- 无标题文档
查看论文信息

中文题名:

 

OMM场景下复杂曲面测点规划及轮廓误差局域补偿方法研究

    

姓名:

 付高财    

学号:

 104976190181    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080200    

学科名称:

 工学 - 机械工程    

学生类型:

 博士    

学校:

 武汉理工大学    

院系:

 机电工程学院    

专业:

 机械工程    

研究方向:

 现代制造集成与信息系统    

第一导师姓名:

 盛步云    

第一导师院系:

 机电工程学院    

完成日期:

 2023-06-20    

答辩日期:

 2023-09-22    

中文关键词:

 

曲面轮廓误差 ; 在机测量 ; 局域补偿 ; 拟高斯曲率网格 ; IPSO-ANFIS模型 ; T样条

    

中文摘要:

新一代信息技术与先进制造技术的交叉融合是智能制造发展的前提,也是我国工业软件发展的趋势。在机测量(On-Machine Measurement, OMM)作为一种新兴的高性能测量方式,其集成化、智能化程度对智能制造的实施具有重要意义。然而,英、德、意等国家的OMM软硬件技术处于垄断地位,国内相关厂商在OMM核心技术上仍有差距。尤其是针对内部几何形状和外部加工测量过程均较为复杂的曲面而言,基于经验和假设的数理方法所构建的测量与补偿方案,其性能难以满足高效的、智能化的复杂曲面轮廓误差补偿需求。只有从复杂曲面的加工-测量一体智能化方向进行研究,才能迎来我国自主化OMM工业软件的赶超机遇。因此,本文针对复杂曲面数控加工、在机测量的特点,主要从测点自适应分布、测点数量估算、轮廓误差评定与补偿三个方面,对OMM场景下复杂曲面测点规划及轮廓误差局域补偿方法展开探索与研究,主要研究内容如下:

(1)分析了OMM场景下复杂曲面测点规划及轮廓误差局域补偿方法的技术路线。以复杂曲面加工-测量一体化过程中存在测点分布形式单一、测点数量难以估算、轮廓误差补偿效率低的问题为导向,分析了本课题研究的整体技术路线、核心研究点和实验验证方案,为全文研究内容的展开奠定了基础。

(2)研究了基于拟高斯曲率(quasi-Gaussian Curvature, quasi-GC)网格的复杂曲面测点分布方法。该方法通过结合质心Voronoi图及共形映射理论,在考虑复杂曲面高斯曲率几何特性的基础上,借助布谷鸟搜索算法和四叉树算法,构建了基于优化质心Voronoi图的quasi-GC网格,并基于该网格定义出曲面测量特征点,实现了复杂曲面测点的自适应分布。实验结果表明,该方法在复杂曲面零件上的测量结果与真实轮廓误差仅相差0.4 μm,能有效提高测点分布的合理性。

(3)构建了复杂曲面所需测点数量的估算模型。依据离散点测量的特点,分析了影响复杂曲面所需测点数量的因素,在基于图像的曲面形状复杂性量化公式的基础上,提出了用于变量表达的曲面3D测量描述符概念;并通过改进粒子群优化(Improved Particle Swarm Optimization, IPSO)算法对自适应神经模糊推理系统(Adaptive Neuro-Fuzzy Inference system, ANFIS)进行参数优化,构建了复杂曲面所需测点数量的IPSO-ANFIS估算模型。实验结果表明,所建模型使得复杂曲面零件测点数量预测值的均方根误差低至2.396,具有良好的预测精度。

(4)研究了基于OMM数据的复杂曲面轮廓误差评定与局域补偿方法。依据复杂曲面的OMM结果,以quasi-GC网格为T样条原像,实现了基于T样条理论的实际加工曲面的高精度重构与轮廓误差评定;并基于模糊聚类区域生长方法和镜像补偿原理求解局部补偿区域及补偿刀位点,经曲线拟合生成新的补偿刀轨,实现了复杂曲面轮廓误差的局域补偿。实验结果表明,所提方法使得复杂曲面零件的被补偿区域轮廓误差降低了61.7 %,能够显著提高其加工精度。

(5)开发了复杂曲面轮廓误差的在机测量-局域补偿软件OMM-offsetting。以某模具制造企业的实际需求为基础,完成了复杂曲面测点规划、轮廓误差评定与补偿方法在OMM-offsetting软件中的集成开发,并结合复杂曲面测试零件与叶轮实例对OMM-offsetting软件的方案设计、主要功能和应用效果进行了相关展示和验证。

本文的研究工作为复杂曲面轮廓误差的在机测量-局域补偿集成研究提供了一定的理论基础和技术支持,也将积极推动OMM-offsetting软件的推广和自主化进程。

参考文献:

Fuge M, Yumer M E, Orbay G, et al. Conceptual design and modification of freeform surfaces using dual shape representations in augmented reality environments[J]. Computer-Aided Design, 2012, 44(10): 1020-1032.

周济. 智能制造——“中国制造2025”的主攻方向[J]. 中国机械工程, 2015, 26(17): 2273-2284.

高健,陈岳坪,邓海祥,等. 复杂曲面零件加工精度的原位检测误差补偿方法[J].机械工程学报,2013,49(19):133-143.

Shen H, Fu J, He Y, et al. On-line asynchronous compensation methods for static/quasi-static error implemented on CNC machine tools[J]. International Journal of Machine Tools and Manufacture, 2012, 60: 14-26.

Chen Y, Tang H, Tang Q, et al. Machining error decomposition and compensation of complicated surfaces by EMD method[J]. Measurement, 2018, 116: 341-349.

周亮,王振环,孙东辰,等. 现代精密测量技术现状及发展[J].仪器仪表学报,2017,38(08):1869-1878.

Gao W, Haitjema H, Fang F Z, et al. On-machine and in-process surface metrology for precision manufacturing[J]. CIRP Annals, 2019, 68(2): 843-866.

李文龙,王刚,田亚明,等. 在机测量技术与工程应用研究进展[J].航空制造技术,2022,65(05):14-35.

Guo X, Yin S, Shu C, et al. Contact on-machine measurement probe error correction method for optical aspheric surface ultraprecision machining[J]. Measurement, 2023, 214: 112731.

Siva R, Siddardha B, Yuvaraja S, et al. Improving the productivity and tool life by fixture modification and renishaw probe technique[J]. Materials Today: Proceedings, 2020, 24: 782-787.

Chen Y S, Liu L B, Jiang Q K, et al. Calibration methods of an on-line inspection system on a large-scale turning-milling machining center[J]. Advanced Materials Research, 2011, 189: 1253-1257.

He G, Sang Y, Pang K, et al. An improved adaptive sampling strategy for freeform surface inspection on CMM[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 1521-1535.

Pengo T, Automatic Focusing Using Halton Sampling[J]. Imaging and Microscopy, 2009, 11(3): 39-41.

ElKott D F, Veldhuis S C. Isoparametric line sampling for the inspection planning of sculptured surfaces[J]. Computer-Aided Design, 2005, 37(2): 189-200.

Magdziak M. The influence of a number of points on results of measurements of a turbine blade[J]. Aircraft Engineering and Aerospace Technology, 2017, 89(6): 953-959.

Quinn J A, Langbein F C, Martin R R, et al. Density-controlled sampling of parametric surfaces using adaptive space-filling curves[C]//International Conference on Geometric Modeling and Processing. Springer, Berlin, Heidelberg, 2006: 465-484.

Zhao D, Wang W, Zhou J, et al. Measurement point sampling method for inspection of parts with free-form surfaces[J]. Advances in mechanical engineering, 2018, 10(11): 1687814018809577.

何改云,贾红洋. 基于CAD模型的自由曲面自适应采样策略[J].电子测量与仪器学报,2012,26(10):835-840.

张现东,卜昆,董一巍. 航空发动机叶片三坐标测量优化采样方法[J].航空动力学报,2019,34(01):168-176.

Jiang R, Wang W, Zhang D, et al. A practical sampling method for profile measurement of complex blades[J]. Measurement, 2016, 81: 57-65.

Elkott D F, Elmaraghy H A, Elmaraghy W H. Automatic sampling for CMM inspection planning of free-form surfaces[J]. international Journal of production Research, 2002, 40(11): 2653-2676.

Obeidat S M, Raman S. An intelligent sampling method for inspecting free-form surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(11): 1125-1136.

叶建华,高诚辉,曾寿金. 复杂曲面的网格化自适应测点规划[J].光学精密工程,2019,27(07):1632-1639.

Poniatowska M. Deviation model based method of planning accuracy inspection of free-form surfaces using CMMs[J]. Measurement: Journal of the International Measurement Confederation, 2012, 45(5): 927-937.

郭润琪,盛步云,陆辛成. 基于三角网格模型的自由曲面自适应测点规划[J].计算机集成制造系统,2022,28(06):1814-1822.

Abdulhameed O, Mian S H, Al-Ahmari A, et al. Patch and curvature specific estimation of efficient sampling scheme for complex surface inspection[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(11): 3407-3422.

Du Q, Gunzburger M, Ju L. Advances in studies and applications of centroidal Voronoi tessellations[J]. Numerical Mathematics: Theory, Methods and Applications, 2010, 3(2): 119-142.

Du Q, Gunzburger M, Ju L, et al. Centroidal Voronoi tessellation algorithms for image compression, segmentation, and multichannel restoration[J]. Journal of Mathematical Imaging and Vision, 2006, 24(2): 177-194.

Romero V J, Burkardt J V, Gunzburger M D, et al. Comparison of pure and “Latinized” centroidal Voronoi tessellation against various other statistical sampling methods[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1266-1280.

Mansouri S, Ebrahimnezhad H. Segmentation-based semi-regular remeshing of 3D models using curvature-adapted subdivision surface fitting[J]. Journal of Visualization, 2016, 19(1): 141-155.

Hermann G, Hermann G. Application of computational geometry in coordinate measurement[C]//2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics. IEEE, 2015: 511-516.

Chen Z, Zhang T, Cao J, et al. Point cloud resampling using centroidal Voronoi tessellation methods[J]. Computer-Aided Design, 2018, 102: 12-21.

宋占杰,张美,何改云,等. 基于质心Voronoi结构的自由曲面布点策略[J].吉林大学学报(工学版),2013,43(01):34-38.

孙迎兵,吴凤和,郭保苏,等. 基于MKSA算法的曲面自适应采样[J].计量学报,2018,39(05):622-627.

龚瑗,邱兆祥,郑新建,等. 三维点云预采样的曲面自适应布点策略及应用[J].机械科学与技术,2020,39(11):1759-1765.

Song Z, Wang L, Tao W, et al. The mechanism of curvature for complex surfaces during five-axis flank milling[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5): 1665-1676.

Lai J, Fu J, Xia C, et al. Error compensation of free-form surface with critical area based on T-spline surface reconstruction[J]. International Journal of Computer Integrated Manufacturing, 2017, 30(8): 782-791.

Guide to Assessment of Position, Size, and Departure from Nominal Form of Geometric Feature, the Minimum Number of Points, Standard BS 7172:1989.

Beg J, Shunmugam M S. An object oriented planner for inspection of prismatic parts–OOPIPP[J]. The International Journal of Advanced Manufacturing Technology, 2002, 19(12): 905-916.

刘达新,董玉德,赵韩,等. 三坐标测量机一般表面上的自适应采样规划[J].计算机辅助设计与图形学学报,2009,21(05):700-707.

Stojadinovic S M, Majstorovic V D, Durakbasa N M, et al. Towards an intelligent approach for CMM inspection planning of prismatic parts[J]. Measurement, 2016, 92: 326-339.

Mohib A, Azab A, ElMaraghy H. Feature-based hybrid inspection planning: A mathematical programming approach[J]. International journal of computer integrated manufacturing, 2009, 22(1): 13-29.

张虎,张润,于连栋. 基于CAD模型的三坐标测量机测点分布规划[J].自动化与仪表,2019,34(02):1-4+10.

于泽晖. 基于MBD的智能三坐标检测工艺规划技术研究[D].江苏科技大学,2020.

Menq C H, Yau H T, Lai G Y. Automated precision measurement of surface profile in CAD-directed inspection[J]. IEEE transactions on Robotics and Automation, 1992, 8(2): 268-278.

Edgeworth, R. Wilhelm, R. Characterization of workpiece form uncertainty for uniform sampling patterns. 33rd North American Manufacturing Research Conference (NAMRC), 2005, 33: 501-507.

谢苏隆. Zernike多项式拟合曲面中拟合精度与采样点数目研究[J].应用光学,2010,31(06):943-949.

Ramaswami H, Kanagaraj S, Anand S. An inspection advisor for form error in cylindrical features[J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(1): 128-143.

Wu J, Zhu L C, Li M, et al. Effects Of Measuring Instrument And Measuring Points On Circular Coordinate Measurement Precision[C]//2016 International Conference on Computer Engineering and Information Systems. Atlantis Press, 2016: 405-410.

刘进洲. 基于CMM测量技术的曲面重构研究[D].吉林大学,2009.

苏长青,孙业翔,屈力刚,等. 基于三坐标测量机的采样点数及其分布策略研究[J].中国工程机械学报,2015,13(06):566-570.

屈力刚,胡宝慧,李静. 基于三坐标测量机的规则曲面采样策略研究[J].机床与液压,2020,48(02):35-39.

刘红军,叶文静,纪俐. 基于实时重构的自由曲面自适应布点方法[J].中国机械工程,2017,28(17):2090-2094.

Zhang Y F, Nee A Y C, Fuh J Y H, et al. A neural network approach to determining optimal inspection sampling size for CMM[J]. Computer Integrated Manufacturing Systems, 1996, 9(3): 161-169.

Hwang I, Lee H, Ha S. Hybrid neuro-fuzzy approach to the generation of measuring points for knowledge-based inspection planning[J]. International journal of production research, 2002, 40(11): 2507-2520.

Magdziak M, Ratnayake R M C. Contact Coordinate Measurements of Free-form Surfaces: A FIS for Optimal Distribution of Measurement Points[C]//2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2018: 1068-1072.

Cho M W, Lee H, Yoon G S, et al. A feature-based inspection planning system for coordinate measuring machines[J]. The International Journal of Advanced Manufacturing Technology, 2005, 26(9): 1078-1087.

Jeon H, Lee J, Yang J. A touch-probe path generation method through similarity analysis between the feature vectors in new and old models[J]. Journal of Mechanical Science and Technology, 2016, 30(10): 4705-4716.

Fu G, Sheng B, Chen G, et al. A Contact On-Machine Measurement Points’ Planning Method Based on Similarity of 3-D Process Element[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14.

Raghunandan R, Rao P V. Selection of an optimum sample size for flatness error estimation while using coordinate measuring machine[J]. International Journal of Machine Tools and Manufacture, 2007, 47(3-4): 477-482.

Lin Z C, Lin W S. Measurement point prediction of flatness geometric tolerance by using grey theory[J]. Precision engineering, 2001, 25(3): 171-184.

Berger M, Tagliasacchi A, Seversky L M, et al. A survey of surface reconstruction from point clouds[C]//Computer Graphics Forum. 2017, 36(1): 301-329.

Zhou K, Gong M, Huang X, et al. Data-parallel octrees for surface reconstruction[J]. IEEE transactions on visualization and computer graphics, 2010, 17(5): 669-681.

Yoo D J. Rapid surface reconstruction from a point cloud using the least-squares projection[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11: 273-283.

Kazhdan M, Hoppe H. Screened poisson surface reconstruction[J]. ACM Transactions on Graphics (ToG), 2013, 32(3): 1-13.

黄矿裕,唐昀超,邹湘军,等. 基于改进法线方向的泊松曲面重构算法[J].激光与光电子学进展,2019,56(14):88-95.

Morel J, Bac A, Véga C. Surface reconstruction of incomplete datasets: A novel Poisson surface approach based on CSRBF[J]. Computers & Graphics, 2018, 74: 44-55.

Repnik B, Zalik B. A fast algorithm for approximate surface reconstruction from sampled points[J]. Advances in Engineering Software, 2012, 53:72-78.

袁清洌, 吴学群. 结合Delaunay三角面分离法与搜索球策略的三维曲面重建算法[J]. 图学学报, 2018, 39(02): 278-286.

Lyche T, Manni C, Speleers H. Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement[M]//Splines and PDEs: From Approximation Theory to Numerical Linear Algebra. Springer, Cham, 2018: 1-76.

刘宇,侯亮,席文明. 一种基于能量函数和矢量场的点集曲面构造方法[J].机械工程学报,2018,54(05):179-184.

赖金涛,傅建中,沈洪垚,等. 基于NURBS曲面敏感点的曲面检测测点优化[J].浙江大学学报(工学版),2015,49(07):1201-1207.

Wu L, Wu J J, Li L. The realization of B-spline surface reconstruction algorithm based on reverse control points[C]//2017 29th Chinese Control And Decision Conference (CCDC). IEEE, 2017: 6173-6177.

Kineri Y, Wang M, Lin H, et al. B-spline surface fitting by iterative geometric interpolation/approximation algorithms[J]. Computer-Aided Design, 2012, 44(7): 697-708.

Chen Y, Gao J, Deng H, et al. Spatial statistical analysis and compensation of machining errors for complex surfaces[J]. Precision Engineering, 2013, 37(1): 203-212.

王益,赖金涛,傅建中,等. 基于NURBS控制点重构的加工误差在机测量方法[J].浙江大学学报(工学版),2014,48(10):1781-1787.

Liu M, Li B, Guo Q, et al. Progressive iterative approximation for regularized least square bivariate B-spline surface fitting[J]. Journal of Computational and Applied Mathematics, 2018, 327: 175-187.

Sederberg T W, Zheng J, Bakenov A, et al. T-splines and T-NURCCs[J]. ACM Transactions on Graphics (TOG), 2003, 22(3): 477-484.

Sederberg T W, Finnigan G T, Li X, et al. Watertight trimmed NURBS[J]. ACM Transactions on Graphics (TOG), 2008, 27(3): 1-8.

Nasri A, Sinno K, Zheng J. Local T-spline surface skinning[J]. The Visual Computer, 2012, 28(6): 787-797.

Oh M J, Roh M I, Kim T. Local T-spline surface skinning with shape preservation[J]. Computer-Aided Design, 2018, 104: 15-26.

Ginnis A I, Kostas K V, Kaklis P D. Construction of smooth branching surfaces using T-splines[J]. Computer-Aided Design, 2017, 92: 22-32.

唐月红,李秀娟,程泽铭,等. 隐式T样条实现封闭曲面重建[J].计算机辅助设计与图形学学报,2011,23(02):270-275.

Shang C, Fu J, Lin Z, et al. Closed T-spline surface reconstruction from medical image data[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(11): 1659-1671.

Chen Feng, Yuichi Taguchi. FasTFit: A fast T-spline fitting algorithm[J]. Computer-Aided Design,2017,92:11–21.

Han Z, Wang Y, Ma X, et al. T-Spline Based Unifying Registration Procedure for Free-Form Surface Workpieces in Intelligent CMM[J]. Applied Sciences, 2017, 7(10):1092.

Lu Z, Jiang X, Huo G, et al. A fast T-spline fitting method based on efficient region segmentation[J]. Computational and Applied Mathematics, 2020, 39(2):1-19.

江斌. 钛合金空心风扇叶片加工变形及误差补偿研究[J].南京航空航天大学,2016.

Lee W, Lee Y, Wei C C. Automatic Error Compensation for Free-Form Surfaces by Using On-Machine Measurement Data[J]. Applied Sciences, 2019, 9(15): 3073.

Lee W C, Lee Y T, Wei C C. Machining Error Compensation Based on the Reconstructed Free-Form Surfaces of CAD Models[C]//2018 International Conference on System Science and Engineering (ICSSE). IEEE, 2018: 1-4.

Abe G, Aritoshi M, Tomita T, et al. Machining error compensation based on 3D surface model modified by measured accuracy[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2008, 2(4): 792-799.

Li P, Hu Y, Ma Z. Positioning Error Compensation for Machining Center Based on Spline Interpolation[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2012, 472: 3029-3034.

Ke X, Guo Y, Zhang S, et al. Research on machining error compensation in high-precision surface grinding machine for optical aspheric elements[C]//5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. SPIE, 2010, 7655: 768-772.

Lai J, Fu J, Wang Y, et al. A novel method of efficient machining error compensation based on NURBS surface control points reconstruction[J]. Machining Science and Technology, 2015, 19(3): 499-513.

Guiassa R, Mayer J R R. Predictive compliance based model for compensation in multi-pass milling by on-machine probing[J]. CIRP annals, 2011, 60(1): 391-394.

Poniatowska M. Free-form surface machining error compensation applying 3D CAD machining pattern model[J]. Computer-Aided Design, 2015, 62: 227-235.

马文魁. 复杂曲面加工误差补偿方法与关键技术研究[D].天津大学,2016.

Ma W, He G, Han J, et al. Error compensation for machining of sculptured surface based on on-machine measurement and model reconstruction[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(7): 3177-3187.

李董霞. 基于在机测量的几何自适应加工技术[D].北京理工大学,2018.

聂兆伟,熊丹丹. 航空发动机叶片自适应修复目标曲面重构[J].计算机集成制造系统,2019,25(01):53-60.

Lasemi A, Xue D, Gu P. Tool path re-planning in free-form surface machining for compensation of process-related errors[J]. International Journal of Production Research, 2014, 52(20): 5913-5931.

Ge G, Du Z, Feng X, et al. An integrated error compensation method based on on-machine measurement for thin web parts machining[J]. Precision Engineering, 2020, 63: 206-213.

Huang N, Bi Q, Wang Y, et al. 5-Axis adaptive flank milling of flexible thin-walled parts based on the on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2014, 84: 1-8.

Huang N, Yin C, Liang L, et al. Error compensation for machining of large thin-walled part with sculptured surface based on on-machine measurement[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96: 4345-4352.

Xiong G, Li Z L, Ding Y, et al. A closed-loop error compensation method for robotic flank milling[J]. Robotics and Computer-Integrated Manufacturing, 2020, 63: 101928.

Huang H, Chen W K, Kuriyagawa T. Profile error compensation approaches for parallel nanogrinding of aspherical mould inserts[J]. International Journal of Machine Tools and Manufacture, 2007, 47(15): 2237-2245.

侯尧华,张定华,张莹. 薄壁件加工误差补偿建模与学习控制方法[J].机械工程学报,2018,54(17):108-115.

曹新航. 基于在机测量的工件自适应加工技术研究[D].南京航空航天大学,2020.

向华,周谋,胡鹏程,等. 基于比对仪在线测量数据的加工误差补偿[J].组合机床与自动化加工技术,2022(03):111-115.

陈岳坪. 复杂曲面零件精密检测与误差补偿技术研究[D].广东工业大学,2012.

张云,梁光顺,张赟,等. 一种基于轮廓误差的NC数据补偿方法[J].清华大学学报(自然科学版),2022,62(12):1989-1995.

Saji K, Umehara M, Yamada K. Coherent tangent bundles and Gauss–Bonnet formulas for wave fronts [J]. Journal of Geometric Analysis, 2012, 22(2): 383-409.

Li X, Iyengar S S. On computing mapping of 3d objects: A survey[J]. ACM Computing Surveys (CSUR), 2014, 47(2): 1-45.

Choi GP, Chan HL, Yong R, et al. Tooth morphometry using quasi-conformal theory. Pattern Recognition, 2020, 99: 107064.

Meng T W, Choi G P T, Lui L M. Tempo: Feature-endowed teichmu ̈ller extremal mappings of point clouds[J]. SIAM Journal on Imaging Sciences, 2016, 9(4): 1922-1962.

Choi P T, Lui L M. Fast disk conformal parameterization of simply-connected open surfaces[J]. Journal of Scientific Computing, 2015, 65: 1065-1090.

Yang X S, Deb S. Cuckoo search: recent advances and applications[J]. Neural Computing and applications, 2014, 24(1): 169-174.

李煜,马良. 新型元启发式布谷鸟搜索算法[J].系统工程,2012,30(08):64-69.

尹小奎,李奇敏,叶仲泉,等. NURBS曲面光顺方法综述[J].图学学报,2012,33(05):13-18.

Zhou B, Xu S, Yang X. Computing the color complexity of images[C]//2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2015: 1898-1902.

陈燕芹,段锦,祝勇,等. 基于纹理特征的图像复杂度研究[J].中国光学,2015,8(03):407-414.

林涛,刘航鹏,赵参参,等. 基于SSA-PSO-ANFIS的短期风速预测研究[J].太阳能学报,2021,42(03):128-134.

Rezakazemi M, Dashti A, Asghari M, et al. H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15211-15225.

Mahdevari S, Khodabakhshi M B. A hybrid PSO-ANFIS model for predicting unstable zones in underground roadways[J]. Tunnelling and Underground Space Technology, 2021, 117: 104167.

Moayedi H, Mehrabi M, Kalantar B, et al. Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced landslide[J]. Geomatics, Natural Hazards and Risk, 2019, 10(1): 1879-1911.

宋栓军,陈凯凯,张华威. 基于APSO算法的双容水箱PID参数优化仿真[J].计算机仿真,2018,35(08):261-265.

Cui Z, Zeng J, Yin Y. An improved PSO with time-varying accelerator coefficients[C]//2008 Eighth International Conference on Intelligent Systems Design and Applications. IEEE, 2008, 2: 638-643.

胡海涛,纪小刚,张溪溪,等. 均匀T网格样条曲面的局部细分算法[J].机械科学与技术,2020,39(05):743-750.

Kang H, Chen F, Deng J. Modified T-splines[J]. Computer Aided Geometric Design, 2013, 30(9): 827-843.

Zeng C, Deng F, Li X, et al. Dimensions of biquadratic and bicubic spline spaces over hierarchical T-meshes[J]. Journal of Computational and Applied Mathematics, 2015, 287: 162-178.

廖平. 基于遗传算法和分割逼近法精确计算复杂曲面轮廓度误差[J].机械工程学报,2010,46(10):1-7.

Jothiaruna N, Sundar K J A, Karthikeyan B. A segmentation method for disease spot images incorporating chrominance in comprehensive color feature and region growing[J]. Computers and Electronics in Agriculture, 2019, 165: 104934.

Cai W, Chen S, Zhang D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J]. Pattern recognition, 2007, 40(3): 825-838.

An P T, Huyen P T T, Le N T. A modified Graham’s convex hull algorithm for finding the connected orthogonal convex hull of a finite planar point set[J]. Applied Mathematics and Computation, 2021, 397: 125889.

Lu Y, Shi K, Yong J, et al. A B-spline curve extension algorithm[J]. Science China Information Sciences, 2016, 3(59): 1-9.

Wang A, Zhao G. Curvature variation factor and its application[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2017, 15(02): 1750013.

赵世田,赵东标,付莹莹. 自由曲面加工刀具路径生成高精度变步长算法研究[J].机械科学与技术,2010,29(01):32-35.

中图分类号:

 TP391.73    

条码号:

 002000074727    

馆藏号:

 TD10060745    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式