- 无标题文档
查看论文信息

中文题名:

 

热-力-化耦合条件下可陶瓷化酚醛复合材料的烧蚀机理

    

姓名:

 朱笛    

学号:

 104971190054    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080500    

学科名称:

 工学 - 材料科学与工程    

学生类型:

 博士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 复合材料    

第一导师姓名:

 黄志雄    

第一导师院系:

 材料科学与工程学院    

完成日期:

 2023-09-28    

答辩日期:

 2023-09-22    

中文关键词:

 

酚醛树脂基烧蚀材料 ; 硼酚醛树脂 ; 烧蚀过程 ; 失效机制

    

中文摘要:

可瓷化酚醛树脂基烧蚀材料主要由聚合物基体、增强纤维和功能填料组成。与其它热防护材料相比,酚醛树脂基烧蚀材料具有比强度大、低密度、低导热系数的特点,同时其成型周期较短,结构与功能具有高度可设计性,轻质高强的特点适合航天飞行器大面积使用的要求。目前对酚醛树脂基烧蚀材料的研究主要集中在提高烧蚀性能的配方研究与烧蚀性能的优化上,有关其烧蚀模型与烧蚀机理方面的研究较少,对聚合物基烧蚀型热防护材料的烧蚀过程尚不明确,可陶瓷化硼酚醛树脂基烧蚀材料的热解失效机制还需要进一步的研究。研究可瓷化酚醛树脂基复合材料的烧蚀历程,探索对复合材料耐烧蚀性能影响的关键因素,对可陶瓷化硼酚醛树脂基烧蚀材料的烧蚀性能的提升具有理论指导意义。因此,本文结合酚醛树脂基烧蚀材料的烧蚀环境,以酚醛树脂基烧蚀材料烧蚀过程中热分解、陶瓷化、热氧化反应过程中的烧蚀结构、组成的演变为核心,系统研究了热-力-化耦合条件下可瓷化酚醛树脂基烧蚀材料的烧蚀特性。

采用ZrSi2及B4C作为功能填料,制备了不同ZrSi2、B4C含量的ZrSi2/B4C-Ph复合材料。分析了复合材料密度、热稳定性、耐烧蚀性能等与复合材料配方之间的关系。复合材料中ZrSi2及B4C的含量分别为40、20 phr时,复合材料密度为1.43 g/cm3,1200 ℃时的热残余率为57.21%,线烧蚀率与质量烧蚀率分别为0.025 mm/s、0.044 g/s。

在氧-乙炔火焰烧蚀下,按靠近热流方向复合材料依次可分为四层结构:烧蚀表层、陶瓷层、热解层、原始层。由复合材料原始层至热解层,仅发生了复合材料树脂基体的热解,陶瓷填料尚未达到其热氧化等反应温度,未发生物相转变;由复合材料热解层至陶瓷层,复合材料中有机组份逐渐消失并转变为无定形碳,同时陶瓷填料发生了一系列陶瓷化反应,生成了SiO2、B2O3、ZrB2等物相;由复合材料陶瓷层至烧蚀表层,复合材料中树脂基体热解产生的PyC逐渐消失,产生的陶瓷物相在氧-乙炔火焰的烧蚀下发生了热氧化反应,原位生成SiC、ZrO2等物相,并在复合材料烧蚀表面生成大量液相物质。

热-化学耦合条件下复合材料的热分解过程中,树脂分子中的部分亚甲基首先发生断裂,生成苯酚及其衍生物的同时产生了亚甲基自由基、活性氢等。随后,苯酚及其甲基衍生物中的酚羟基受热产生羟基自由基,与亚甲基、羟甲基发生反应,生成醛类和羧酸类化合物。最后,通过一系列的开环反应和重排反应,复合材料的结构逐渐转变为长链烯烃结构。随着温度的进一步升高,最终逐渐转变为无定形碳。同时释放出H2、CH4、H2O、C2H4、CO、CO2等小分子气体。复合材料热失重的主要原因是CO和H2O的释放。ZrSi2和B4C能够与树脂热解产物发生反应,生成B2O3、SiO2、ZrO2等固相物质,提高复合材料的热稳定性。ZrSi2比B4C更易与复合材料热解气体发生反应。并得到了硼酚醛树脂及酚醛树脂基复合材料的热分解反应动力学方程。

复合材料热解层陶瓷化反应发生在850 ℃以上。温度的升高有利于陶瓷化反应的自发进行。酚醛树脂基复合材料热解层的陶瓷化反应包括长链烯烃脱氢,热解碳、ZrSi2、B4C、SiO2间的相互反应,最终生成由C、ZrSi2、B4C、SiO2、ZrB2、SiC组成的复合材料陶瓷层结构。并得到了复合材料热解层陶瓷化反应力学方程。

热-化学耦合条件下复合材料陶瓷层热氧化反应涉及复合材料陶瓷层中的ZrB2、SiC、C、ZrSi2、B4C与烧蚀环境中的O2、CO2之间的反应。在O2、CO2气氛中最终都形成以ZrO2、SiO2、B2O3为主的复合材料烧蚀表层结构。并得到了复合材料陶瓷层在空气、CO2气氛中的热氧化反应动力学方程。

通过高速摄像机、SEM-EDS研究了复合材料原位压缩失效机制。在室温下,复合材料的失效形式主要为纤维剪切断裂。由于树脂基体结构基本保持完整,能够有效传递载荷,复合材料表现出良好的抗压强度;在600 ℃时,复合材料的失效形式主要为纤维束的脱粘,复合材料表现出最低的热机械性能;在800 ℃时,复合材料的失效形式主要为纤维屈曲和纤维剪切破坏;在1000 ℃和1200 ℃时,复合材料的失效形式主要为纤维屈曲及分层。同时通过有限元分析软件建立了复合材料在原位压缩测试保温过程及单壁热载荷的工作环境下内部温度场、反应程度场、压缩强度场分布,计算得到的复合材料温度场分布及压缩强度变化趋势与实验结果吻合,验证了模型的准确性。

参考文献:

[1] 严旭,王洪波,范新中,等. 航天飞行器防热涂层烧蚀行为及机理研究[J]. 航天器环境工程,2020,37(4):369-376.

[2] 金玲,王安龄,桂业伟,等. X43高超声速飞行器的飞行热走廊研究[J]. 工程热物理学报,2007,2:325-328.

[3] 聂亮,陈伟芳,夏陈超,等. 高超声速飞行器绕流流场电磁散射特性分析[J]. 电波科学学报,2014,29(5):874-879.

[4] 杜龙海,曹毅,齐忠杰. 外军导弹协同数据链现状及技术发展趋势[J]. 无线电工程,2015,45(11):56-59.

[5] Johnson S M. Thermal protection materials and systems: An overview[M]. New York: John Wiley and Sons, 2016:224-243.

[6] 唐磊,王夕聚. 耐高温隔热材料技术[M]. 北京:国防工业出版社,2013.

[7] Rakow J F, Waas A M. Thermal buckling of metal foam sandwich panels for convective thermal protection systems[J]. Journal of Spacecraft and Rockets, 2005,42(5):832-844.

[8] Ren X, Li H, Fu Q, et al. Ultra-high temperature ceramic TaB2-TaC-SiC coating for oxidation protection of SiC-coated carbon/carbon composites[J]. Ceramint International, 2014,40(7):9419-9425.

[9] Paul A, Venugopal S, Binner J G P, et al. UHTC-carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation[J]. Journal of the European Ceramic Society, 2013,33(2):423-432.

[10] Wei K, He R, Cheng X, et al. A lightweight, high compression strength ultra high temperature ceramic corrugated panel with potential for thermal protection system applications[J]. Materials and Design, 2015,66(Part B):552-556.

[11] 胡良全,肖永栋,薛忠民,等. 烧蚀/隔热一体化的低密度材料性能研究[J]. 功能材料,2007,A8:3159-3161.

[12] Paglia L, Genova V, Bracciale M P, et al. Thermochemical characterization of polybenzimidazole with and without nano-ZrO2 for ablative materials application[J]. Journal of Thermal Analysis and Calorimetry, 2020,142(5):2149-2161.

[13] Yang W, Xu B, Qi M, et al. Improving ablation properties of ceramifiable vitreous silica fabric reinforced boron phenolic resin composites via an incorporation of MoSi2[J]. Plastics, Rubber and Composites, 2020,49(10):456-469.

[14] Ding J, Yang T, Huang Z, et al. Thermal stability and ablation resistance, and ablation mechanism of carbon–phenolic composites with different zirconium silicide particle loadings[J]. Composites Part B: Engineering, 2018,154:313-320.

[15] He D, Shi M, Yang Y, et al. Effect of inorganic components on properties of ceramizable phenolic resin matrix composites[J]. IOP Conference Series: Materials Science and Engineering, 2019,472(1):012044.

[16] Fu H, Qin Y, He X, et al. Effect of curing degree on mechanical and thermal properties of 2.5D quartz fiber reinforced boron phenolic composites[J]. E-Polymers, 2019,19(1):462-469.

[17] 孙百顺. 钨渗铜材料性能的研究[J]. 固体火箭技术,1990,1:82-93.

[18] 张保红,张丹华,郭颖利. 钨渗铜复合材料烧蚀性能及机理研究[J]. 粉末冶金工业,2019,29(6):18-22.

[19] Wuchina E, Opila E, Opeka M, et al. Uhtcs: ultra-high temperature ceramic materials for extreme environment applications[J]. Interface, 2007,16(4):30-36.

[20] Yan Z, Ma Z, Liu L, et al. The ablation behavior of ZrB2/Cu composite irradiated by high-intensity continuous laser[J]. Journal of the European Ceramic Society, 2014,34(10):2203-2209.

[21] Lucas R, Davis C E, Clegg W J, et al.Elaboration of ZrC-SiC composites by spark plasma sintering using polymer-derived ceramics[J].Ceramint International, 2014, 40(10):15703-15709.

[22] Liu J, Kan Y, Zhang G. Synthesis of ultra-fine hafnium carbide powder and its pressureless sintering[J]. Journal of the American Ceramic Society, 2010,93(4):980-986.

[23] Liu C, Li K, Li H, et al. In situ synthesis mechanism of ZrB2-ZrC-C composites[J]. Ceramint International, 2014,40(7):10297-10302.

[24] Wang M, Wang Z, Li S, et al. Effect of surface oxidation at 1500 degrees C on flexural strength and thermal shock resistance of the ZrB2-SiC-ZrC ceramic[J]. Advances In Manufacturing Science And Engineering, 2013,712-715:115-118.

[25] 郭志芳. 喷管耐烧蚀材料的发展与应用[C]. 沈阳:中国航天第三专业信息网第二十七届年会,2006.

[26] 张力川. 碳碳复合材料发展现状及前景探索[J]. 建材与装饰,2016,8:125-126.

[27] 付前刚,李贺军,史小红,等. 沉积位置对化学气相沉积SiC涂层微观组织的影响[J]. 西安交通大学学报,2005,(1):49-52.

[28] 黄海明,杜善义,吴林志,等. C/C复合材料烧蚀性能分析[J]. 复合材料学报,2001,3:76-80.

[29] Xue L, Li K, Jia Y, et al. Effects of hypervelocity impact on ablation behavior of SiC coated C/C composites[J]. Materials and Design, 2016,108:151-156.

[30] Ren X, Li H, Li K, et al. Oxidation protection of ultra-high temperature ceramic ZrxTa1-xB2-SiC/SiC coating prepared by in-situ reaction method for carbon/carbon composites[J]. Journal of the European Ceramic Society, 2015,35(3):897-907.

[31] Wang S, Wang Y, Bian C, et al. The thermal stability and pyrolysis mechanism of boron-containing phenolic resins: The effect of phenyl borates on the char formation[J]. Applied Surface Science, 2015,331(0):519-529.

[32] L. T, Am. M, Jm K. Degradation behaviour of a composite material for thermal protection systems Part I-Experimental characterization[J]. Journal of Materials Science, 1998,33(12):3137-3143.

[33] Torre L, Kenny J M, Boghetich G, et al. Degradation behaviour of a composite material for thermal protection systems. Char characterization[J]. Journal of Materials Science, 2000,35(18):4563-4566.

[34] Natali M, Kenny J M, Torre L. Science and technology of polymeric ablative materials for thermal protection systems and propulsion devices: A review[J]. Progress in Materials Science, 2016,84(0):192-275.

[35] Hanu L G, Simon G P, Cheng Y B. Preferential orientation of muscovite in ceramifiable silicone composites[J]. Materials Science and Engineering A: Structural Materials, 2005,A398(1):180-187.

[36] Hanu L G, Simon G P, Cheng Y-B. Thermal stability and flammability of silicone polymer composites[J]. Polymer Degradation and Stability, 2006,91(6):1373-1379.

[37] Cohen L, Couch H, Murrin T. Performance of ablator materials in ramjet environments[C]. Thermophysics and Heat Transfer Conference, Boston, 1974.

[38] 任加万,谭永华. 冲压发动机燃烧室热防护技术[J]. 火箭推进,2006,4:38-43.

[39] Dvornic P R, Lenz R W. Exactly alternating silarylene―siloxane polymers: 6. Thermal stability and degradation behaviour[J]. Polymer, 1983,24(6):763-768.

[40] Wang F, Huang Z, Liu Y. Novel cardanol-containing boron-modified phenolic resin composites: Non-isothermal curing kinetics, thermal properties, and ablation mechanism[J]. High Performance Polymers, 2017,29(3):279-288.

[41] 韩忠强,武德珍,齐胜利,等. 硅橡胶/三元乙丙橡胶的绝热性能[J]. 宇航材料工艺,2010,1:39-41.

[42] 王烽屹. 耐烧蚀酚醛树脂基复合材料的制备及其性能研究[D]. 武汉:武汉理工大学,2017.

[43] Yang D, Zhang W, Yao R, et al. Thermal stability enhancement mechanism of poly (dimethylsiloxane) composite by incorporating octavinyl polyhedral oligomeric silsesquioxanes[J]. Polymer Degradation and Stability, 2013,98(1):109-114.

[44] Srikanth I, Daniel A, Kumar S, et al. Nano silica modified carbon-phenolic composites for enhanced ablation resistance[J]. Scripta Materialia, 2010,63(2):200-203.

[45] Mirzapour A, Asadollahi M H, Baghshaei S, et al. Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite[J]. Composites Part A: Applied Science and Manufacturing, 2014,63:159-167.

[46] 范珊珊. Mg-Al-Si/BPF复合材料可陶瓷化机理研究[D]. 武汉:武汉理工大学,2016.

[47] Haddadi S A, Mahdavian-Ahadi M, Abbasi F. Effect of nanosilica and boron carbide on adhesion strength of high temperature adhesive based on phenolic resin for graphite bonding[J]. Industrial and Engineering Chemistry Research, 2014,53(29):11747-11754.

[48] 范珊珊,石敏先,孟盼,等. 助熔剂对陶瓷化硼酚醛复合材料热行为及微观结构的影响[J]. 复合材料学报,2017,34(1):60-66.

[49] Patton R D, Pittman C U, Wang L, et al. Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites[J]. Composites Part A:Applied Science and Manufacturing, 2002,33(2):243-251.

[50] Eslami Z, Yazdani F, Mirzapour M. Thermal and mechanical properties of phenolic-based composites reinforced by carbon fibres and multiwall carbon nanotubes[J]. Composites Part A:Applied Science and Manufacturing, 2015,72:22-31.

[51] 高迪. 酚醛树脂浸渍碳纤维三维编织体的成型与烧蚀行为研究[D]. 哈尔滨:哈尔滨工业大学,2011.

[52] Zou Z, Qin Y, Fu H, et al. ZrO2f-coated Cf hybrid fibrous reinforcements and properties of their reinforced ceramicizable phenolic resin matrix composites[J]. Journal of the European Ceramic Society, 2021,41(3):1810-1816.

[53] 黄赤. 烧蚀材料隔热层复合泡沫塑料的制备及性能研究[D]. 武汉:武汉理工大学,2016.

[54] Whittard W F, Sisson J E. Phenol formaldehyde resin as a casting material[J]. Geological Magazine, 1940,77(6):478-481.

[55] 唐艳茹,许庆明,顾健,等. 甲基酚醛树脂的制备与表征[J]. 长春理工大学学报(自然科学版),2021,44(1):124-127.

[56] Lee L-H. Mechanisms of thermal degradation of phenolic condensation polymers.I.Studies on the thermal stability of polycarbonate[J]. Journal of Polymer Science, 1964,2(6):2859-2873.

[57] 陈海龙,杨学锋,王守仁,等. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程,2019,47(6):108-113.

[58] 李翰,樊茂华,冯振宇,等. 玻璃纤维/酚醛树脂复合材料热响应预报方法[J]. 复合材料学报,2019,36(6):1457-1463.

[59] Kordkheili H Y, Pizzi A. Improving properties of phenol- lignin- glyoxal resin as a wood adhesive by an epoxy resin[J]. European Journal of Wood and Wood Products, 2021,79(1):199-205.

[60] C P Reghunadhan Nair, R L Bindu. Thermal characteristics of addition-cure phenolic resins[J]. Polymer Degradation and Stability, 2001,73(2):251-257.

[61] Sarkar S, Adhikari B. Lignin-modified phenolic resin: synthesis optimization, adhesive strength, and thermal stability[J]. Journal of Adhesion Science and Technology, 2000,14(9):1179-1193.

[62] 刘佳宁,侯秋飞,胡若飞,等. 酚醛树脂改性及应用概述[J]. 科技创业月刊,2016,11:134-136.

[63] Abdalla M O, Ludwick A A T E, Mitchell T. Boron-modified phenolic resins for high performance applications[J]. Polymer, 2003,44(24):7353-7359.

[64] Wang S, Jing X, Wang Y, et al. High char yield of aryl boron-containing phenolic resins: The effect of phenylboronic acid on the thermal stability and carbonization of phenolic resins[J]. Polymer Degradation and Stability, 2014,99(0):1-11.

[65] Li B, Zheng Y, Zheng Z, et al. Characterization of boron modified phenolic resin and its curing behavior[J]. Fundamental of Chemical Engineering, 2011,233-235:137.

[66] Gao J, Liu Y, Yang L. Thermal stability of boron-containing phenol formaldehyde resin[J]. Polymer Degradation and Stability, 1998,63(1):19-22.

[67] Liu L, Ye Z. Effects of modified multi-walled carbon nanotubes on the curing behavior and thermal stability of boron phenolic resin[J]. Polymer Degradation and Stability, 2009,94(11):1972-8.

[68] 郭亚军,胡立红,周永红. 有机硅改性酚醛树脂的研究进展[J]. 化工新型材料,2018,46(10):5-9.

[69] 张娜,胡立红,周永红. 硅改性酚醛树脂研究现状[J]. 热固性树脂,2018,33(4):61-65.

[70] 向靖宇,刘春霞,马凤国. 高性能有机硅改性酚醛树脂的研究进展[J]. 有机硅材料,2019,33(1):71-74.

[71] Li S, Han Y, Chen F, et al. The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin[J]. Polymer Degradation and Stability, 2016,124(0):68-76.

[72] Li S, Chen F, Zhang B, et al. Structure and improved thermal stability of phenolic resin containing silicon and boron elements[J]. Polymer Degradation and Stability, 2016,133:321-329.

[73] 刘国勤,付强. 硼、钼双改性酚醛树脂的制备与表征[J]. 塑料,2012,2:21-23.

[74] 王于刚,史铁钧,李忠. 锆改性酚醛树脂的合成与表征[J]. 化学推进剂与高分子材料,2009,4:37-39.

[75] Liu C, Li K, Li H, et al. The effect of zirconium incorporation on the thermal stability and carbonized product of phenol–formaldehyde resin[J]. Polymer Degradation and Stability, 2014,102:180-185.

[76] Antony R, Pillai C K S. Synthesis and thermal characterization of chemically modified phenolic resins[J]. Journal of Applied Polymer Science, 1994,54(4):429-438.

[77] 李泽亚,伍林,饶文昊,等. 铁改性酚醛树脂的合成与结构表征[J]. 高分子材料科学与工程,2019,35(1):70-74.

[78] Zhang Y, Shen S, Liu Y. The effect of titanium incorporation on the thermal stability of phenol-formaldehyde resin and its carbonization microstructure[J]. Polymer Degradation and Stability, 2013,98(2):514-518.

[79] 任增茂. 摩擦材料用酚醛胶粘剂的改性及其性能研究[J]. 中国胶粘剂,1996,1:19-23.

[80] 刘世强,宁培森,丁著明. 改性酚醛树脂的研究进展[J]. 热固性树脂,2016,31(5):64-70.

[81] 高俊刚. 胺改性硼酚醛树脂的研究[J]. 塑料工业,1994,2:59-61.

[82] Dante R C, Santamaria D A, Gil J M. Crosslinking and thermal stability of thermosets based on novolak and melamine[J]. Journal of Applied Polymer Science, 2009,114(6):4059-4065.

[83] 张衍,王井岗,刘育建. 红外光谱法对苯基苯酚改性酚醛树脂的研究[J]. 玻璃钢/复合材料,2003,6:28-29.

[84] Yuliana M, Ngoc Y, Ju Y. Effect of extraction methods on characteristic and composition of Indonesian cashew nut shell liquid[J]. Industrial Crops and Products, 2012,35(1):230-236.

[85] Rimdusit S, Tiptipakorn S, Jubsilp C, et al. Polybenzoxazine alloys and blends: Some unique properties and applications[J]. Reactive and Functional Polymers, 2013,73(2):369-380.

[86] Rao B S, Palanisamy A. Monofunctional benzoxazine from cardanol for bio-composite applications[J]. Reactive and Functional Polymers, 2011,71(2):148-154.

[87] 向海,顾宜. 新型酚醛树脂-苯并噁嗪树脂的研究进展[J]. 高分子材料科学与工程,2004,20(3):1-4.

[88] 吴江涛,齐暑华,李春华,等. 萘酚改性酚醛树脂复合材料的研究[J]. 中国塑料,2011,25(4):50-54.

[89] Devi A, Srivastava D. Studies on the blends of cardanol-based epoxidized novolac type phenolic resin and carboxyl-terminated polybutadiene (CTPB)[J]. Materials Science and Engineering A, 2007,458(1-2):336-347.

[90] Koo J H, Miller M J, Weispfenning J, et al. Silicone polymer composites for thermal protection system: Fiber reinforcements and microstructures[J]. Journal of Composite Materials, 2011,45(13):1363-1380.

[91] Günthner M, Kraus T, Dierdorf A, et al. Advanced coatings on the basis of Si(C)N precursors for protection of steel against oxidation[J]. Journal of the European Ceramic Society, 2009,29(10):2061-2068.

[92] Li Y, Deng C, Shi X, et al. Simultaneously improved flame retardance and ceramifiable properties of polymer-based composites via the formed crystalline phase at high temperature[J]. ACS Applied Materials and Interfaces, 2019,11(7):7459-7471.

[93] Ding J, Huang Z, Qin Y, et al. Improved ablation resistance of carbon–phenolic composites by introducing zirconium silicide particles[J]. Composites Part B: Engineering, 2015,82(0):100-107.

[94] Lin H, Kuo S, Huang C, et al. Thermal and surface properties of phenolic nanocomposites containing octaphenol polyhedral oligomeric silsesquioxane[J]. Macromolecular Rapid Communications, 2006,27(7):537-541.

[95] Mirzapour M A, Haghighat H R, Eslami Z.Effect of zirconia on ablation mechanism of asbestos fiber/phenolic composites in oxyacetylene torch environment[J].Ceramint International, 2013, 39(8):9263-9272.

[96] Zhang Y, Lee S, Yoonessi M. Phenolic resin-trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: Structure and properties[J]. Polymer, 2006,47(9):2984-2996.

[97] 魏化震,李莹,安振河. ZrB2和POSS对碳布/酚醛复合材料烧蚀性能的影响[J]. 材料工程,2014,11:38-42.

[98] Ghelich R, Mehdinavaz Aghdam R, Jahannama M R. Elevated temperature resistance of SiC-carbon/phenolic nanocomposites reinforced with zirconium diboride nanofibers[J]. Journal of Composite Materials, 2018,52(9):1239-1251.

[99] Yang D, Zhang W, Jiang B. Ceramization and oxidation behaviors of silicone rubber ablative composite under oxyacetylene flame[J]. Ceramint International, 2013,39(2):1575-1581.

[100] 周传健,张惠,周凯运,等. 苯基硅橡胶/硅氮陶瓷前驱体复合绝热层烧蚀机理[J]. 固体火箭技术,2015,38(4):566-572.

[101] 杨磊,刘艳辉,左继成,等. 热硫化硅橡胶耐烧蚀性能的研究[J]. 沈阳理工大学学报,2015,34(5):19-23.

[102] Torres-Herrador F, Meurisse J B E, Panerai F, et al. A high heating rate pyrolysis model for the Phenolic Impregnated Carbon Ablator (PICA) based on mass spectroscopy experiments[J]. Journal of Analytical and Applied Pyrolysis, 2019,141:104625.

[103] Choi M H, Chung I J. Mechanical and thermal properties of phenolic resin-layered silicate nanocomposites synthesized by melt intercalation[J]. Journal of Applied Polymer Science, 2003,90(9):2316-2321.

[104] 张天才,吉法祥,陈亮,等. 耐温抗烧蚀酚醛树脂的合成及其性能研究[J]. 表面技术,2009,6:54-56.

[105] Trick K A, Saliba T E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon, 1995,33(11):1509-1515.

[106] Jiang H, Wang J, Wu S, et al. Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry[J]. Carbon, 2010,48(2):352-358.

[107] William M.Jackson R T C. High temperature oxidative degradation of phenol–formaldehyde polycondensates[J]. Journal of Applied Polymer Science, 1964,8(5):2163-2193.

[108] Fitzer E, Schäfer W. The effect of crosslinking on the formation of glasslike carbons from thermosetting resins[J]. Carbon, 1970,8(3):353-364.

[109] Costa L, Montelera L R D, Camino G, et al. Structure-charring relationship in phenol- formaldehyde type resins[J]. Polymer Degradation and Stability, 1997,56(1):23-35.

[110] Wu X, Radovic L R. Inhibition of catalytic oxidation of carbon/carbon composites by boron-doping[J]. Carbon, 2006,43(8):1768-1777.

[111] Wang J, Jiang H, Jiang N. Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin[J]. Thermochimica Acta, 2009,496(1-2):136-142.

[112] Salomão R, Bittencourt L R M, Pandolfelli V C. A novel approach for magnesia hydration assessment in refractory castables[J]. Ceramint International, 2006,33(5):803-810.

[113] Chen Z, Xiong X, Li G, et al. Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlayers[J]. Applied Surface Science, 2009,255(22):9217-9223.

[114] Xu L, Wu J, Bai S. Fabrication and microstructure of boron-doped isotropic pyrolytic carbon[J]. Carbon, 2012,50(12):4705-4710.

[115] 丁杰. 耐高温抗烧蚀无机颗粒改性碳/酚醛复合材料的制备与性能研究[D]. 武汉:武汉理工大学,2016.

[116] 欧芸,石敏先,姚亚琳,等. 可瓷化PDMS改性聚氨酯泡沫复合材料的制备及其性能研究[J]. 复合材料科学与工程,2020,4:96-100.

[117] 杨栋. 硅橡胶基绝热材料及其热化学烧蚀机理研究[D]. 长沙:国防科学技术大学,2013.

[118] Persova M G, Soloveichik Y G, Belov V K, et al. Modeling of aerodynamic heat flux and thermoelastic behavior of nose caps of hypersonic vehicles[J]. Acta Astronautica, 2017,136(3):312-331.

[119] 许阳阳. 低密度碳/酚醛复合材料烧蚀条件下的热—化学耦合分析[D]. 哈尔滨:哈尔滨工业大学,2016.

[120] 董琪. 碳纤维增强聚合物基复合材料雷击损伤的电-热-化学-力耦合分析[D]. 济南:山东大学,2019.

[121] Yang J, Li W, Ge J, et al. A mesoscopic model of mechanical erosion for the characterization of ablation behavior of C/C woven composites[J]. International Journal of Heat and Mass Transfer, 2023,206:123962.

[122] Deng Z, Dong C, Wang H, et al. Pyrolysis behavior, pyrolysis kinetics, heat transfer and pyrolysis simulation of almandine/boron phenolic resin ceramizable composites[J]. Journal of Macromolecular Science, Part B, 2013,62:647-667.

[123] Lee S, John J, Park G, et al. Numerical and Experimental Study of the Effects of Surface Temperature and Oxygen Mass Flux on the Ablation of Carbon–Carbon Composites[J]. Applied Composite Materials, 2021,28(2):529-557.

[124] Mothé C G, Vieira C R, Mothé M G. Thermal and surface study of phenolic resin from cashew nut shell liquid cured by plasma treatment[J]. Journal of Thermal Analysis and Calorimetry, 2013,114(2):821-826.

[125] Lin C-T, Lee H-T, Chen J-K. Preparation and properties of bisphenol-F based boron-phenolic resin/modified silicon nitride composites and their usage as binders for grinding wheels[J]. Applied Surface Science, 2015,330(0):1-9.

[126] Wang F, Huang Z, Liu Y, et al. Novel cardanol-containing boron-modified phenolic resin composites[J]. High Performance Polymers, 2017,29(3):279-288.

[127] Deng P, Shi Y, Liu Y, et al. Solidifying process and flame retardancy of epoxy resin cured with boron-containing phenolic resin[J]. Applied Surface Science, 2018,427(Part A):894-904.

[128] Wang C, Zhang B, Luo Z, et al. Preparation and properties of a novel addition-curable phenolic resin containing boron element[J]. Polymers for Advanced Technologies, 2018,29(12):3014-3019.

[129] Mansouri J, Wood C A, Roberts K, et al. Investigation of the ceramifying process of modified silicone-silicate compositions[J]. Journal of Materials Science, 2008,42(15):6046-6055.

[130] Hu H, Zhang Y, Liu L, et al. Effect of quantitative characteristic structure of resole phenolic prepolymer resin on thermal stability, pyrolysis behaviors, and ablation properties[J]. Journal of Thermal Analysis and Calorimetry, 2021,146(3):1049-1062.

[131] Hao D, Song Y-X, Zhang Y, et al. Nanocomposites of reduced graphene oxide with pure monoclinic-ZrO2 and pure tetragonal-ZrO2 for selective adsorptive removal of oxytetracycline[J]. Applied Surface Science, 2021,543(0):148810.

[132] L.Narváez O D, J.R.Martínez, Ruiz F. Preparation of (Ni–B)/SiO2, Ni/SiO2 and NiO/SiO2 nanocomposites[J]. Journal of Non-Crystalline Solids, 2003,318(1-2):37.

[133] Hui-Mei Y, Chang-Wei L, Ling-Jun Q, et al. Studies on the thermal stability of nano-SiC powder with excessive free carbon by TG-DTA-MS, XRD and TEM[J]. Journal of Thermal Analysis and Calorimetry, 2007,85(3):657-660.

[134] Duan L, Zhao X, Wang Y. Oxidation and ablation behaviors of carbon fiber/phenolic resin composites modified with borosilicate glass and polycarbosilane interface[J]. Journal of Alloys and Compounds, 2020,827(0):154277.

[135] Yaowakulpattana P, Kondo S, Kadono K, et al. Effect of B2O3 on crystallization behavior of ZnO-Al2O3-SiO2 glasses[J]. Journal of the Ceramic Society of Japan, 2015,123(1434):96-99.

[136] Ma Z, Dong Q, Yang C, et al. Study of methanol adsorption on zirconia polymorphs by FTIR[J]. Spectroscopy And Spectral Analysis, 2006,26(3):422-425.

[137] Baqar M, Agag T, Ishida H. Poly (benzoxazine-co-urethane)s: A new concept for phenolic/urethane copolymers via one-pot method[J]. Polymer, 2011,52(2):307-317.

[138] Wang Y, Chen L, Xu T, et al. High char yield novolac modified by Si-B-N-C precursor: Thermal stability and structural evolution[J]. Polymer Degradation and Stability, 2017,137:184-196.

[139] Huang X, Chen S, Wan S, et al. Effect of phenolic resin oligomer motion ability on energy dissipation of poly (butyl methacrylate)/phenolic resins composites[J]. Polymers, 2020,12(2):490.

[140] Shinoda M, Nishide T, Shichi Y. Adhesion between polycarbonate substrate and SiO2 film formed from silane and nitrous oxide by plasma-enhanced chemical vapor deposition[J]. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 1994,12(3):746-750.

[141] Hantsche H. High resolution XPS of organic polymers, the scienta ESCA300 database[J]. Advanced Materials, 1993,5(10):778.

[142] Zhao L-Z, Liu F, Li J-Z, et al. XPS study of three dimensional C/SiC composites[J]. Wuli Huaxue Xuebao, 2001,17(9):805.

[143] Hagio T, Takase A, Umebayashi S. X-Ray photoelectron spectroscopic studies of beta-sialons[J]. Journal of Materials Science Letter, 1992,11(12):878-880.

[144] Hughes A E, Sexton B A.Comments on the use of implanted Ar as a binding energy reference[J]. Journal of Electron Spectroscopy and Related Phenomena, 1990, 50(2):C(15-18).

[145] Sinha S, Badrinarayanan S, Sinha A P B. Interaction of oxygen with Zr76Fe24 metglass: An X-ray photoelectron spectroscopy study[J]. Journal of the Less Common Metals, 1986,125(C):85-95.

[146] Yamauchi T, Kitamura H, Wakai N, et al. Photoelectron spectroscopic studies on interfacial reactions in Zr/2*1(100)Si and Zr/SiO2/(100)Si systems[J]. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 1993,11(5):2619-2622.

[147] Hendrickson D N, Hollander J M, Jolly W L. Core-electron binding energies for compounds of boron, carbon, and chromium[J]. Inorganic Chemistry, 1970,9(3):612-615.

[148] Schreifels J A, Maybury P C, Jr.W E S. X-Ray photoelectron spectroscopy of nickel boride catalysts: Correlation of surface states with reaction products in the hydrogenation of acrylonitrile[J]. Journal of Catalysis, 1980,65(1):195-206.

[149] Huerta L, Durán A, Falconi R, et al. Comparative study of the core level photoemission of the ZrB2 and ZrB12[J]. Physica C:Superconductivity, 2010,470(9-10):456-460.

[150] Beche E, Balat-Pichelin M, Flaud V, et al. XPS and AES studies of UHTC ZrB2-SiC-Si3N4 treated with solar energy[J]. Surface and Interface Analysis, 2014,46(10-11):817-822.

[151] Lin J, Zhang X, Han J, et al. Oxidation behavior and phase transition of ZrB2–SiCw–ZrO2f ceramic[J]. Corrosion Science, 2014,78:13-21.

[152] Zhang Z, Sheng Y, Xu X, et al. Microstructural features and mechanical properties of in situ formed ZrB2/Cu composites[J]. Advanced Engineering Materials, 2015,17(9):1338-1343.

[153] Ozawa T. A new method of analyzing thermogravimetric data[J]. Bulletin of the Chemical Society of Japan, 1965,38(11):1881.

[154] Tuffi R, D'abramo S, Cafiero L M, et al. Thermal behavior and pyrolytic degradation kinetics of polymeric mixtures from waste packaging plastics[J]. Express Polymer Letters, 2018,12(1):82-99.

[155] Senum G I, Yang R T. Rational approximations of the integral of the Arrhenius function[J]. Journal of Thermal Analysis and Calorimetry, 1977,11(3):445-457.

[156] Yi Z, Li C, Jiang J, et al. Pyrolysis kinetics of tannin-phenol-formaldehyde resin by non-isothermal thermogravimetric analysis[J]. Journal of Thermal Analysis and Calorimetry, 2015,121(2):867-876.

[157] 陈镜泓,李传儒. 热分析及其应用[M]. 北京:科学出版社,1985.

[158] 李余增. 热分析[M]. 北京:清华大学出版社,1987.

[159] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957,29(11):1702-1706.

[160] Friedman H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science: Polymer Symposia, 1964,6(1):183-195.

[161] Flynn J H, Wall L A. General treatment of the thermogravimetry of polymers[J]. Journal of research of the National Bureau of Standards Section A, Physics and chemistry, 1966,70A(6):487-523.

[162] Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Journal of Polymer Science Part B: Polymer Letters, 1966,4(5):323-328.

[163] Bale C W, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010–2016[J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2016,54:35-53.

[164] Jumahat A, Soutis C, Jones F R, et al. Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading[J]. Composite Structures, 2010,92(2):295-305.

[165] Tao X, Zhang L, Ma X, et al. Preparation of a flexible high emissivity coating on quartz fiber fabric for thermal protection[J]. Ceramint International, 2017,43(16):14292-14300.

[166] 任林昌,张军元,郭睿涵. 传热学[M]. 长春:吉林大学出版社,2017.

中图分类号:

 TB332    

条码号:

 002000074716    

馆藏号:

 TD10060756    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式