- 无标题文档
查看论文信息

中文题名:

 硫氰丙基功能化二氧化硅空心微球的制备及吸附性能研究    

姓名:

 江杨    

学号:

 1049721101877    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081704    

学科名称:

 应用化学    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 化学化工与生命科学学院    

专业:

 应用化学    

研究方向:

 有机/无机杂化材料    

第一导师姓名:

 陈连喜    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-04-08    

答辩日期:

 2015-05-19    

中文关键词:

 硫氰基 ; 二氧化硅 ; 空心微球 ; 硬模板 ; 介孔    

中文摘要:

      空心微球指内部中空,壳体表面含有或者没有孔的一类微球。二氧化硅由于其具有低毒性、物理、化学稳定性、原料来源广泛等特点,是制备空心微球的首选材料之一。功能化改性后的二氧化硅空心微球,除了具备普通空心微球的高比表面积、内部空腔大等优点,还具有功能基团带来的特殊性能,如专一性、选择性、吸附量增大等优势。功能化二氧化硅空心微球由于其自身的优良特性,已经被广泛地应用于药物负载、水体中的重金属吸附、生物大分子的负载等领域。本论文主要工作包括以下内容:
      1)以聚苯乙烯(PS)为硬模板制备硫氰丙基功能化二氧化硅空心微球。以PS微球为硬模板,硫氰丙基三乙氧基硅烷(TCPTES)为前驱体,水/乙醇混合溶液为分散介质,在氨水的催化下,TCPTES 在PS 微球表面进行水解缩合反应,然后通过四氢呋喃溶解PS 微球,最终制备出硫氰丙基功能化二氧化硅空心微球(TC-HSSs)。通过扫描电镜(SEM)、透射电镜(TEM)、热重(TG)、红外光谱(FT-IR)、全自动比表面积及孔隙度分析仪(ASAP)等手段对所制备的TC-HSSs 的结构和
性能进行了研究。实验结果表明,所制TC-HSSs 的最佳条件是:氨水体积为1.5 mL,反应温度为50 ℃,PS/TCPTES 的比值为1/16。最佳条件下所制备的TC-HSSs粒径为784 nm,壁厚为117 nm,比表面积为8.0187 m~2/g,孔径主要分布在1-3 nm 范围内,孔体积为0.018871 cm~3/g,且分散性较好。
      2)双模板法制备硫氰丙基功能化二氧化硅空心微球。在乙醇/水介质中,以分散聚合法制备的PS 微球为模板,十六烷基三甲基溴化铵(CTAB)为共模板,TCPTES 为前驱体,氨水为催化剂,通过一步法功能化的方法,成功地制备了TC-HSSs。通过SEM、TEM、TG、FT-IR、ASAP 等手段对所制备的TC-HSSs 的结构和性能进行了研究。实验结果表明,制备TC-HSSs 的最佳条件是:氨水体积为1.5 mL,反应温度为50 ℃,PS/TCPTES 的比值为1/12,CTAB 的用量为0.2
g。所制备TC-HSSs 粒径在710-810 nm 范围,壁厚在70-120 nm 范围。最佳条件下制备的TC-HSSs 的比表面积为152 m~2/g,孔径主要分布在3-7 nm 范围内,孔体积为0.74 cm~3/g,且分散性较好。
       3)功能化空心微球吸附二价镉离子的研究。以共模板法制备的TC-HSSs 作为吸附材料,并研究了吸附时间、反应溶液pH 值、金属离子的初始浓度、重复利用次数等因素对吸附量的影响。研究结果表明:吸附在160 min 时,即可达到饱和,Cd~2+ 离子浓度在80-100 mg/L、pH 值在5-7 范围内吸附效果最佳。研究亦发现在进行了7 次吸附之后,吸附剂对Cd~2+离子的吸附量仍为首次吸附量的56 %。

参考文献:

[1] Caruso F. Hollow capsule processing throu-

gh colloidal templating and self-assembly[J].

Chemistry-A European Journal, 2000, 6(3): 413-419.

[2] Caruso F. Nanoengineering of particle surfaces[J]. Advanced Materials, 2001, 13(1): 11-22.

[3] 马光辉. 高分子微球材料[M]. 北京:化学工业出版社, 2005: 49-60.

[4] Crotts G, Park T G. Preparation of porous and nonporous biodegradable polymeric hollow

microspheres [J]. Journal of Controlled Relea-

se, 1995, 35(2): 91-93.

[5] Ren T Z, Yuan Z Y, Su B L. Surfactant-assisted preparation of hollow microspheres of

mesoporous TiO2[J]. Chemical Physics Letters, 2003, 374(1-2): 170-172.

[6] Kato T, Ushijima H, Katsumata M. Fabrica-

tion of hollow alumina microspheres via core/

shell Structure of polymethylmethacrylate/alu-

mina prepared by mechanofusion[J]. Journal of Materials Science, 2002, 37(11): 2317-2320.

[7] Jiang Y J, Zhao J Z. Synthesis of stable hollow spheres of Si/Al composite oxide with

controlled pore size in the shell wall [J]. Materials Letters, 2004, 58(19): 2401-2403.

[8] 何敏, 冉海涛, 马明, 等. 超声介导DNA门控空心介孔二氧化硅纳米粒的药物释放[J]. 中国医学影像技术, 2015, 31(2): 191-195.

[9] Fan H T, Pan J H, Zhao X S, et al. Sol–gel synthesis, microstructure and adsorption properties of hollow silica spheres[J]. Mater-

ials Letters, 2011, 65(12): 1811-1814.

[10] Melero J A, Rafael G, Gabriel M, et al. Acidic mesoporous silica for the acetylation of glycerol: Synthesis of bioadditives to petrol fuel[J]. Energy and Fuels, 2007, 21(3): 1782-1791.

[11] Gao J S, Chen J J, Li X N, et al. Azide-functionalized hollow silica nanospheres for removal of antibiotics[J]. Journal of Colloid and Interface Science, 2015, 444: 38-41.

[12] Yang D,Xu Y,Wu D, et al. Super hydropho-

bic mesoporous silica with anchored methyl groups on the surface by a one-step synthesis without surfactant template[J]. The Journal of Physical Chemistry. C, 2007, 111(2): 999-1004.

[13] Li L, Ding J, Xue J M. Macroporous silica hollow microspheres as nanoparticle collectors[J]. Chemistry of Materials, 2009, 21(15): 3629-3637.

[14] Zhu Y F, Kockrick E, Ikoma T, et al. An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates[J]. Chemistry of Materials,2009, 21(12): 2547-2553.

[15] 黄玉安, 秦安川, 杭祖圣, 等. 单分散镀镍/银三聚氰胺甲醛树脂微球制备与表征[J]. 南京大学学报(自然科学), 2014, 50(1): 54-60.

[16] Chen J F, Ding H M, Wang J X, et al.

Preparation and characterization of porous hollow silica nanoparticles for drug delivery application[J]. Biomaterials, 2004, 25(4), 723-727.

[17] Le Y, Pu M, Chen J F. Theoretieal and experimental studies on the silica hollow spheres[J]. Journal of NonCrystalline Solids, 2007, 353(2): 164-169.

[18] Kim S J, Ah C S, Jang D J. Optieal fabri-

eation of hollow platinum anospheres by excavating the silver core of Ag@Pt nanonart-

ieles[J]. Advanced Materials, 2007, 19(8): 1064-1068.

[19] Zhao W, Gu J, Zhang L, et al.Fabrication of uniform magnetic nanocomposite spheres with

a magnetic core mesoporous silica shell structure[J]. Journal of the American Societ-

y, 2005, 127(25): 8916-8917.

[20] Chen M, Wu L M, Zhou S X, et al. A method for the fabrication of monodisperse hollow silica spheres[J].Advanced Materials, 2006, 18(6): 801-806.

[21] Huang C C, Huang W, Yeh C S. Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery[J]. Biomaterials, 2011, 32(2): 556-564.

[22] 曾文, 徐宏, 古宏晨. 氧化硅空心微球的制备及表面形貌的调控[J]. 动能材料, 2008, 39(6): 975-978.

[23] 房洪杰, 刘慧, 闫芳, 等. 以三聚氰胺甲醛微球为模板制备介孔二氧化硅和二氧化钛空心微球[J]. 硅酸盐学报, 2015, 43(2): 215-221.

[24] Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Science Magazine, 1998, 5391(282): 1111-1114.

[25] 杨晓玲, 朱以华, 朱孟钦, 等. 纳米结构的空腔二氧化硅微球的制备与缓释行为[J]. 无机材料学报, 2005, 20(6): 1403-1408.

[26] Esser-Kahn A P, Odom S A, Sottos N R, et al. Triggered Release from Polymer Capsules[J]. Macromolecules, 2011, 44(14): 5539-5553.

[27] Abuin E, Scaiano J. Exploratory study of the effect of polyelectrolyte surfactant aggregates on photochemical behavior[J]. Journal of the American Chemical Society, 1984, 106(21): 6274-6283.

[28] Nomura T, Morimoto Y, Ishikawa M, et al. Synthesis of hollow silica microparticles from

bacterial templates[J]. Advanced Powder Technology, 2010, 21(2): 8-12.

[29] Wang Z X, Chen M, Wu L M. Synthesis of monodisperse hollow silver spheres using phasetransformable emulsions as templates[J]. Materials Chemistry, 2008, 20(10): 3251-3253.

[30] Sun X, Li Y. Hollow carbonaceous capsules from glucose solution[J]. Journal of Colloid and Interface Science, 2005, 291(1): 7-12.

[31] Xu H L, Wang W Z. Template synthesis of multishelled Cu2O hollow spheres with a singlecrystalline shell wall[J]. Angewandte Chemie(International Edition in English), 2007,46(9): 1489-1492.

[32] Joncheray T J, Audebert P, Schwartz E, et al. Electrochemical and spectroscopic characteration of organic compound uptake in silica core shell nanocapsules[J]. Langmuir, 2006, 22(21): 8684-8689.

[33] Blin J L, Leonard A, Yuan Z Y, et al. Hierarchically mesoporous-macroporous metal oxides templated from polyoxyethylene oxide surfactant assemblies[J]. Angewandte Chemie

(International Edition in English), 2003, 115(25): 2878-2881.

[34] Vilanova N, Kolen’ko Y V, Solans C, et al. Multiple emulsions as soft templates for the synthesis of multifunctional silicone porous particles[J]. Journal of Colloid and Interface Science, 2015,437: 235-243.

[35] 万义玲, 张琪, 麦东彬, 等. 新型保温建筑涂料用微胶囊仿瓷乳液的制备[J]. 涂料工业, 2011, 41(6): 39-45.

[36] Li B, Xie Y, Jing M, et al. In2O3 hollow microspheres: synthesis from designed In(OH)3

precursors and applications in gas sensorsand photocatalysis[J]. Langmuir, 2006, 22(22):

9380-9385.

[37] Lou X W, Archer A L, Yang Z C. Hollow micro/nanostructures:Synthesis and applicat-

ions[J].Advanced Materials, 2008, 21(20): 3987-4019.

[38] Xie B, Shi H F, Liu G M,et al.

Preparation of surface porous microcapsules template by selfassembly of nonionic surfac-

tant micelles[J]. Chemistry of Materials, 2008, 20(9): 3099-3104.

[39] Liu D, Sasidharan M, Nakashima K. Micelles of poly(styrene-b-2-vinylpyridine-b-ethylene oxide) with blended polystyrene core and their application to the synthesis of hollow silica nanospheres[J]. Journal of Colloid and Interface Science, 2011, 358(2): 354-359.

[40] 张博, 任天瑞, 吴青海, 等. 以集胞藻6803为生物模板制备二氧化硅中空微球[J]. 过程工程学报, 2011, 11(1): 107-112.

[41] Corine T P, Sylvie B, Dan A L, et al. Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system[J]. Journal of sol-gel scien-

ce and technology, 2012, 61(3): 455-462.

[42] 张娟, 王晴, 李艺, 等. 以手性两亲小分子自组装体为模板制备介孔二氧化硅空心球[J].化学研究, 2014, 25(3): 280-283.

[43] Zhang Q, Wang W S, Goebl J, et al. Self-templated synthesis of hollow nanostructures[J]. Nano Today, 2009, 4(6): 494-507.

[44] Zhu H T, Wang J X, Xu G Y. Fast synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus[J]. Crystal Growth & Design, 2009, 9(1):

633-638.

[45] Zhang T R, Ge J P, Hu Y X, et al. Format-

ion of hollow silica colloids through a

spontaneous dissolution–regrowth process[J]. Angewandte Chemie(International Edition in

English), 2008, 47(31): 5806-5811.

[46] Zhang Q, Zhang T R, Ge J P, et al. Permeable silica shell through surface-protected etching[J]. Nano Letters, 2008, 8(9): 2867-2871.

[47] Chen B D, Li L L, Tang F Q. Facile and scalable synthesis of tailored silica

“Nanorattle” structures[J]. Advanced Materials, 2009, 37(21): 3804-3807.

[48] Hu Y X, Zhang Q, Goebl J, et al. Control over the permeation of silica nanoshells by surfaceprotected etching with water[J]. Physi-

cal Chemistry Chemical Physics, 2010, 38(12): 11836-11842.

[49] 方少明, 康华魁, 王培远, 等. 磺酸功能化介孔材料的合成及催化性能研究[J]. 化工新型材料, 2014, 42(8): 43-45.

[50] 郭风, 朱桂茹, 高从堦.氰基功能化介孔二氧化硅的制备与表征[J]. 无机材料学报, 2012,27(2): 134-138.

[51] Hu H, Zhou H, Liang Jie, et al. Facile synthesis of amino-functionalized hollow silica microspheres and their potential appli-

cation for ultrasound imaging[J]. Journal of Colloid and Interface Science, 2011, 358(2): 392-398.

[52] 李丽颖, 王金桂, 孙平川, 等. 以阴离子多肽为模板合成二氧化硅纳米空心球[J]. 物理化学学报, 2008, 24(3): 359-363.

[53] Pal N, Bhaumik A. Soft templating strate-

gies for the synthesis of mesoporous

materials:Inorganic, organic–inorganic hybrid and purely organic solids[J]. Advances in

Colloid and Interface Science, 2013, 189-190: 21-24.

[54] Hoffmann F, Cornelius M, Morell J, Fr?ba M. Silica-based mesoporous organic-inorganic

hybrid materials[J]. Angewandte Chemie(International Edition), 2006, 20(45): 3216-3251.

[55] 姜娈, 冯国栋, 杨百勤. 酰肼基化磁性二氧化硅微球的制备与表征[J]. 应用化工, 2013, 42(6): 1020-1022.

[56] 徐慧, 颜文晶, 张鹏华, 等. 氨基改性Fe3O4@SiO2核壳结构的DNA吸附特性[J]. 中南大学学报(自然科学版), 2012, 43(1): 100-104.

[57] 伍宏玉, 张友玉, 李海涛. 介孔二氧化硅的扩孔及其氨基功能化[J]. 化学研究与应用, 2011, 23(11): 1441-1446.

[58] Pagliaro M, Ciriminna R. New fluorinated functional materials[J]. Journal of Materials

Chemistry, 2005, 47(15): 4981-4991.

[59] Dong F, Guo W, Chu S W, et al. Novel fluorinated polysilsesquioxane hollow spheres:

synthesis and application in drug release[J]. Chemical Communications, 2010, 46(40): 7498-

7500.

[60] 王晓艳, 黄玉玲, 刘文波, 等. 乙烯基化的中空二氧化硅球的制备与表征[J]. 分子科学学报, 2013, 29(4): 320-323.

[61] Pu H T, Zhang X, Yuan J J, et al. A facile method for the fabrication of vinyl functionalized hollow silica spheres[J]. Journal of Colloid and Interface Science, 2009, 331(2): 389-393.

[62] Yuan J J, Wan D C, Yang Z L. A facile method for the fabrication of thiol-functiona-

lized hollow silica spheres[J]. The Journal of Physical Chemistry. C, 2008, 112(44): 17156-17160.

[63] Dong F, Guo W, Park S K, et al. Controlled synthesis of novel cyanopropyl polysilsesquioxane hollow spheres loaded with highly dispersed Au nanoparticles for catalyt-

ic applications[J]. Chemical Communications, 2012, 48(8): 1108-1110.

[64] Najafi M, Yousefi Y, Rafati A A. Synthes-

is, characterization and adsorption studies of several heavy metal ions on amino-functio-

nalized silica nano hollow sphere and silica gel[J]. Separation and Purification Technolo-

gy, 2012, 85: 193-205.

[65] Dong F P, Guo W P, Park S S, et al. Uniform and monodisperse polysilsesquioxane hollow spheres: synthesis from aqueous solut-

ion and use in pollutant removal[J]. Journal of Materials Chemistry, 2011, 29(21): 10744-10749.

[66] Hayashi K, Nakamura M, Ishimura K. In situ synthesis and photoresponsive rupture of

organosilica nanocapsules[J]. Chemical Communications, 2011, 47(5): 1518-1520.

[67] Demirbas A, Pehlivan E, Gode F, et al. Adsorption of Cu (II), Zn (II), Ni (II), Pb (II), and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin [J]. Journal of Colloid and Interface Science, 2005, 282(1): 20-25.

[68] Li D X , Ni C Y, Chen M M , et al. Const-

ruction of Cd (II) coordination polymers used as catalysts for the photodegradation of orga-

nic dyes in polluted water [J].

CrystEngComm., 2014, 16, 2158-2167.

[69] Yang S B, Hu J, Chen C L, et al. Mutual effects of Pb (II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylami-

de composites from aqueous solutions [J]. Environmental Science & Technology, 2011, 45(8): 3621-3627.

[70] Babel S, Kurniawan T A. Low-cost adsorb-

ents for heavy metals uptake from contaminate-

d water:a review[J].Journal of Hazardous Mate-

rials, 2003, 97(1): 219-243.

[71] Fu F L , Wang Q . Removal of heavy metal ions fr om wastew aters : A review[J]. Journ-

al of Environmental Management, 2011, 92(3): 407-418.

[72] Chen C, Wang J L. Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueoussolution by brewery's

waste biomass[J]. Journal of Hazardous Materials, 2008, 151(1):65-70.

[73] Bayramoglu G, Arica M Y. Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets[J]. Chemical Enginee-

ring Journal, 2008, 143(1): 133-140.

[74] Kang K C, Kim S S, Choi J W, et al. Sorption of Cu2+ and Cd2+ onto acid and base-pretreated granular activated carbon and acti-

vated carbon fiber samples[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(1):131 -135.

[75] 张帆贺, 盛福, 彭志远, 等. 处理含铅废水的现状及研究进展[J]. 化学通报, 2015, 78(5): 421-426.

[76] Charerntanyarak L. Heavy metals removal by chemical coagulation and precipitation[J].

Water Science and Technology, 1999, 39(10-11): 135-138.

[77] Kurniawan T A, Chan G Y S, Lo W H, et al. Physico-chemical treatment techniques for

wastewater laden with heavy metals [J]. Chemi-

cal Engineering Journal, 2006, 118(1): 83-98.

[78] 孙秀云, 马芳变, 施筱堃, 等. 粉煤灰合成介孔分子筛SBA-15 对Pb(Ⅱ)离子的吸附[J].中南大学学报(自然科学版), 2014, 45(11): 4093-4099.

[79] 魏建文, 介孔二氧化硅改性及其吸附CO2研究[D]. 浙江大学博士学位论文, 2008.

[80] Aklil A, Mouflihb M, Sebti S. Removal of heavy metal ions from water by using calcined

phosphate as a new adsorbent [J], Journal of Hazardous Materials, 2004, 112(3): 183-190.

[81] Mohammadi T, Mohebb A, Sadrzadeh M, et al, Modeling of metal ion removal from waste-

water by electrodialysis[J], Separation and Purification Technology, 2005, 41(1): 73-82.

[82] Barakat M A, Chen Y T, Huang C P. Remov-

al of toxic cyanide and Cu(II) ions from wat-

er by illuminated TiO2 catalyst[J]. Applied Catalysis B: Environmental, 2004, 53(1) :13-20.

[83] Kajitvichyanukula P, Ananpattarachaia J, Pongpom S. Sol-gel preparation and properties

study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis

process[J]. Science and Technology of Advanc-

ed Materials, 2005, 6: 352-358.

[84] 廖庆玲, 曾黎明, 郭峰, 等. 功能化MCM-41的制备及对重金属离子的吸附研究[J]. 水处理技术, 2013, 3(4): 49-52.

[85] Yang Hong, Xu Ran, XueXiaoming, et al. Hybrid surfactant-templated mesoporous silica

formed in ethanol and its application for heavy metal removal[J]. Journal of Hazardous

Materials, 2008, 152(2): 690-698.

[86] 薛晓明, 李风亭, 喻本宏. 功能化介孔吸附剂的制备及其对银离子吸附性能的研究[J]. 材料导报, 2008, 22(21): 375-378.

[87] Jiang Y, Gao Q, Yu H, et al. Intensively competitive adsorption for heavy metal ions by

PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic-organic hybrid materials[J]. Microporous and Mesoporous Materials, 2007, 103(1-3): 316-324.

[88] Li J, Qi T, Wang L, et al. Synthesis and characterization of imidazole-functionalized SBA-15 as an adsorbent of hexavalent chromium [J]. Materials Letters, 2007, 61(14-15): 3197-3200.

[89] Gao X Q, He J, Deng L, et al. Synthesis and characterization of functionalized rhoda-

mine B-doped silica nanoparticles[J]. Optical Materials, 2009, 31(4): 1715-1719.

[90] Ji X, Hu Q, Hampsey J E, Qiu X P, et al. Synthesis and characterization of functional-

ized mesoporous silica by aerosol-assisted self-assembly[J]. Chemistry of Materials, 2006, 18(9): 2265-2274.

[91] 马雪慧, 王乐善, 赵彦保. 中空纳米二氧化硅微球的制备及表征[J]. 无机化学学报,2009, 25(6): 1091-1096.

[92] Chen Y, Chen H R, Zeng D P, et al. Core/Shell structured hollow mesoporous nano-

capsules:a potential platform for simultane-

ous cell imaging and anticancer drug delivery[J]. ACS Nano., 2010, 10(4): 6001-6013.

[93] 李春霞, 涂家生, 张鹏华, 等. 基于介孔二氧化硅的利培酮缓释片的制备及其溶出特性[J].中国新药杂志, 2015, 24(1): 79-84.

[94] Niu D C, Ma Z, Li Y S, et al. Synthesis of core-shell structured dual-mesoporous sil-

ica spheres with tunable pore size and contro-

llable shell thickness[J]. Journal of The American Chemical Society, 2010, 132(43): 15144-15147.

[95] Cheng X J, Li J P, Li X H, et al. A highly sensitive sensor based on hollow parti-

cles for the detection,adsorption and removal of Hg2+ ions[J]. Journal of Materials Chemis-

try, 2012, 45(22): 24102-24108.

[96] Wang C L, Yan J T, Li Z F, et al. Invest-

igation on raspberry-like magnetic-hollow silica nanospheres and its preliminary applic-

ation for drug delivery[J]. Journal of nanopa-

rticle research, 2013, 15(9): 1-14.

[97 ] 王春风, 吴纲,花曼曼, 等. 含氟纳米二氧化硅填料的制备及其氟释放性能研究[J].医学研究生学报, 2015, 28(1): 25-27.

[98] 郝晓红, 张翠妙, 刘小龙, 等. 基于介孔二氧化硅的多功能纳米药物输送体系研究进展[J].生物化学与生物物理进展, 2013, 40(10): 1014-1022.

[99] 戴梦炜, 王芸, 潘茂植, 等. 空心/多孔微球制备技术研究进展[J]. 材料导报A: 综述篇, 2013, 27(3): 80-85.

[100] Wang D P, Zeng H C. Creation of interi-

or space, architecture of shell structure, and encapsulation of functional materials for mesoporous SiO2 spheres[J]. Chemistry of Mate-

rials, 2011, 23(22): 4886-4899.

[101] 陈凯玲, 赵蕴慧, 袁晓燕. 二氧化硅粒子的表面化学修饰—方法、原理及应用[J]. 化学进展, 2013, 25(1): 95-104.

[102] 何晓燕, 刘志荣, 范富红, 等. 负载钯纳米粒子聚电解质空心微球的制备及其还原对硝基苯酚的催化活性[J]. 应用化学, 2015, 32(3): 310-316.

[103] Xu Z M, Wang Y X. Hollow ZnO/Zn2SiO4/

SiO2 sub-microspheres with mesoporous shells:

synthesis, characterization, adsorption and photoluminescence[J]. Journal of Alloys and

Compounds, 2013, 555: 268-273.

[104] Yin Y B, Wei G M, Zou X Y,et al. Functi-

onalized hollow silica nanospheres for His-tagged protein purification[J]. Sensors and Actuators B: Chemical, 2015, 209: 701-705.

[105] 唐倩倩, 袁丽, 杨东,等. 二硫键修饰的介孔二氧化硅微球的制备与表征[J]. 化学学报, 2010, 68(17): 1925-1929.

[106] Wang J J, Xiao W, Wang J Q, et al. Holl-

ow mesoporous silica spheres synthesized with cationic and anionic mixed surfactant as temp-

lates[J]. Materials Letters, 2015,142:269-272.

[107] Darbandi M, Thomann R, Nann T. Hollow Silica Nanospheres: In situ, Semi-In situ, and

Two-Step Synthesis[J]. Chemistry Materials, 2007, 19(7) : 1700-1703.

[108] 朱勇, 葛涌涛, 陈晓峰. 对杀菌剂二硫氰基甲烷分解的测定[J]. 净水技术, 1994, (3): 29-32.

[109] 黄芳婷. 多粒径单分散聚苯乙烯微球的制备及其受控组装[D]. 扬州:扬州大学, 2011

[110] 蔺玉胜, 宋彩霞, 魏文阁, 等.空心球壳材料的制备研究进展[J]. 材料导报, 2004, 18(9): 24-26.

[111] 王宇航, 张秋禹, 马明亮, 等.多孔聚合物微球成孔技术的最新研究进展[J]. 材料导报:综述篇, 2011, 25(6): 88-92.

[112] 解林艳, 李群艳, 王志宏, 等. 介孔SiO2/Fe3O4 中空磁性复合微球的制备与表征[J]. 无机化学学报, 2010, 26(10): 1756-1760.

[113] Wei M Y, Van Oers C J, Hao X P, et al. Influence of silica forming media on the synthesis of hollow silica microspheres[J]. Microporous and Mesoporous Materials, 2011, 138(1): 17-27.

[114] Zhang S G, Xu L, Liu H C, et al. A dual template method for synthesizing hollow silica

spheres with mesoporous shells[J]. Materials Letters, 2009, 63(2): 258-259.

[115] Liu S Q, Wei M Y, Rao J C, et al. A con-

trolled formation of cagelike nanoporous holl-

ow silica microspheres[J]. Materials Letters, 2011, 65(13): 2083-2085.

[116] Wang S N, Zhang M C, Wang D, et al. Synthesis of hollow mesoporous silica micro-

spheres through surface sol-gel process on polystyrene-co-poly(4-vinylpyridine) core-shell microspheres[J]. Microporous and Mesoporous Materials, 2011, 139(1-3): 1-7.

[117] Shi F Z, Li Y G, Wang H Z, et al. Formation of core/shell structured polysty-

rene/anatase TiO2 photocatalyst via vapor phase hydrolysis[J]. Applied Catalysis B: Env-

ironmental, 2012, 123-124: 127-133.

[118] Jin C, Han L. Synthesis of a DNA-Silica Complex with a Rare Two-Dimensional-Square

p4mm Symmetry[J]. Angewandte Chemie-International Edition, 2009, (48): 9268-9272.

[119] 冯冬燕, 孙怡然, 于飞, 等. 石墨烯及其复合材料对水中重金属离子的吸附性能研究[J]. 功能材料, 2015, 46(3): 3009-3015.

[120] 孙胜玲, 王丽, 吴瑾, 等. 壳聚糖及其衍生物对金属离子的吸附研究(上)[J]. 高分子通报, 2013, 5: 58-68.

[121] 左卫元, 仝海娟, 史兵方. 改性活性炭对废水中铬离子的吸附[J]. 环境工程学报, 2015, 9(1): 45-50.

[122] Zheng H M, Hu D H, Zhang L, et al. Thiol functionalized mesoporous silicas for selective adsorption of precious metals[J]. Minerals Engineering, 2012, (35): 20-26.

[123] Li G L, Zhao Z S, Liu J Y, et al. Eff-

ective heavy metal removal from aqueous syst-

ems by thiol functionalized magnetic mesopor-

ous silica[J]. Journal of Hazardous Materia-

ls, 2011, 192(1): 277-283.

[124] Hao S Y, Zhong Y J, Pepe F, et al. Ads-

orption of Pb2+ and Cu2+ on anionic surfactan-

ttemplated amino-functionalized mesoporous silicas[J]. Chemical Engineering Journal, 2012, 189-190: 160-167.

[125] El-Toni A M, Habila M A, Ibrahim M A, et al. Simple and facile synthesis of aminof-

unctionalized hollow core-mesoporous shell silica spheres using anionic surfactant for Pb(II),Cd(II), and Zn(II)adsorption and recovery[J]. Chemical Engineering Journal, 2014,251: 441-451.

[126] Li M, Li M Y, Feng C G,et al. Preparat-

ion and characterization of multicarboxylfunc-

tionalize silica gel for removal of Cu (II), Cd(II), Ni (II) and Zn (II) from aqueous solution[J]. Applied Surface Science, 2014, 314: 1063-1069.

中图分类号:

 TQ424.26    

馆藏号:

 TQ424.26/1877/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式