- 无标题文档
查看论文信息

中文题名:

 硫醚端基聚合物配体修饰的磁性纳米颗粒制备及其MRI应用    

姓名:

 叶桂芬    

学号:

 1049721300434    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0805    

学科名称:

 材料科学与工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 高分子及复合材料工程    

第一导师姓名:

 高山俊    

第一导师院系:

 武汉理工大学    

第二导师姓名:

 续安平    

完成日期:

 2015-04-10    

答辩日期:

 2015-05-22    

中文关键词:

 磁共振成像 ; 造影剂 ; 磁性纳米粒子 ; 水溶性 ; 生物相容性    

中文摘要:

磁共振成像(简称 MRI)利用体内的水、膜和蛋白质中的氢原子核的磁特性,采用无创、非电离成像技术,通过与外磁场和无线电波的相互作用产生磁共振信号,最终获得人体内部的详细MRI图像。它是一种功能强大的成像方法,具有无损、实时和高分辨等特性,已成功用于区分病变和健康组织,在医学影像诊断中有较好的应用前景。

但是在MRI成像中,需要结合使用造影剂来提高成像对比度和清晰度,否则无法得到生物学活性和功能信息丰富的图像来进行疾病的诊断和治疗。目前使用的商业造影剂有Gd-DTPA造影剂、肝胆造影剂等,但在临床应用中,某些病人对这些造影剂出现一些排异性并有副作用,因此开发出一种新的造影剂尤为重要。而超顺磁性氧化铁纳米粒子的超顺磁性、高弛豫率和高敏感性使其能有效地用于MRI中,从而提高成像对比度。

近年来,将磁性纳米粒子应用于磁共振成像中一直是研究热点。而目前面临的最大挑战是制备粒径小、单分散和生物相容性良好且能明显增强MRI 效果的纳米粒子造影剂。

本论文主要是合成水溶性的超顺磁性氧化铁纳米粒子包括十二烷基硫醇-聚甲基丙烯酸- Fe3O4纳米粒子(DDT-PMAA@MIONs)、季戊四醇-3-巯基丙酸酯-聚乙烯吡咯烷酮- Fe3O4纳米粒子(PTMP-PVP@MIONs),并对其在磁共振成像中的应用进行了研究。主要内容包括:水溶性磁性氧化铁纳米粒子DDT-PMAA@MIONs和PTMP-PVP@MIONs的制备与表征。

通过自由基聚合法合成硫醚封端聚合物配体DDT-PMAA和PTMP-PVP,再利用所制备的聚合物配体通过高温共沉淀法制备硫醚封端磁性纳米粒子DDT-PMAA@MIONs和PTMP-PVP@MIONs,并对其进行了一系列的表征。由TEM图可知磁性纳米粒子的尺寸较小,均小于10nm且分散较均匀,纳米粒子能稳定保存且具有良好的水溶性,根据饱和磁化强度测试可知,纳米粒子具有一定的磁性,而通过MTT试验表明纳米粒子对细胞的毒性较小。这些结果表明,制备的硫醚封端的Fe3O4纳米粒子(DDT-PMAA@MIONs和PTMP-PVP @MIONs)尺寸均一、分散性好,并具有较好的水溶性和生物相容性。

在此基础上,本文研究了硫醚封端的Fe3O4纳米粒子DDT-PMAA@MIONs在磁共振成像中的应用。将DDT-PMAA@MIONs进行生物体内外的 MRI 成像实验,结果表明,DDT-PMAA@MIONs能有效地用于动物体的 MRI 成像中作为磁共振造影剂,为在人体的临床应用中提供了依据。

总的来说,本文合成了具有良好的水溶性、生物相容性的磁性纳米粒子,可以在MRI中用作磁共振造影剂,为磁性纳米粒子在 MRI中的发展提供了理论依据。

参考文献:

[1] Massoud Tarik F, Gambhir Sanjiv S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light[J]. Genes & development, 2003, 17(5): 545-580.

[2] O'Farrell AC, Shnyder SD, Marston G, et al. Non‐invasive molecular imaging for preclinical cancer therapeutic development[J]. British journal of Pharmacology, 2013, 169(4): 719-735.

[3] Emsley James William, Feeney James, Sutcliffe Leslie Howard, Progress in nuclear magnetic resonance spectroscopy, Elsevier, 2013.

[4] Lee Dong-Eun, Koo Heebeom, Sun In-Cheol, et al. Multifunctional nanoparticles for multimodal imaging and theragnosis[J]. Chemical Society Reviews, 2012, 41(7): 2656-2672.

[5] Thomas Reju, Park In-Kyu, Jeong Yong Yeon. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer[J]. International journal of molecular sciences, 2013, 14(8): 15910-15930.

[6] Na Hyon Bin, Song IC, Hyeon T. Superhydrophobic coatings: bioinspired degradable substrates with extreme wettability properties[J]. Adv. Mater, 2009, 21:2133.

[7] McRobbie Donald W, Moore Elizabeth A, Graves Martin J, et al., MRI from Picture to Proton, Cambridge university press, 2006.

[8] Morrow G. Progress in MRI magnets[J]. Applied Superconductivity, IEEE Transactions on, 2000, 10(1): 744-751.

[9] Sheng-Nan Sun, Chao Wei, Zan-Zan Zhu, et al. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications[J]. Chinese Physics B, 2014, 23(3): 037503.

[10] Mankoff David A. A definition of molecular imaging[J]. Journal of Nuclear Medicine, 2007, 48(6): 18N-21N.

[11] Shokrollahi H. Contrast agents for MRI[J]. Materials Science and Engineering: C, 2013, 33(8): 4485-4497.

[12] Mornet Stéphane, Vasseur Sébastien, Grasset Fabien, et al. Magnetic nanoparticle design for medical applications[J]. Progress in Solid State Chemistry, 2006, 34(2): 237-247.

[13] Shinkai Masashige, Ito Akira, Recent progress of biochemical and biomedical engineering in Japan II, Springer, 2004, p. 191-220.

[14] Blasiak Barbara, van Veggel Frank CJM, Tomanek Boguslaw. Applications of nanoparticles for MRI cancer diagnosis and therapy[J]. Journal of Nanomaterials, 2013:12.

[15] Liu Yongjun, Zhang Na. Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging[J]. Biomaterials, 2012, 33(21): 5363-5375.

[16] Li Li, Jiang Wen, Luo Kui, et al. Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking[J]. Theranostics, 2013, 3(8): 595.

[17] Guenoun Jamal, Koning Gerben A, Doeswijk Gabriela, et al. Cationic Gd-DTPA liposomes for highly efficient labeling of mesenchymal stem cells and cell tracking with MRI[J]. Cell transplantation, 2012, 21(1): 191-205.

[18] Liu Yu, He Zhi-Jie, Xu Bo, et al. Evaluation of cell tracking effects for transplanted mesenchymal stem cells with jetPEI/Gd-DTPA complexes in animal models of hemorrhagic spinal cord injury[J]. Brain research, 2011, 1391:24-35.

[19] Liu Gang, Yang Hua, Zhang Xiao Ming, et al. MR imaging for the longevity of mesenchymal stem cells labeled with poly‐L‐lysine–Resovist complexes[J]. Contrast media & molecular imaging, 2010, 5(2): 53-58.

[20] Luo Kui, Tian Jing, Liu Gang, et al. Self-assembly of SiO2/Gd-DTPA-polyethylenimine nanocomposites as magnetic resonance imaging probes[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(1): 540-548.

[21] Tseng Ching-Li, Shih I-Ling, Stobinski Leszek, et al. Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging[J]. Biomaterials, 2010, 31(20): 5427-5435.

[22] Tran Lesa A, Krishnamurthy Ramkumar, Muthupillai Raja, et al. Gadonanotubes as magnetic nanolabels for stem cell detection[J]. Biomaterials, 2010, 31(36): 9482-9491.

[23] Luo Kui, Liu Gang, He Bin, et al. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes[J]. Biomaterials, 2011, 32(10): 2575-2585.

[24] Zhang Bo, Jiang Biao, Chen Ying, et al. Detection of viability of transplanted beta cells labeled with a novel contrast agent–polyvinylpyrrolidone‐coated superparamagnetic iron oxide nanoparticles by magnetic resonance imaging[J]. Contrast media & molecular imaging, 2012, 7(1): 35-44.

[25] Shokrollahi H, Khorramdin A, Isapour Gh. Magnetic resonance imaging by using nano-magnetic particles[J]. Journal of Magnetism and Magnetic Materials, 2014, 369:176-183.

[26] Yang Chung-Yi, Tai Ming-Fong, Chen Shin-Tai, et al. Labeling of human mesenchymal stem cell: Comparison between paramagnetic and superparamagnetic agents[J]. Journal of Applied Physics, 2009, 105(7): 07B314.

[27] Ke Yi-quan, Hu Chang-chen, Jiang Xiao-dan, et al. In vivo magnetic resonance tracking of Feridex-labeled bone marrow-derived neural stem cells after autologous transplantation in rhesus monkey[J]. Journal of neuroscience methods, 2009, 179(1): 45-50.

[28] Thu Mya S, Bryant L Henry, Coppola Tiziana, et al. Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging[J]. Nature medicine, 2012, 18(3): 463-467.

[29] Park Bo-Hyung, Jung Jae-Chang, Lee Gang-Ho, et al. Comparison of labeling efficiency of different magnetic nanoparticles into stem cell[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313:145-149.

[30] Bulte Jeff WM, Kraitchman Dara L, Mackay Alastair M, et al. Chondrogenic differentiation of mesenchymal stem cells is inhibited after magnetic labeling with ferumoxides[J]. Blood, 2004, 104(10): 3410-3413.

[31] Cromer Berman Stacey M, Walczak Piotr, Bulte Jeff WM. Tracking stem cells using magnetic nanoparticles[J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3(4): 343-355.

[32] Corot Claire, Robert Philippe, Idée Jean-Marc, et al. Recent advances in iron oxide nanocrystal technology for medical imaging[J]. Advanced Drug Delivery Reviews, 2006, 58(14): 1471-1504.

[33] Harisinghani Mukesh G, Barentsz Jelle, Hahn Peter F, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer[J]. New England Journal of Medicine, 2003, 348(25): 2491-2499.

[34] Harisinghani Mukesh G, Weissleder Ralph. Sensitive, noninvasive detection of lymph node metastases[J]. PLoS medicine, 2004, 1(3): e66.

[35] Neuwelt EA, Varallyay P, Bago AG, et al. Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours[J]. Neuropathology and applied neurobiology, 2004, 30(5): 456-471.

[36] Varallyay Peter, Nesbit Gary, Muldoon Leslie L, et al. Comparison of two superparamagnetic viral-sized iron oxide particles ferumoxides and ferumoxtran-10 with a gadolinium chelate in imaging intracranial tumors[J]. American journal of neuroradiology, 2002, 23(4): 510-519.

[37] Taschner Christian A, Wetzel Stephan G, Tolnay Markus, et al. Characteristics of ultrasmall superparamagnetic iron oxides in patients with brain tumors[J]. American Journal of Roentgenology, 2005, 185(6): 1477-1486.

[38] Koo Yong-Eun Lee, Reddy G Ramachandra, Bhojani Mahaveer, et al. Brain cancer diagnosis and therapy with nanoplatforms[J]. Advanced Drug Delivery Reviews, 2006, 58(14): 1556-1577.

[39] Sun Conroy, Veiseh Omid, Gunn Jonathan, et al. In Vivo MRI Detection of Gliomas by Chlorotoxin‐Conjugated Superparamagnetic Nanoprobes[J]. Small, 2008, 4(3): 372-379.

[40] Sosnovik David E, Nahrendorf Matthias, Weissleder Ralph. Molecular magnetic resonance imaging in cardiovascular medicine[J]. Circulation, 2007, 115(15): 2076-2086.

[41] Wickline Samuel A, Neubauer Anne M, Winter Patrick M, et al. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles[J]. Journal of Magnetic Resonance Imaging, 2007, 25(4): 667-680.

[42] Corot Claire, Petry Klaus G, Trivedi Rikin, et al. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging[J]. Investigative radiology, 2004, 39(10): 619-625.

[43] Trivedi Rikin A, Jean-Marie U, Graves Martin J, et al. In vivo detection of macrophages in human carotid atheroma temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI[J]. Stroke, 2004, 35(7): 1631-1635.

[44] Kelly Kimberly A, Nahrendorf Matthias, Amy M Yu, et al. In vivo phage display selection yields atherosclerotic plaque targeted peptides for imaging[J]. Molecular imaging and biology, 2006, 8(4): 201-207.

[45] Nahrendorf Matthias, Jaffer Farouc A, Kelly Kimberly A, et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis[J]. Circulation, 2006, 114(14): 1504-1511.

[46] Weissleder Ralph, Mahmood Umar. Molecular Imaging 1[J]. Radiology, 2001, 219(2): 316-333.

[47] Weissleder Ralph. Molecular imaging in cancer[J]. Science, 2006, 312(5777): 1168-1171.

[48] Bulte Jeff WM, Kraitchman Dara L. Iron oxide MR contrast agents for molecular and cellular imaging[J]. NMR in Biomedicine, 2004, 17(7): 484-499.

[49] Schellenberger Eyk A, Sosnovik David, Weissleder Ralph, et al. Magneto/optical annexin V, a multimodal protein[J]. Bioconjugate Chemistry, 2004, 15(5): 1062-1067.

[50] Sosnovik David E, Weissleder Ralph. Emerging concepts in molecular MRI[J]. Current opinion in biotechnology, 2007, 18(1): 4-10.

[51] Kim Ji-Eun, Shin Ji-Young, Cho Myung-Haing. Magnetic nanoparticles: an update of application for drug delivery and possible toxic effects[J]. Archives of toxicology, 2012, 86(5): 685-700.

[52] Liu Xiao Li, Fan Hai Ming. Innovative magnetic nanoparticle platform for magnetic resonance imaging and magnetic fluid hyperthermia applications[J]. Current Opinion in Chemical Engineering, 2014, 4(38-46.

[53] Busquets Maria Antònia, Sabaté Raimon, Estelrich Joan. Potential applications of magnetic particles to detect and treat Alzheimer's disease[J]. Nanoscale Research Letters, 2014, 9(1): 1-10.

[54] Yen Swee Kuan, Padmanabhan Parasuraman, Selvan Subramanian Tamil. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery[J]. Theranostics, 2013, 3(12): 986.

[55] Joshi Hrushikesh M. Multifunctional metal ferrite nanoparticles for MR imaging applications[J]. Journal of Nanoparticle Research, 2013, 15(1): 1-19.

[56] Dumestre Frédéric, Chaudret Bruno, Amiens Catherine, et al. Superlattices of iron nanocubes synthesized from Fe [N (SiMe3) 2] 2[J]. Science, 2004, 303(5659): 821-823.

[57] Dumestre Frédéric, Chaudret Bruno, Amiens Catherine, et al. Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry[J]. Angew Chem Int Ed Engl, 2002, 114(22): 4462-4465.

[58] Hyeon Taeghwan, Lee Su Seong, Park Jongnam, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process[J]. Journal of the American Chemical Society, 2001, 123(51): 12798-12801.

[59] Sun Shouheng, Zeng Hao, Robinson David B, et al. Monodisperse MFe2O4 (M= Fe, Co, Mn) nanoparticles[J]. Journal of the American Chemical Society, 2004, 126(1): 273-279.

[60] Lattuada Marco, Hatton T Alan. Functionalization of monodisperse magnetic nanoparticles[J]. Langmuir, 2007, 23(4): 2158-2168.

[61] Hoffman-Amtenbrink Margarethe, Von Rechenberg Brigitte, Hofmann Heinrich, Superparamagnetic nanoparticles for biomedical applications, 2009.

[62] Lee Jiwon, Isobe Tetsuhiko, Senna Mamoru. Preparation of ultrafine Fe 3 O 4 particles by precipitation in the presence of PVA at high pH[J]. Journal of Colloid and Interface Science, 1996, 177(2): 490-494.

[63] Xie Jin, Xu Chenjie, Kohler Nathan, et al. Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non‐Specific Uptake by Macrophage Cells[J]. Advanced Materials, 2007, 19(20): 3163-3166.

[64] Kim Kyo-Seon. Functionalization of magnetic nanoparticles for biomedical applications[J]. Korean Journal of Chemical Engineering, 2014, 31(8): 1289-1305.

[65] Fleming Robert E, Bacon Bruce R. Orchestration of iron homeostasis[J]. N Engl J Med, 2005, 352(17): 1741-1744.

[66] Gupta Ajay Kumar, Gupta Mona. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials, 2005, 26(18): 3995-4021.

[67] McBain Stuart C, Yiu Humphrey HP, Dobson Jon. Magnetic nanoparticles for gene and drug delivery[J]. International journal of nanomedicine, 2008, 3(2): 169.

[68] Ambrogio Michael W, Thomas Courtney R, Zhao Yan-Li, et al. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine[J]. Accounts of chemical research, 2011, 44(10): 903-913.

[69] Yoon Tae‐Jong, Kim Jun Sung, Kim Byung Geol, et al. Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery[J]. Angew Chem Int Ed Engl, 2005, 117(7): 1092-1095.

[70] Yoon Tae‐Jong, Yu Kyeong Nam, Kim Eunha, et al. Specific targeting, cell sorting, and bioimaging with smart magnetic silica core–shell nanomaterials[J]. Small, 2006, 2(2): 209-215.

[71] Dilnawaz Fahima, Singh Abhalaxmi, Mohanty Chandana, et al. Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy[J]. Biomaterials, 2010, 31(13): 3694-3706.

[72] Shi Donglu, Bedford Nicholas M, Cho Hoon‐Sung. Engineered multifunctional nanocarriers for cancer diagnosis and therapeutics[J]. Small, 2011, 7(18): 2549-2567.

[73] Longmire Michelle, Choyke Peter L, Kobayashi Hisataka. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats[J], 2008.

[74] Ferrari Mauro. Nanovector therapeutics[J]. Current opinion in chemical biology, 2005, 9(4): 343-346.

[75] van den Hoven Jolanda M, Van Tomme Sophie R, Metselaar Josbert M, et al. Liposomal drug formulations in the treatment of rheumatoid arthritis[J]. Molecular Pharmaceutics, 2011, 8(4): 1002-1015.

[76] Kharisov Boris I, Dias HV Rasika, Kharissova Oxana V, et al. Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends[J]. RSC Advances, 2014, 4(85): 45354-45381.

[77] Jiang Wanquan, Yang H. C., Yang S. Y., et al. Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible[J]. Journal of Magnetism and Magnetic Materials, 2004, 283(2–3): 210-214.

[78] Chen D, Xu R. Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders[J]. Materials research bulletin, 1998, 33(7): 1015-1021.

[79] Deng Y., Wang L., Yang W., et al. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process[J]. Journal of Magnetism and Magnetic Materials, 2003, 257(1): 69-78.

[80] Mukh-Qasem R Abu, Gedanken A. Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles[J]. Journal of Colloid and Interface Science, 2005, 284(2): 489-494.

[81] Sun Shouheng, Zeng Hao. Size-controlled synthesis of magnetite nanoparticles[J]. Journal of the American Chemical Society, 2002, 124(28): 8204-8205.

[82] Reetz Manfred T, Helbig Wolfgang. Size-selective synthesis of nanostructured transition metal clusters[J]. Journal of the American Chemical Society, 1994, 116(16): 7401-7402.

[83] Wu Wei, He Quanguo, Jiang Changzhong. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies[J]. ChemInform, 2009, 40(24): i.

[84] Li Z., Tan B., Allix M., et al. Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection[J]. Small, 2008, 4(2): 231-239.

[85] Herranz Fernando, Salinas Beatriz, Groult Hugo, et al. Superparamagnetic nanoparticles for atherosclerosis imaging[J]. Nanomaterials, 2014, 4(2): 408-438.

[86] Majeed Muhammad Irfan, Lu Qunwei, Yan Wei, et al. Highly water-soluble magnetic iron oxide (Fe3O4) nanoparticles for drug delivery: enhanced in vitro therapeutic efficacy of doxorubicin and MION conjugates[J]. Journal of Materials Chemistry B, 2013, 1(22): 2874.

[87] Lin Meng Meng, Kim Do Kyung, El Haj Alicia J, et al. Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications[J]. NanoBioscience, IEEE Transactions on, 2008, 7(4): 298-305.

[88] Gindy Marian E, Prud'homme Robert K. Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy[J], 2009.

[89] Rice Henry E, Hsu Edward W, Sheng Huaxin, et al. Superparamagnetic iron oxide labeling and transplantation of adipose-derived stem cells in middle cerebral artery occlusion-injured mice[J]. American Journal of Roentgenology, 2007, 188(4): 1101-1108.

[90] Rogers Walter J, Basu Partha. Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging[J]. Atherosclerosis, 2005, 178(1): 67-73.

[91] Moraes Louise, Vasconcelos-dos-Santos Andreia, Santana Fernando Cleber, et al. Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington's disease[J]. Stem cell research, 2012, 9(2): 143-155.

[92] Bull Elizabeth, Madani Seyed Yazdan, Sheth Roosey, et al. Stem cell tracking using iron oxide nanoparticles[J]. International journal of nanomedicine, 2014, 9(1641.

[93] Bernd Hamm, De Kerviler Eric, Gaillard Sophie, et al. Safety and tolerability of ultrasmall superparamagnetic iron oxide contrast agent: comprehensive analysis of a clinical development program[J]. Investigative radiology, 2009, 44(6): 336-342.

[94] Morana Giovanni, Salviato Elisabetta, Guarise Alessandro. Contrast agents for hepatic MRI[J]. Cancer Imaging, 2007, 7(Special issue A): S24.

[95] Huang Jing, Bu Lihong, Xie Jin, et al. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles[J]. Acs Nano, 2010, 4(12): 7151-7160.

[96] Tanimoto Akihiro, Kuribayashi Sachio. Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma[J]. European Journal of Radiology, 2006, 58(2): 200-216.

[97] Kim Byung Hyo, Lee Nohyun, Kim Hyoungsu, et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents[J]. Journal of the American Chemical Society, 2011, 133(32): 12624-12631.

[98] Tromsdorf Ulrich I, Bruns Oliver T, Salmen Sunhild C, et al. A highly effective, nontoxic T 1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles[J]. Nano Letters, 2009, 9(12): 4434-4440.

[99] Briley-Saebo Karen C, Cho Young Seok, Shaw Peter X, et al. Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes[J]. Journal of the American College of Cardiology, 2011, 57(3): 337-347.

[100] Serres Sébastien, Soto Manuel Sarmiento, Hamilton Alastair, et al. Molecular MRI enables early and sensitive detection of brain metastases[J]. Proceedings of the National Academy of Sciences, 2012, 109(17): 6674-6679.

[101] Chen Kai, Xie Jin, Xu Hengyi, et al. Triblock copolymer coated iron oxide nanoparticle conjugate for tumor integrin targeting[J]. Biomaterials, 2009, 30(36): 6912-6919.

[102] Xie Jin, Chen Kai, Lee Ha-Young, et al. Ultrasmall c (RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells[J]. Journal of the American Chemical Society, 2008, 130(24): 7542-7543.

[103] Xie Jin, Chen Kai, Huang Jing, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles[J]. Biomaterials, 2010, 31(11): 3016-3022.

[104] Cai Xiaowei, Yang Fang, Gu Ning. Applications of magnetic microbubbles for theranostics[J]. Theranostics, 2012, 2(1): 103.

[105] Lee Seulki, Chen Xiaoyuan. Dual-modality probes for in vivo molecular imaging[J]. Molecular imaging, 2009, 8(2): 87.

[106] Erogbogbo Folarin, Yong Ken-Tye, Hu Rui, et al. Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron (III) oxide[J]. Acs Nano, 2010, 4(9): 5131-5138.

[107] Lee Ha-Young, Li Zibo, Chen Kai, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)–conjugated radiolabeled iron oxide nanoparticles[J]. Journal of Nuclear Medicine, 2008, 49(8): 1371-1379.

[108] Toy Randall, Bauer Lisa, Hoimes Christopher, et al. Targeted nanotechnology for cancer imaging[J]. Advanced Drug Delivery Reviews, 2014, 76(79-97.

[109] Weissleder Ralph, Nahrendorf Matthias, Pittet Mikael J. Imaging macrophages with nanoparticles[J]. Nature materials, 2014, 13(2): 125-138.

[110] 汪海珍, 涂、喷治疗局限性慢性湿疹的多中心临床研究[D], 湖南中医药大学, 2013.

[111] Wahajuddin Sumit Arora. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers[J]. International journal of nanomedicine, 2012, 7(3445.

[112] Huang X., Li B., Zhang H., et al. Facile preparation of size-controlled gold nanoparticles using versatile and end-functionalized thioether polymer ligands[J]. Nanoscale, 2011, 3(4): 1600-1607.

[113] 黄鑫, 张慧, 梁丽芸, et al. 多功能水溶性聚合物配体制备纳米颗粒[J]. 化学进展, 2010, 22(5): 953-961.

[114] Tang Erjun, Cheng Guoxiang, Ma Xiaolu, et al. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system[J]. Applied Surface Science, 2006, 252(14): 5227-5232.

[115] Wang Zhenxin, Tan Bien, Hussain Irshad, et al. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water[J]. Langmuir, 2007, 23(2): 885-895.

[116] POPESCU ROXANA CRISTINA, ANDRONESCU ECATERINA, GRUMEZESCU ALEXANDRU MIHAI. In vivo evaluation of Fe3O4 nanoparticles[J]. Romanian journal of morphology and embryology= Revue roumaine de morphologie et embryologie, 2014, 55(3): 1013.

中图分类号:

 TB383    

馆藏号:

 TB383/0434/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式