- 无标题文档
查看论文信息

中文题名:

 层状双金属氢氧化物沥青道路融雪化冰剂的制备与性能研究     

姓名:

 彭超    

学号:

 104971120062    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 材料学    

学生类型:

 博士    

学位:

 工学博士    

学校:

 武汉理工大学    

获奖论文:

 校优秀博士学位论文    

院系:

 材料科学与工程学院    

专业:

 复合材料学    

研究方向:

 沥青道路材料    

第一导师姓名:

 余剑英    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-05-08    

答辩日期:

 2015-05-16    

中文关键词:

 

沥青路面 ; 融雪化冰 ; 层状双金属氢氧化物 ; 限域效应 ; 焙烧还原 ; 冰点 ; 电导率 ; 路用性能

    

中文摘要:

在冬季,沥青路面的积雪和结冰不仅大大降低了道路运输效率,而且极易引发交通事故。如何及时融化或去除路面冰雪、减少交通事故的发生,从而保证公路的安全畅通一直是世界各国迫切希望解决的难题。传统融雪化冰的方法为撒布氯盐法,但氯盐对道路周边生态环境危害严重,并会导致沥青路面出现病害。为了减轻氯盐的破坏作用,一些环保型融雪剂(如醋酸盐)开始得到应用,然而,这些融雪剂不仅价格高,而且对沥青路面也具有较大的危害性。将氯盐类融雪化冰剂掺入沥青混凝土制备具有自融冰功能的沥青路面近年来倍受重视,但氯盐仍会在雨水和车辆载荷的作用下逐渐析出,既破坏了生态环境和路面结构,又降低了其融冰长效性。因此,亟需开发一种对环境和路面结构无危害、融雪化冰功能持久的新型融雪化冰剂。

层状双金属氢氧化物(LDHs)由带正电荷的金属阳离子层板和带负电荷的层间阴离子所构成。前期研究发现,LDHs层间阴离子能够赋予其降低水的冰点作用,其主板金属元素和层间阴离子种类直接影响其降低冰点的功能。本文采用不同镁铝元素比Mg/Al CO32-LDHs为原料,通过焙烧还原法制备了含有不同层间阴离子(氯离子、甲酸根离子和醋酸根离子)的LDHs,系统研究了主板金属元素比和层间阴离子种类对LDHs降低水的冰点能力的影响,制备了新型融雪化冰剂。进而将不同层间阴离子的LDHs用于制备沥青混合料,研究了新型融雪化冰剂对沥青混合料融雪化冰性能和路用性能的影响。主要研究结论如下:

(1)采用焙烧还原法制备了不同阴离子插层MgAl LDHs。元素能谱和傅里叶红外光谱分析表明,氯离子、甲酸根离子和醋酸根离子成功插入到LDHs层间。X-射线衍射分析表明,氯离子、甲酸根离子和醋酸根离子的引入会增大原来Mg/Al CO32-LDHs的层间距离。扫描电子显微镜观察表明,氯离子、甲酸根离子和醋酸根离子插层LDHs仍然为层状结构晶体。透射电子显微镜图像进一步证实三种阴离子插层LDHs的晶格之间距离相比于原样LDHs的有明显增大。

(2)主板金属元素比对LDHs的融冰能力有明显影响。差热扫描量热测试表明:相比于主板镁铝元素比为3和4的LDHs,主板镁铝元素比为2时,氯离子、甲酸根离子和醋酸根离子插层LDHs的混合液冰点均最低,其5wt%的混合液冰点分别为-8.15 °C、-9.32 °C和-10.68 °C。这是因为镁铝元素比较小时,三价态的铝离子的相对含量增大,金属阳离子层板所带总的正电荷数会增加,从而使得层板间能够插入较多的阴离子。

(3)不同阴离子对LDHs的融冰能力有显著影响。当镁铝元素比为2时,将5%的氯离子插层LDHs(Mg2/Al Cl-LDH)、甲酸根离子插层LDHs(Mg2/Al Fo-LDH)、醋酸根离子插层LDHs(Mg2/Al Ac-LDH)和碳酸根离子插层LDHs(Mg2/Al CO32-LDH)分别与水配置成混合液,对应的冰点分别为-8.1 °C、-8.8 °C、-9.3 °C和-1.2 °C,这表明氯离子、甲酸根离子和醋酸根离子插层均能够赋予LDHs优良的融冰能力,其中醋酸根离子插层LDHs降低冰点效果最好。这可归因于焙烧LDHs中可插层进入的醋酸根离子含量最多,LDHs单位层间阴离子含量测试结果表明氯离子、甲酸根离子、醋酸根离子插层LDHs的单位层间阴离子含量分别为0.0035 mol/g,0.0041 mol/g和0.0054 mol/g。

(4)焙烧还原制备工艺和焙烧LDHs与插层剂的质量比也明显影响LDHs的融冰能力。研究表明:插层反应温度明显影响不同阴离子插层LDHs降低水的冰点的效果。氯离子、甲酸根离子和醋酸根离子分别在插层反应温度为70 °C、75 °C和80 °C条件下制备的LDHs,其降低水的结冰点效果最好。这是因为体系的反应活性起初会随着温度升高而逐渐增大,从而使得外界阴离子插层LDHs的反应变得越来越容易。当温度进一步升高而超过这个最佳反应温度后,LDHs层间的少量羟基(-OH)开始脱离,与外界阴离子竞争,导致插层阴离子的数量降低。焙烧后的LDHs(CLDH)与阴离子插层剂的质量比也会影响不同阴离子插层LDHs的冰点。当CLDH与氯化钠、甲酸钠和醋酸钾的质量比分别为3、2.5和2时,插层LDH具有较好的降低水冰点效果。这是因为当CLDH与氯化钠、甲酸钠和醋酸钾的质量比降低到饱和值时,LDHs层间没有多余的位点接受阴离子插层。

(5)LDHs对层间阴离子具有限域作用。硝酸银溶液滴定表明Mg2/Al Cl-LDH的滤液中未见氯离子存在;电导率测定表明Mg2/Al Fo-LDH和Mg2/Al Ac-LDH的滤液中没有游离的甲酸根离子或醋酸根离子存在。X-射线光电子能谱测试结果发现,相比于碳酸根离子,氯离子、甲酸根离子和醋酸根离子插层后,LDHs层间阴离子与层板金属阳离子的电子结合能增大,这表明金属阳离子层板对于三种插层阴离子具有更好的限域作用。

(6)三种阴离子插层LDHs均可赋予沥青混合料良好的长效融冰性能。沥青混合料表面冰点实验表明,掺有5wt%的Mg2/Al Cl-LDH、Mg2/Al Fo-LDH和Mg/Al Ac-LDH的沥青混合料表面冰点分别为-5.0 °C、-6.5 °C和-7.2 °C;沥青混合料表面冰层粘附力实验表明,这三种阴离子插层LDHs融雪化冰剂均可使冰层与沥青混合料之间的粘附力降低。掺有LDHs融雪化冰剂的沥青混合料反复浸水和表面机械摩擦后,其表面冰点和冰层粘附力均无明显变化。

(7)LDHs融雪化冰剂改善了沥青混合料的水稳定性能和高温性能。掺有5wt%的Mg2/Al CI- LDH、Mg2/Al Fo-LDH和Mg2/Al Ac-LDH沥青混合料的浸水稳定度分别为85.9%、86.2%和87.5%,而添加相同掺量矿粉的沥青混合料浸水稳定度为82.5%;掺有5wt%的Mg2/Al CI- LDH、Mg2/Al Fo-LDH和Mg/Al Ac-LDH沥青混合料的动稳定度分别为3920次/mm、4120次/mm和4370次/mm,而添加相同掺量矿粉的沥青混合料的动态稳定度为3520次/mm。

参考文献:

[1]崔龙锡. 蓄盐类沥青混合料研究 [D]. 重庆交通大学, 2010

[2]范杰,马颖. 除雪剂在除雪中的应用及对环境危害的防治 [J].重庆交通学院学报,2007, 26(3): 78-81.

[3]彭子馨, 郝培文. 醋酸盐融雪剂对机场沥青混凝土道面损坏机理研究 [J]. 中外公路, 2012, 32(5):75-78.

[4]Fay L, Shi X. Environmental impacts of chemicals for snow and ice control: State of the knowledge [J]. Water air and soil pollution, 2012, 223(5): 2751-2770.

[5]洪乃丰. 氯盐融雪剂是把 “双刃剑——浅议国外使用化冰盐的教训与经验 [J]. 城市与减灾, 2005 (4): 19-21.

[6]张炳臣, 刘淑敏. 冬季道路除雪方式的探讨 [J]. 山东交通科技, 2004, (1):76-77.

[7]喻文兵, 李双洋, 冯文杰等. 道路融雪除冰技术现状与发展趋势分析 [J]. 全国土力学及岩土工程学术会议, 2011:933-940.

[8]刘红瑛, 郝培文. 道路除冰雪技术及其发展趋势 [J]. 筑路机械与施工机械化, 2008, 25:18-21.

[9]Henderson D. Experimental roadway heating project on a bridge approach [R]. Highway Reserch Record, 1963, 14: 14–23.

[10]Zenewitz J A. Survey of alternatives to the use of chlorides for highway deicing[R]. 1977.

[11]Ashrae. ASHRAE Handbook-Fundamentals [M]. Atlanta, 1985: 20-25.

[12]唐祖全, 李卓球. 导电混凝土融雪化冰机理分析 [J]. 混凝土, 2001 (7): 8-11.

[13]侯作富, 李卓球. 融雪化冰用碳纤维混凝土的导电性能研究 [J]. 武汉理工大学学报, 2002, 24(8): 32-34.

[14]侯作富, 李卓球, 胡胜良. 导电混凝土导热系数分析的电热有限元法 [J]. 实验力学, 2002, 17(4).

[15]侯作富,李卓球,唐祖全. 导电混凝土除冰化雪系统输入功率的有限元计算 [J]. 华中科技大学学报(城市科学版),2002,19 (1):82-85.

[16]侯作富,李卓球. 硅灰对碳纤维导电混凝土电阻率和强度的影响 [J].混凝土,2003,2.

[17]庄猛, 刘冠军. 加热电缆的种类及应用 [J]. 电线电缆, 2002, 5: l4-16.

[18]罗延龄, 黄新武, 殷茜, 等. 防冻保温用自控温加热电缆 [J]. 兰化科技, 1996, 14(2): 103-107.

[19]武海琴. 发热电缆用于路面融雪化冰的技术研究 [D]. 北京: 北京工业大学, 2005.

[20]宫成兵. 基于加热的寒区公路隧道路面防滑技术的试验研究与数值分析 [D]. 长安大学, 2012.

[21]车广杰. 碳纤维发热线用于路面融雪化冰的技术研究 [J]. 大连: 大连理工大学硕士学位论文, 2008.

[22]赵芬娟. 发热电缆融雪技术在道路融雪化冰中的应用 [J]. 建设机械技术与管理, 2014, 7: 028.

[23]Zwarycz K. Snow melting and heating systems based on geothermal heat pumps at Goleniow Airport, Poland [J]. 2002.

[24]Lee R C, Sackos J T, Nydahl J E, et al. Bridge heating using ground-source heat pipes [J]. Transportation Research Record, 1984 (962).

[25]Cress M D. Heated bridge deck construction and operation in Lincoln, Nebraska [C]//IABSE Symposium, San Francisco. 1995: 449-454.

[26]Boyd T L. New Snow Melt Projects in Klamath Falls, OR [J]. Geo-Heat Center Quarterly Bulletin, 2003, 24(3): 12-15.

[27]Katarzyna Zwarycz. Snow melting and heating systems based on geothermal heat pumps at Golcniow airport,Porland [R], Geothermal Training Programme, 2002.

[28]王华军. 流体加热道路融雪传热传质特性研究 [D]. 天津大学, 2007.

[29]高青, 刘研, 林密. 道路融雪地能利用热循环基本性能模拟分析 [J]. 公路, 2009 (7): 350-355.

[30]屠艳平, 管昌生, 李元松. 地源热泵路面融雪化冰可靠性设计及应用分析 [J]. 武汉工程大学学报, 2011, 33(6): 61-64.

[31]Wendel I L. Paving and solar energy system and method: U.S. Patent 4,132,074 [P]. 1979-1-2.

[32]Turner R H. Concrete slabs as summer solar collectors [C]//Proc. International Heat Transfer Conference. 1986: 683-689.

[33]Nayak J K, Sukhatme S P, Limaye R, Bopshetty S V. Performance studies on solar concrete collectors [J].Solar Energy, 1989,42( 1 ):45-56.

[34]Bopshetty S V, Nayak J K, Sukhatme S P. Performance analysis of a solar concrete collector [J]. Energy Conversion and Management, 1992, 33(11):1007–1016.

[35]Al-Saad M A, Jubran B A, Abu-Faris N A. Development and testing of concrete solar collectors [J]. International journal of solar energy, 1994, 16(1): 27-40.

[36]Bilgen E, Richard M A. Horizontal concrete slabs as passive solar collectors[J]. Solar Energy, 2002, 72(5): 405-413.

[37]Rebecca Carr, Eric D, JOHN F, et al. Scotland’s Renewable Heat Strategy Recommend ations to Scottish Ministers: Renewable Heat Group (RHG) Report [R] Edinburgh: the Scottish Government, 2008.

[38]Mallick R B, Chen B L, Bhowmick S, et al. Capturing solar energy from asphalt pavements [C]//International symposium on asphalt pavements and environment, international society for asphalt pavements, Zurich, Switzerland. 2008.

[39]徐慧宁. 流体加热道路融雪系统温湿耦合融雪模型及仿真分析 [D]. 哈尔滨: 哈尔滨工业大学, 2011.

[40]陈明宇. 导热沥青混凝土路面太阳能集热及融雪化冰研究 [D]. 武汉: 武汉理工大学, 2011.

[41]张洪伟, 陈伦坤, 张宝龙, 等. 抗冻结沥青混凝土路面国内外研究现状与进展 [J]. 公路, 2011, 1: 135-139

[42]厉永举, 高一平, 田保侠. 日本札幌市道路抗冻路面铺设方法 [J]. 内蒙古公路与运输, 2001, 4: 16-17

[43]周纯秀. 冰雪地区橡胶颗粒沥青混合料应用技术的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2006.

[44]张洪伟. 橡胶颗粒除冰雪沥青路面的研究 [D]. 西安: 长安大学硕士学位论文, 2009.

[45]郭平, 吴德军, 田伟平, 等. 橡胶颗粒防冻性沥青路面结构组合研究 [J]. 广西大学学报: 自然科学版, 2011, 36(1): 83-87.

[46]陈渊召, 李振霞. 橡胶颗粒沥青路面的除冰机理 [J]. 中南大学学报 (自然科学版), 2013, 44(5): 2074.

[47]Dubois R. Calcium halide and alkali metal hydroxide dispersed in asphalt or bitumen: U.S. Patent 4,012,537 [P]. 1977-3-15.

[48]Dubois R. Road-surface additive for preventing ice and melting snow: U.S. Patent 4,094,686 [P]. 1978-6-13.

[49]Arakiy,Takeda I,Suzuki S. Follow - up Survey on Powder/Chloride Freeze Control Pavement: Survey Cases of Europe and Japan [J]. Pavement, 1997, 32 (9): 8-14.

[50]Siegmund W. Antifreeze protection of roads: U.S. Patent 4,296,207[P]. 1981-10-20.

[51]Maupin G W. Field investigation of verglimit [R]. 1986.

[52]Turgeon C M. Evaluation of verglimit (a de-icing additive in plant mixed bituminous surface) [R]. Final report, 1989.

[53]Sheftick D E. Verglimit de-icing chemical asphalt additive. SR 309-02M Lehigh County [R]. Construction report. 1991.

[54]Stuart K D, Mogawer W S. Laboratory evaluation of verglimit and plusride [R]. Final report [R]. 1991.

[55]谭忆秋, 孙嵘蓉, 郭猛, 等. 蓄盐沥青混合料除冰雪性能研究 [J]. 中国公路学报, 2013, 26(1): 23-29.

[56]梁嵩巍, 杨明, 罗金, 等. 高速公路 MSA 路面与融雪路面使用性能比对试验及融雪机理的研究 [J]. 公路交通科技 (应用技术版), 2009, 7: 017.

[57]康捷. 抗凝冰沥青混合料技术研究[D]. 重庆交通大学, 2011.

[58]张丽娟. 盐化物融雪沥青混合料研究 [D]. 长安大学, 2010.

[59]孙玉齐. 盐化物自融雪沥青路面性能研究[D]. 长安大学, 2011.

[60]Fay L, Shi X. Environmental Impacts of Chemicals for Snow and Ice Control: State of the Knowledge[J]. Water Air and Soil Pollution, 2012, 223(5):2751-2770.

[61]Shi X, Fay L, Yang Z, et al. Corrosion of deicers to metals in transportation infrastructure: Introduction and recent developments [J]. Corrosion Reviews, 2009, 27(1-2): 23-52.

[62]Starck P, L?fgren B. Influence of de-icing agents on the viscoelastic properties of asphalt mastics [J]. Journal of materials science, 2007, 42(2): 676-685

[63]Giuliani F, Merusi F, Polacco G, et al. Effectiveness of sodium chloride-based anti-icing filler in asphalt mixtures [J]. Construction and Building Materials, 2012, 30:174–179.

[64]Taylor H F W. Crystal structures of some double hydroxide minerals [J]. Mineralogical magazine, 1973, 39(304): 377-389.

[65]Evans D G, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J]. Chemical Communications, 2006 (5): 485-496.

[66]Newman S P. Synthesis, characterization and applications of layered double hydroxides containing organic guests [J]. New Journal of Chemistry, 1998, 22(2): 105-115.

[67]郭孝孝. LDHs 薄膜的取向生长及性能研究 [D]. 北京化工大学, 2010.

[68]田晓飞. 导电聚合物插层 LDHs 的组装及其性能研究 [D]. 北京化工大学, 2006.

[69]Choy J H, Jung J S, Oh J M, et al. Layered double hydroxide as an efficient drug reservoir for folate derivatives [J]. Biomaterials, 2004, 25(15): 3059-3064.

[70]Gao X, Lei L, O'Hare D, et al. Intercalation and controlled release properties of vitamin C intercalated layered double hydroxide [J]. Journal of solid state chemistry, 2013, 203(13):174-180.

[71]Li W, Lu J, Chen J,et al. Phenoxymethylpenicillin–intercalated hydrotalcite as a bacteria inhibitor [J]. Journal of Chemical Technology and Biotechnology, 2006, 81:89–93.

[72]Yuan Q, Wei M, Evans D G, et al. Preparation and Investigation of Thermolysis of l-Aspartic Acid-Intercalated Layered Double Hydroxide [J]. 2004, 108(33):12381-12387.

[73]San Román M S, Holgado M J, Salinas B, et al. Characterisation of Diclofenac, Ketoprofen or Chloramphenicol Succinate encapsulated in layered double hydroxides with the hydrotalcite-type structure [J]. Applied Clay Science, 2012, 55(7):158–163.

[74]Tyner K M, Schiffman S R, Giannelis E P. Nanobiohybrids as delivery vehicles for camptothecin [J]. Journal of Controlled Release, 2004, 95:501–514.

[75]Xu Z P, Saha S K, Braterman P S. The effect of Zn, Al layered double hydroxide on thermal decomposition of poly(vinyl chloride) [J]. Polymer Degradation and Stability, 2006, 91(12):3237–3244.

[76]Huang G, Zhuo A, Wang L, et al. Preparation and flammability properties of intumescent flame retardant-functionalized layered double hydroxides/polymethyl methacrylate nanocomposites [J]. Materials Chemistry and Physics, 2011, 130(1):714–720.

[77]Liu X, Gu X, Zhang S, et al. Effects of dihydrogen phosphate intercalated layered double hydroxides on the crystal behaviors and flammability of polypropylene [J]. Journal of Applied Polymer Science, 2013, 130(5):3645–3651.

[78]Zhang G, Ding P, Zhang M, et al. Synergistic Effects Of Layered Double Hydroxide With Hyperfine Magnesium Hydroxide In Halogen-Free Flame Retardant Eva/Hfmh/Ldh Nanocomposites [J]. Polymer Degradation and Stability, 2007, 92(9):1715–1720.

[79]Zammarano M, Franceschi M, Bellayer S, et al. Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides [J]. Polymer, 2005, 46(22):9314–9328.

[80]Zhao J, Yan-gong Y. Study on Flame-retardant Modification of Polyacrylonitrile by Layered Double Hydroxide [J]. Synthetic Fiber in China, 2009.

[81]He Q, Yin S, Sato T. Synthesis and photochemical properties of zinc–aluminum layered double hydroxide/organic UV ray absorbing molecule/silica nanocomposites [J]. Journal of Physics and Chemistry of Solids, 2004, 65(2): 395-402.

[82]El-Toni A M, Yin S, Sato T. Direct coating for layered double hydroxide/4, 4′-diaminostilbene–2, 2′-disulfonic acid nanocomposite with silica by seeded polymerization technique [J]. Journal of Solid State Chemistry, 2004, 177(9): 3197-3201.

[83]Cui G J, Xu X Y, Lin Y J, et al. Synthesis and UV Absorption Properties of 5, 5′-Methylenedisalicylic Acid-Intercalated Zn? Al Layered Double Hydroxides [J]. Industrial and Engineering Chemistry Research, 2009, 49(2): 448-453.

[84]Chai H, Lin Y, Evans D G, et al. Synthesis and UV absorption properties of 2-naphthylamine-1, 5-disulfonic acid intercalated Zn-Al layered double hydroxides [J]. Industrial and Engineering Chemistry Research, 2008, 47(9): 2855-2860.

[85]Zhang L, Lin Y, Tuo Z, et al. Synthesis and UV absorption properties of 5-sulfosalicylate-intercalated Zn–Al layered double hydroxides [J]. Journal of Solid State Chemistry, 2007, 180(4): 1230-1235.

[86]Huang Y, Feng Z, Zhang H, et al. Effect of layered double hydroxides (LDHs) on aging properties of bitumen [J]. Journal of Testing and Evaluation, 2012, 40(5): 734-739.

[87]Pang L, Liu K, Wu S, et al. Effect of LDHs on the aging resistance of crumb rubber modified asphalt [J]. Construction and Building Materials, 2014, 67: 239-243.

[88]Wang G, Rao D, Li K, et al. UV blocking by Mg–Zn–Al layered double hydroxides for the protection of asphalt road surfaces [J]. Industrial and Engineering Chemistry Research, 2014, 53(11): 4165-4172.

[89]Ni Z M, Xia S J, Wang L G, et al. Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: adsorption property and kinetic studies [J]. Journal of Colloid and Interface Science, 2007, 316(2): 284-291.

[90]Guo Y, Zhu Z, Qiu Y, et al. Enhanced Adsorption of Acid Brown 14 Dye on Calcined Mg/Fe Layered Double Hydroxide with Memory Effect [J]. Chemical Engineering Journal, 2013, 219(219):69–77.

[91]Mandal S, Mayadevi S, Kulkarni B D. Adsorption of Aqueous Selenite [Se(IV)] Species on Synthetic Layered Double Hydroxide Materials [J]. Industrial and Engineering Chemistry Research, 2009, 48(17):7893-7898.

[92]Zhao D, Sheng G, Hu J, et al. The adsorption of Pb(II) on Mg 2 Al layered double hydroxide [J]. Chemical Engineering Journal, 2011, 171(1):167–174.

[93]Khenifi A, Derriche Z, Mousty C, et al. Adsorption of Glyphosate and Glufosinate by Ni2AlNO3 layered double hydroxide [J]. Applied Clay Science, 2010, 47:362–371.

[94]Chen S, Xu Z P, Zhang Q, et al. Studies on adsorption of phenol and 4-nitrophenol on MgAl-mixed oxide derived from MgAl-layered double hydroxide [J]. Separation and Purification Technology, 2009, 67(2):194–200.

[95]Wang S L, Hseu R J, Chang R R, et al. Adsorption and thermal desorption of Cr(VI) on Li/Al layered double hydroxide [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277:8–14.

[96]He F A, Zhang L M. Organo-modified ZnAl layered double hydroxide as new catalyst support for the ethylene polymerization [J]. Journal of Colloid and Interface Science, 2007, 315(2): 439-444.

[97]Segal S R, Carrado K A, Marshall C L, et al. Catalytic decomposition of alcohols, including ethanol, for in situ H 2 generation in a fuel stream using a layered double hydroxide-derived catalyst [J]. Applied Catalysis A: General, 2003, 248:33–45.

[98]Liu S, Zhou Q, Jin Z, et al. Dodecylsulfate Anion Embedded Layered Double Hydroxide Supported Nanopalladium Catalyst for the Suzuki Reaction [J]. Chinese Journal of Catalysis, 2010, 31(5):557–561.

[99]Zhang F, Zhao X, Feng C, et al. Crystal-Face-Selective Supporting of Gold Nanoparticles on Layered Double Hydroxide as Efficient Catalyst for Epoxidation of Styrene [J]. ACS Catal., 2011, 1(4):232-237.

[100]Song F, Hu X. Ultrathin Cobalt–Manganese Layered Double Hydroxide Is an Efficient Oxygen Evolution Catalyst [J]. Journal of the American Chemical Society, 2014, 136(47): 16481-16484.

[101]Prado R G, Almeida G D D, Carvalho M M D O, et al. Multivariate Method for Transesterification Reaction of Soybean Oil Using Calcined Mg–Al Layered Double Hydroxide as Catalyst [J]. Catalysis Letters, 2014, 144(6):1062-1073.

[102]Su L, Zhang X, Mi C, et al. Insights into the electrochemistry of layered double hydroxide containing cobalt and aluminum elements in lithium hydroxide aqueous solution [J]. Journal of Power Sources, 2008, 179(1):388–394.

[103]Zhan T, Guo Ya, Xu L, et al. Electrochemistry and electrocatalysis of myoglobin intercalated in Mg2Al-Cl layered double hydroxide and ionic liquid composite material [J]. Talanta, 2012, 94(6):189–194.

[104]Sun W, Guo Y, Lu Y, et al. Electrochemical biosensor based on graphene, Mg2Al layered double hydroxide and hemoglobin composite [J]. Electrochimica Acta, 2013, 91(3):130–136.

[105]Cavani F, Trifirò F, Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications [J]. Catalysis Today, 1991, 11(2):173–301.

[106]Wong, F, Buchheit, et al. Utilizing the structural memory effect of layered double hydroxides for sensing water uptake in organic coatings [J]. Progress in Organic Coatings, 2004, 51(2):91-102.

[107]Carlino S, Hudson M J, Husain S W, et al. The reaction of molten phenylphosphonic acid with a layered double hydroxide and its calcined oxide [J]. Solid State Ionics, 1996, 84(96):117–129.

[108]Zhang H,Han S, Zhang L, et al. Chang’an. Univ. (Nat Sci Ed). 31 (2011) 17–20.

[109]Hu J, Zhang L, Li X. China. Foreign. Highway. 30 (2010) 192–195 [in Chinese].

[110]Liu Z, Xing M, Chen S, et al. Influence of the chloride-based anti-freeze filler on the properties of asphalt mixtures [J]. Construction and Building Materials, 2014, 51(1):133–140.

[111]Mameri N, Lounici H, Grib H, et al. Defluoridation of septentrional Sahara water of north Africa by electrocoagulation process using bipolar aluminium electrodes [J]. Water Research, 1998, 32(5):1604–1612.

[112]Yong Z, Rodrigues A E. Hydrotalcite-like compounds as adsorbents for carbon dioxide [J]. Energy Conversion and Management, 2002, 43(14):1865–1876.

[113]Di Cosimo J I, D??ez V K, Xu M, et al. Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides[J]. Journal of Catalysis, 1998, 178(2):499–510.

[114]Lagergren S. About the theory of so-called adsorption of soluble substances [J]. Kungliga Svenska Vetenskapsakademiens Handlingar, 1898, 24(4): 1-39.

[115]Namasivayam C, Sumithra S. Adsorptive removal of catechol on waste Fe (III)/Cr (III) hydroxide: equilibrium and kinetics study [J]. Industrial and Engineering Chemistry Research, 2004, 43(23): 7581-7587.

[116]Yong Z, Rodrigues A E. Hydrotalcite-like compounds as adsorbents for carbon dioxide [J]. Energy Conversion and Management, 2002, 43(14):1865–1876.

[117]Di Cosimo J I, D?ez V K, Xu M, et al. Structure and surface and catalytic properties of Mg-Al basic oxides [J]. Journal of Catalysis, 1998, 178(2): 499-510.

[118]Wong F, Buchheit R G. Utilizing the structural memory effect of layered double hydroxides for sensing water uptake in organic coatings [J]. Progress in Organic Coatings, 2004, 51(2): 91-102.

[119]Iyi N, Matsumoto T, Kaneko Y, et al. Deintercalation of carbonate ions from a hydrotalcite-like compound: enhanced decarbonation using acid-salt mixed solution [J]. Chemistry of materials, 2004, 16(15): 2926-2932.

[120]Zhou J, Cheng Y, Yu J, et al. Hierarchically porous calcined lithium/aluminum layered double hydroxides: facile synthesis and enhanced adsorption towards fluoride in water [J]. Journal of Materials Chemistry, 2011, 21(48): 19353-19361.

[121]Dussault L, Dupin J C, Dumitriu E, et al. Microcalorimetry, TPR and XPS studies of acid–base properties of NiCuMgAl mixed oxides using LDHs as precursors [J]. Thermochimica acta, 2005, 434(1): 93-99.

[122]Cairon O, Dumitriu E, Guimon C. Acido-basicity of Mg-Ni-Al mixed oxides from LDH precursors: A FTIR and XPS study [J]. The Journal of Physical Chemistry C, 2007, 111(22): 8015-8023.

[123]孙嵘蓉. 缓释蓄盐沥青混合料的研发及性能的评价 [D]. 哈尔滨工业大学, 2012.

[124]刘状壮. 沥青路面融雪抑冰材料的研发与应用 [D]. 长安大学, 2013.

[125]张洪伟, 韩森, 张丽娟, 等. 盐化物沥青混凝土抑制结冰与融雪试验 [J]. 长安大学学报: 自然科学版, 2011, 31(2): 17-20.

[126]李福普, 王志军. 长效型主动融雪沥青混合料路用性能试验 [J]. 公路交通科技, 2012, 29(3): 7-11.

[127]Raraty L E, Tabor D. The adhesion and strength properties of ice [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1958, 245(1241): 184-201.

[128]Jellinek H H G. Adhesive properties of ice [J]. Journal of Colloid Science, 1959, 14(3): 268-280.

[129]孙健, 钱振东, 罗桑. 融冰化雪型沥青混合料路用性能的试验评价 [J]. 公路, 2013, 58(12): 204-206.

[130]Sengoz B, Agar E. Effect of asphalt film thickness on the moisture sensitivity characteristics of hot-mix asphalt [J]. Building and Environment, 2007, 42(10): 3621–3628.

[131]Feng D, Yi J, Wang D, et al. Impact of salt and freeze–thaw cycles on performance of asphalt mixtures in coastal frozen region of China [J]. Cold Regions Science and Technology, 2010, 62(1): 34–41.

[132]Molenaar A A A, Wu S, Li N, et al. Characterization of fatigue performance of asphalt mixture using a new fatigue analysis approach [J]. Construction and Building Materials, 2013, 45(2): 45-52.

[133]郭恩, 卢铁瑞, 张阳. 孔隙率对沥青路面技术性能的影响研究 [J]. 石油沥青, 2009, 22(4): 52-57.

中图分类号:

 O611.64    

馆藏号:

 O611.64/B062/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式