. Review on the treatment of organic wastewater by discharge plasma combined with oxidants and catalysts[J]. Environmental Science and Pollution Research, 2021, 28: 2522-2548.

[25] Miklos D B, Remy C, Jekel M, et al. Evaluation of advanced oxidation processes for water and wastewater treatmen t– A critical review[J]. Water Research, 2018, 139: 118-131.

[26] 施银桃, 夏东升, 李海燕, 等. 臭氧氧化法处理染料废水研究[J]. 化工环保, 2004, 1: 20-22.

[27] 李甲亮, 张万伟, 王宏国. Fenton氧化对活性染料废水的处理[J]. 滨州学院学报, 2009, 25(3): 79-82.

[28] Liang J P, Zhou X F, Zhao Z L, et al. Degradation of trimethoprim in aqueous by persulfate activated with nanosecond pulsed gas-liquid discharge plasma[J]. Journal of Environmental Management, 2021, 278: 11539.

[29] Ruan Y, Guo H, Li J, et al. Enhanced removal of toluene by pulse discharge plasma coupled with MgO cathode and graphene Mn–Ce bimetallic oxide[J]. Chemosphere, 2020, 258: 127334.

[30] 许根慧. 等离子体技术与应用[M]. 化学工业出版社, 2006.

[31] 王红涛, 吕永康. 介质阻挡放电等离子体/微曝气协同处理苯酚废水[J]. 工业水处理, 2015, 35(12): 67-70.

[32] 王莉, 喻泽斌, 李明樾, 等. 介质阻挡放电等离子去除PFOA的影响因素及机制研究[J]. 环境科学学报, 2015, 35(3): 764-772.

[33] 曹亚蒙. 低温等离子体-催化剂作用下苯的氨基化和羟基化行为研究[D]. 郑州大学, 2016.

[34] Jiang B, Zheng J, Qiu S, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236: 348-368.

[35] Tichonovas, M, Krugly E, Racys V,et al. Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment[J]. Chemical Engineering Journal, 2013, 229: 9-19.

[36] Tarkwa JB, Acayanka E, Jiang B, et al. Highly efficient degradation of azo dye Orange G using laterite soil as catalyst under irradiation of non-thermal plasma[J]. Applied Catalysis B: Environmental, 2019, 246: 211-220.

[37] Wang X, Zhang G, Liu X, et al. Effect of peroxydisulfate on the degradation of phenol under dielectric barrier discharge plasma treatment[J]. Chemosphere, 2019, 232: 462-470.

[38] 桑稳姣, 李志轩, 黄明杰. 羟胺强化过渡金属活化过硫酸盐降解磺胺甲恶唑[J]. 环境科学学报, 2019, 39(06): 52-60.

[39] Shang K F, Wang X J, Li J, et al. Synergetic degradation of Acid Orange 7 (AO7) dye by DBD plasma and persulfate [J]. Chemical Engineering Journal, 2016, 57(5): 1-7.

[40] Qi L H, Zuo G M, Cheng Z X, et al. Treatment of chemical warfare agents by combined sodium percarbonate with tetraacetylethylenediamine solution[J]. Chemical Engineering Journal, 2013, 229: 197-205.

[41] Lin K Y A, Lin J T, Lin Y F. Heterogeneous catalytic activation of percarbonate by ferrocene for degradation of toxic amaranth dye in water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017: 144-149.

[42] Yu S, Gu X, Lu S, et al. Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe(II)[J]. Chemical Engineering Journal, 2017, 333: 122-131.

[43] Iskander S M, Novak J T, Brazil B, et al. Percarbonate oxidation of landfill leachates towards removal of ultraviolet quenchers[J]. Environmental Science: Water Research & Technology, 2017, 3(6): 1162-1170.

[44] Wu S, Liu H, Lin Y, et al. Insights into mechanisms of UV/ferrate(VI) oxidation for degradation of phenolic pollutants: Role of superoxide radicals[J]. Chemosphere, 2019, 244: 125490.

[45] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238: 37-38.

[46] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8: 76-80.

[47] Kim J G, Park S M, Lee M E, et al. Photocatalytic co-oxidation of As(III) and Orange G using urea-derived g-C3N4 and persulfate[J]. Chemsphere, 2018, 212: 193-199.

[48] Teng Z Y, Yang N L, Lv H Y, et al. Edge-Functionalized g-C3N4 Nanosheets as a Highly Efficient Metal-free Photocatalyst for Safe Drinking Water. Chem, 5: 664–680.

[49] 谢治杰, 冯义平, 张钱新, 等. Z型MoO3/g-C3N4复合催化剂用于可见光降解萘普生的机制研究[J]. 环境化学, 2019, (8): 1724-1734.

[50] Akhundi A, Habibi-Yangjeh A. Novel magnetically separable g-C3N4/AgBr/Fe3O4 nanocomposites as visible-light-driven photocatalysts with highly enhanced activities[J]. Ceramics International, 2015, 41(4): 5634-5643.

[51] Li Y, Zhao Y, Fang L, et al. Highly efficient composite visible light-driven Ag–AgBr/g-C3N4 plasmonic photocatalyst for degrading organic pollutants[J]. Materials Letters, 2014, 126: 5-8.

[52] Zhang Y, Zhang Q, Shi Q, et al. Acid-treated g-C3N4 with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light[J]. Separation & Purification Technology, 2015, 142: 251-257.

[53] Wang W, Cheng H, Huang B, et al. Hydrothermal synthesis of C3N4/BiOIO3 heterostructures with enhanced photocatalytic properties[J]. Journal of Colloid and Interface Science, 2015, 442: 97-102.

[54] Li Y, Wu S, Huang L, et al. g-C3N4 modified Bi2O3 composites with enhanced visible-light photocatalytic activity[J]. Journal of Physics & Chemistry of Solids, 2015, 76: 112-119.

[55] Xia J, Di J , Yin S , et al. Solvothermal synthesis and enhanced visible-light photocatalytic decontamination of bisphenol A (BPA) by g-C3N4/BiOBr heterojunctions[J]. Materials Science in Semiconductor Processing, 2014, 24:96-103.

[56] Wang B, Dong B, Xu M, et al. Degradation of methylene blue using double-chamber dielectric barrier discharge reactor under different carrier gases[J]. Chemical Engineering Science, 2017, 168: 90-100.

[57] Sang W J, Cui J Q, Mei L J, et al. Degradation of liquid phase N,N-dimethylformamide by dielectric barrier discharge plasma: Mechanism and degradation pathways[J]. Chemosphere, 2019, 236: 124401.

[58] 武海霞, 林琳, 赵浩, 等. 介质阻挡放电处理苯胺废水的试验研究[J]. 西安建筑科技大学学报(自然科学版), 2012, 44(6): 892-897.

[59] Xue J, Chen L, Wang H. Degradation mechanism of Alizarin Red in hybrid gas-liquid phase dielectric barrier discharge plasmas: Experimental and theoretical examination[J]. Chemical Engineering Journal, 2008, 138(1-3): 120-127.

[60] Wang T, Qu G, Ren J, et al. Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system[J]. Journal of Hazardous Materials, 2016, 302: 65-71.

[61] Zhang G, Sun Y, Zhang C, et al. Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-rGO nanocomposite: mechanism and degradation pathway[J]. Journal of Hazardous Materials, 2016, 323: 719-729.

[62] Zhang H, Xu Z, Shen J, et al. Effects and mechanism of atmospheric-pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme[J]. Scientific Reports, 2015, 5: 10031.

[63] Zhu D, Jiang L, Liu R L, et al. Wire-cylinder dielectric barrier discharge induced degradation of aqueous atrazine[J]. Chemosphere, 2014, 117: 506-514.

[64] 刘行浩. 气液相等离子体协同石墨烯负载二氧化钛降解水中四环素研究[D]. 合肥工业大学, 2018.

[65] Zhang G, Sun Y, Zhang C, et al. Decomposition of acetaminophen in water by a gas phase dielectric barrier discharge plasma combined with TiO2-rGO nanocomposite: mechanism and degradation pathway[J]. Journal of Hazardous Materials, 2016, 323: 719-729.

[66] Madhavan J, Grieser F, Ashokkumar M. Degradation of orange-G by advanced oxidation processes[J]. Ultrasonics Sonochemistry, 2010, 17(2): 338-343.

[67] Peleg M. The chemistry of ozone in the treatment of water[J]. Water Research, 1976, 10(5): 361-365.

[68] Huang F, Chen L, Wang H, et al. Analysis of the degradation mechanism of methylene blue by atmospheric pressure dielectric barrier discharge plasma[J]. Chemical Engineering Journal, 2010, 162(1): 250-256.

[69] Chen G, Zhou M, Chen S, et al. The different effects of oxygen and air DBD plasma byproducts on the degradation of methyl violet 5BN[J]. Journal of Hazardous Materials, 2009, 172(2-3): 786-791.

[70] Chandana L, Manoj K R P, Subrahmanyam C. Atmospheric pressure non-thermal plasma jet for the degradation of methylene blue in aqueous medium[J]. Chemical Engineering Journal, 2015, 282: 116-122.

[71] Jin X, Xia Q, Zhang H, et al. The role of electrolyte constituents and metal ions on discoloration with contact glow discharge electrolysis[J]. IEEE Transactions On Plasma Science, 2011, 39(11): 3218-3221.

[72] 刘丹. 气相介质阻挡放电处理流动液相污染物的过程研究[D]. 浙江大学, 2018.

[73] 黄芳敏. 介质阻挡放电低温等离子体降解亚甲基蓝溶液及其体系气液相中活性粒子化学行为分析[D]. 华南理工大学, 2013.

[74] Timko SA, Romera-Castillo C, Jaffé R, et al. Photo-reactivity of natural dissolved organic matter from fresh to marine waters in the Florida Everglades, USA[J]. Environmental Science: Processes and Impacts, 2014, 16(4): 866-878.

[75] 邰超, 韩丹, 阴永光, 等. 二甲亚砜捕获-高效液相色谱测定天然水体中羟基自由基的光化学生成[J]. 环境化学, 2015, 34(2): 212-218.

[76] Zhu W, Sun F, Goei R, et al. Facile fabrication of RGO-WO3, composites for effective visible light photocatalytic degradation of sulfamethoxazole[J]. Applied Catalysis B Environmental, 2017, 207: 93-102.

[77] Bennedsen L R, Muff J, Sogaard E G. Influence of chloride and carbonates on the reactivity of activated persulfate[J]. Chemosphere, 2012, 86(11): 1092-1097.

[78] Caregnato P, Rosso J A, Soler J M, et al. Chloride anion effect on the advanced oxidation processes of methidathion and dimethoate: Role of Cl2 radical[J]. Water Research, 2013, 47(1): 351-362.

[79] Wang J L, Wang S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517.

[80] Zhang Q, Qu G, Wang T, et al. Humic acid removal from micro-polluted source water in the presence of inorganic salts in a gas-phase surface discharge plasma system[J]. Separation and Purification Technology, 2017, 187: 334-342.

[81] Atinault E, De W V, Schmidhammer U, et al. Scavenging of es- and ?OH radicals in concentrated HCl and NaCl aqueous solutions [J]. Chemcial Physics Letters, 2008, 460: 461-465.

[82] Yang Y, Pignatello J J, Ma J, et al. Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced Oxidation Processes (AOPs)[J]. Environmental Science & Technology, 2014, 48(4): 2344-2351.

[83] Buxton G V, Greenstock C L, Helman W P, et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (?OH/?O in Aqueous Solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17: 513-886.

[84] Mezyk S P, Bartels D M. Temperature Dependence of Hydrogen Atom Reaction with Nitrate and Nitrite Species in Aqueous Solution[J]. Journal of Physical Chemistry A, 1997, 101(35): 6233-6237.

[85] Black E D, Hayon E. Pulse radiolysis of phosphate anions H2PO4-, HPO42-, PO43-, and P2O74- in aqueous solutions[J]. Journal of Physical Chemistry, 1970, 74(17): 3199-3203.

[86] Liu C F, Huangb C P, Hu C C, et al. A dual TiO2/Ti-stainless steel anode for the degradation of orange G in a coupling photoelectrochemical and photo-electro-Fenton system[J]. Science of The Total Environment, 2019, 659: 221-229.

[87] Almeida L C, Silva B F, Zanoni M. Photoelectrocatalytic/photoelectro-Fenton coupling system using a nanostructured photoanode for the oxidation of a textile dye: Kinetics study and oxidation pathway[J]. Chemosphere, 2015, 136: 63-71.

[88] Tang S F, Yuan D L, Rao Y D, et al. Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water[J]. Chemical Engineering Journal, 2017, 337: 456-454.

[89] Tang S F, Yuan D L, Rao Y D, et al. Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma[J]. Journal of Hazardous Materials, 2019, 366: 669-676.

[90] Zheng L, Deng Y. Settleability and characteristics of ferrate(VI)-induced particles in advanced wastewater treatment. Water Research, 2016, 93: 172-178.

[91] Wu J L, Xiong Q, Liang J L, et al. Degradation of benzotriazole by DBD plasma and peroxymonosulfate: Mechanism, degradation pathway and potential toxicity[J]. Chemical Engineering Journal, 2020, 384: 123300.

[92] Wardenier N, Gorbanev Y, VanMoer I, et al. Removal of alachlor in water by non-thermal plasma: Reactive species and pathways in batch and continuous process[J]. Water Research, 2019, 161: 549-559.

[93] Liu X W, Li W Q, Hu R, et al. Synergistic degradation of acid orange 7 dye by using non-thermal plasma and g-C3N4/TiO2: Performance, degradation pathways and catalytic mechanism[J]. Chemosphere, 2020, 249: 126093.

[94] Yan S C, Li Z S, Zou Z G. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine[J]. Langmuir, 2009, 25(17): 10397-10401.

[95] Zhang G C, Zhang J S, Zhang M W, et al. Polycondensation of thiourea into carbon nitride semiconductorsas visible light photocatalysts[J]. Journal of Materials Chemistry, 2012, 22(16): 8083 -8091.

[96] Dong F, Wang Z, Sun Y, et al. Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity[J]. Journal of Colloid Interface, 2013, 401: 70-79.

[97] 李善评. 利用低温等离子体技术处理水中难降解有机污染物的研究[D]. 山东大学, 2016.

[98] Mok Y S, Jo J O, Whitehead J C. Degradation of an azo dye Orange II using a gas phase dielectric barrier discharge reactor submerged in water[J]. Chemical Engineering Journal, 2008, 142(1): 56-64.

中图分类号:

 X703.1    

条码号:

 002000062436    

馆藏号:

 TD10051606    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式