- 无标题文档
查看论文信息

中文题名:

 石墨粒子巯基化对其表面包银及吸附性能的影响    

姓名:

 罗仕刚    

学号:

 1049721200450    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 材料学    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料学    

研究方向:

 导电复合材料    

第一导师姓名:

 赵素玲    

第一导师院系:

 武汉理工大学    

第二导师姓名:

 王一龙    

完成日期:

 2015-05-23    

答辩日期:

 2015-05-23    

中文关键词:

 高密度巯基 ; 银包石墨复合粒子 ; 薄而致密壳层 ; 导电复合材料 ; 铅吸附剂    

中文摘要:

由于巯基与重金属离子(如:银、铅)具有较强的极化作用,所以巯基化改性后的材料可用于制备表面包银的复合粒子及作为去除铅离子的吸附剂。针对现有制备技术得到的银包石墨(NG@Ag)复合粒子存在壳层不致密、散银、密度大、银含量高以及铅吸附剂吸附慢、难分离等问题,本论文发展了一种在低羟基密度的石墨粒子表面接枝高密度巯基的制备方法,以此来制备薄而致密银壳层包覆的石墨@Ag复合粒子及获得了一种高吸收、快去除且易分离的铅吸附剂。探究了这种复合粒子的形成机理及其导电胶的性能;研究了接枝不同巯基密度的石墨粒子对Pb(Ⅱ)的等温吸附行为及吸附动力学;并研究了水溶液pH值和循环次数对巯基化石墨粒子的吸附能力的影响规律。取得的主要研究结果如下:

首先,在低羟基密度的石墨粒子表面实现了高巯基密度的修饰。重点研究了反应参数(如:MPTMS、H 2O及催化剂氨的浓度)对石墨粒子表面巯基密度的影响规律。研究表明,水和氨既能促使MPTMS分子与石墨粒子表面上的羟基发生缩合,也能促进MPTMS分子在石墨粒子表面的自缩聚。这有利于在石墨粒子表面形成高密度的巯基;控制水和MPTMS的体积比还能调控石墨粒子表面巯基的密度。

其次,运用调控石墨粒子表面巯基密度的方法制备了壳层厚度可控的NG@Ag核壳复合粒子。阐明了巯基密度与形成致密壳层时的最小壳厚之间的关系;揭示了复合粒子的壳层厚度对其电性能的影响规律。研究表明,高密度巯基修饰的石墨粒子表面能得到高密度的银晶核,利于制备薄而致密的银壳层;本文制备的NG@Ag复合粒子不仅具有更低的银含量(32 wt%)和更小的密度(3.06 g/cm~3),而且具有更优异的导电率(高达 1.7×10~6 S/m)。此外,其填充的环氧树脂导电胶导电性能高,成本低且填充比小。这种轻质、高性能的导电填料有望广泛应用于导电与电磁屏蔽复合材料中。

最后,选用比表面积更大的石墨粒子进行高密度巯基化修饰,研究了接枝不同巯基密度的石墨粒子对铅离子的吸附性能。结果表明,该类吸附剂符合Langmuir等温吸附模型,具有较高的吸附量,可达55.67 mg/g。其中MNG-2吸附剂能在短时间内(20 min)将浓度为 1.0 mg/L的Pb(Ⅱ)降低到0.012 mg/L(< 0.015 mg/L,即:饮用水中Pb(Ⅱ)的最高浓度)其吸附过程的速率常数k 2高达3.07 g·mg~-1·min~-1,进一步证实了该吸附剂对溶液中残留铅离子去除快的能力。这主要是因为吸附剂表面接枝了高密度巯基的缘故。而且,MNG吸附剂的粒径为微米级,易分离回收。此外,该吸附剂在中性溶液中的吸附能力最佳;经过3次循环后,其吸附效率仍然保持在90%以上,具有良好的使用寿命。这类铅吸附剂不仅价格低廉、合成简单,还具有高吸收、快去除且易回收的特点,有望广泛用于去除水中的Pb(Ⅱ)。

参考文献:

[1] Huang Z., Chi B., Guan J., et al. Facile method to synthesize silver nanoparticles on the surface of hollow glass microspheres and their microwave shielding properties [J]. RSC Advances, 2014, 4(36): 18645-18651.

[2] Hu Y., Zhao T., Zhu P., et al. Preparation of large micron-sized monodisperse polystyrene/silver core-shell microspheres with compact shell structure and their electrical conductive and catalytic properties [J]. RSC Advances, 2014, 5(1): 58-67.

[3] Fu Y., Liu L., Zhang L., et al. Highly conductive one-dimensional nanofibers: silvered electrospun silica nanofibers via poly(dopamine) functionalization [J]. ACS Applied Materials & Interfaces, 2014, 6(7): 5105-5112.

[4] Wang W., Li R., Tian M., et al. Surface silverized meta-aramid fibers prepared by bio-inspired poly(dopamine) functionalization [J]. ACS Applied Materials & Interfaces, 2013, 5(6): 2062-2069.

[5] Ma Y., Zhang Q.. Preparation and characterization of monodispersed PS/Ag composite microspheres through modified electroless plating [J]. Applied Surface Science, 2012, 258(19): 7774-7780.

[6] 文江鸿. 银包铝核壳复合粒子的壳层结构调控与性能研究 [D]. 武汉理工大学, 2013.

[7] 张威. 表面包银核壳复合粒子/环氧树脂导电胶的制备和性能研究 [D]. 武汉理工大学, 2011.

[8] 王一龙. 表面包银(中空)核壳复合粒子及其电磁屏蔽材料的研究 [D]. 武汉理工大学, 2010.

[9] Lan M., Zhang D., Cai J., et al. Fabrication and electromagnetic interference shielding effectiveness of polymeric composites filled with silver-coated microorganism cells [J]. Applied Surface Science, 2014, 307: 287-292.

[10] 王一龙, 李维, 章桥新, 等. 羰基铁粉/银核-壳粒子及其复合材料的制备与电磁特性 [J]. 高等学校化学学报, 2010, 31(10): 1934-1939.

[11] 张威, 王一龙, 赵素玲, 等. 银包玻珠核壳复合粒子的表面处理及环氧导电胶的电性能 [J]. 高等学校化学学报, 2012, 33(03): 615-619.

[12] 孙洁. 玻珠表面致密包覆薄Ag壳层复合粒子及其导电复合材料优化设计和可控制备 [D]; 武汉理工大学, 2014.

[13] 赵素玲, 陈晶, 王一龙, 等. 低温热处理对Fe@Ag复合粒子结构及性能的影响 [J]. 无机材料学报, 2010, 25(11): 1180-1184.

[14] Ren P., Guan J., Zhang J.. Effects of heat treatment temperature and time on structure and static magnetic property of W-type ferrite hollow microspheres [J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2007, 22(1): 168-170.

[15] Hirakawa T., Kamat P. V.. Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation [J]. Journal of the American Chemical Society, 2005, 127(11): 3928-3934.

[16] Chen K-H, Pu Y-C, Chang K-D, et al. Ag-nanoparticle-decorated SiO2-nanospheres exhibiting remarkable plasmon-mediated photocatalytic properties [J]. The Journal of Physical Chemistry C, 2012, 116(35): 19039-19045.

[17] Ding T., Song K., Clays K., et al. Fabrication of 3D photonic crystals of ellipsoids: convective self-assembly in magnetic field [J]. Advanced Materials, 2009, 21(19): 1936-1940.

[18] Ghosh Chaudhuri R., Paria S.. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications [J]. Chemical Reviews, 2012, 112(4): 2373-2433.

[19] Kalele S., Gosavi S., Urban J., et al. Nanoshell particles: synthesis, properties and applications [J]. Current science, 2006, 91(8): 1038-1052.

[20] Moradi Golsheikh A., Huang N. M., Lim H. N., et al. One-step electrodeposition synthesis of silver-nanoparticle-decorated graphene on indium-tin-oxide for enzymeless hydrogen peroxide detection [J]. Carbon, 2013, 62: 405-412.

[21] Zhang Y., Yuan X., Wang Y., et al. One-pot photochemical synthesis of graphene composites uniformly deposited with silver nanoparticles and their high catalytic activity towards the reduction of 2-nitroaniline [J]. Journal of Materials Chemistry, 2012, 22(15): 7245-7251.

[22] Li S. K., Yan Y. X., Wang J. L., et al. Bio-inspired in situ growth of monolayer silver nanoparticles on graphene oxide paper as multifunctional substrate [J]. Nanoscale, 2013, 5(24): 12616-12623.

[23] Zhang Z., Xu F., Yang W., et al. A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering [J]. Chemical Communications (Camb), 2011, 47(22): 6440-6442.

[24] Tang S., Tang Y., Zhu S., et al. Synthesis and characterization of silica-silver core-shell composite particles with uniform thin silver layers [J]. Journal of Solid State Chemistry, 2007, 180(10): 2871-2876.

[25] Pol V. G., Srivastava D., Palchik O., et al. Sonochemical deposition of silver nanoparticles on silica spheres [J]. Langmuir, 2002, 18(8): 3352-3357.

[26] Wang K., Zhang X., Niu C., et al. Template-activated strategy toward one-step coating silica colloidal microspheres with sliver [J]. ACS Applied Materials & Interfaces, 2014, 6(2): 1272-1278.

[27] McKiernan M., Zeng J., Ferdous S., et al. Facile synthesis of bimetallic Ag/Ni core/sheath nanowires and their magnetic and electrical properties [J]. Small, 2010, 6(17): 1927-1934.

[28] Dong A. G., Wang Y. J., Tang Y., et al. Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction [J]. Chemical Communications, 2002, (4): 350-351.

[29] Cassagneau T., Caruso F.. Contiguous silver nanoparticle coatings on dielectric spheres [J]. Advanced Materials, 2002, 14(10): 732-736.

[30] Zhang J., Liu J., Wang S., et al. Facile methods to coat polystyrene and silica colloids with metal [J]. Advanced Functional Materials, 2004, 14(11): 1089-1096.

[31] Liang T., Guo W., Yan Y., et al. Electroless plating of silver on graphite powders and the study of its conductive adhesive [J]. International Journal of Adhesion and Adhesives, 2008, 28(1-2): 55-58.

[32] Wang W., Jiang Y., Wen S., et al. Preparation and characterization of polystyrene/Ag core-shell microspheres-a bio-inspired poly(dopamine) approach [J]. Journal of Colloid and Interface Science, 2012, 368(1): 241-249.

[33] Yang J. K., Kang H., Lee H., et al. Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides [J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12541-12549.

[34] Moon J. H., Kim K. H., Choi H. W., et al. Electroless silver coating of rod-like glass particles [J]. Ultramicroscopy, 2008, 108(10): 1307-1310.

[35] Choe W. G., Kim D. Y., Park O O.. Morphology control and temporal growth of a continuous silver shell on core-shell spheres [J]. CrystEngComm, 2014, 16(23): 5142-5149.

[36] He F., Lau S., Chan H. L., et al. High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates [J]. Advanced Materials, 2009, 21(6): 710-715.

[37] Wu Y. P., Jiang C., Wan C., et al. Modified natural graphite as anode material for lithium ion batteries [J]. Journal of power sources, 2002, 111(2): 329-334.

[38] Chen G., Weng W., Wu D., et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique [J]. Carbon, 2004, 42(4): 753-759.

[39] Striebel K. A., Sierra A., Shim J., et al. The effect of compression on natural graphite anode performance and matrix conductivity [J]. Journal of power sources, 2004, 134(2): 241-251.

[40] Xu R., He J., Song Y., et al. Contact resistance improvement using interfacial silver nanoparticles in amorphous indium-zinc-oxide thin film transistors [J]. Applied Physics Letters, 2014, 105(9): 093504.

[41] 徐露露. 镍包石墨复合粉末的制备及在导电硅橡胶中的应用研究 [D]. 中南大学, 2011.

[42] 兰芳. 镍包石墨核壳复合粒子的形貌控制制备与性能研究 [D]. 武汉理工大学, 2014.

[43] 王晓燕. 铜-石墨复合材料制备及性能研究 [D]. 沈阳工业大学, 2010.

[44] 杜亮亮. 银包铜粉环氧导电胶的制备、结构与性能 [D]. 华南理工大学, 2010.

[45] 丁国芸, 夏金童, 肖勇, 等. 石墨粉镀银新工艺研究 [J]. 炭素技术, 2007, 5(26): 6-9.

[46] 耿焕然, 汤皎宁, 章剑波, 等. 导电油墨用镀银石墨粉的研制 [J]. 电镀与涂饰, 2013, 32(03): 30-32.

[47] Sun W., Chen G., Zheng L.. Electroless deposition of silver particles on graphite nanosheets [J]. Scripta Materialia, 2008, 59(10): 1031-1034.

[48] Zhang Y., Qi S., Wu X., et al. Electrically conductive adhesive based on acrylate resin filled with silver plating graphite nanosheet [J]. Synthetic Metals, 2011, 161(5-6): 516-522.

[49] Ho T-L. Hard and soft acids and bases principle in organic chemistry [M]. Elsevier, 2012, 75: 1-20.

[50] Chen F., Li X., Hihath J., et al. Effect of anchoring groups on single-molecule conductance: comparative study of thiol-, amine-, and carboxylic-acid-terminated molecules [J]. Journal of the American Chemical Society, 2006, 128(49): 15874-15881.

[51] 张晓蕾. 壳-核结构铁锰磁性吸附材料制备及对水中重金属离子Cu~(2+)、Pb~(2+)吸附效能研究 [D]. 烟台大学, 2013.

[52] 熊琼仙. 巯基化膨润土对铅的吸附解吸行为及土壤修复研究 [D]. 成都理工大学, 2013.

[53] Madadrang C. J., Kim H. Y., Gao G., et al. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal [J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1186-1193.

[54] Liu M., Wang Y., Chen L., et al. Mg(OH) supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution [J]. ACS Applied Materials & Interfaces, 2015.

[55] Pala I. R., Brock S. L.. ZnS nanoparticle gels for remediation of Pb2+ and Hg2+ polluted water [J]. ACS Applied Materials & Interfaces, 2012, 4(4): 2160-2167.

[56] Cao C. Y., Qu J., Wei F., et al. Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions [J]. ACS Applied Materials & Interfaces, 2012, 4(8): 4283-4287.

[57] Benhammou A., Yaacoubi A., Nibou L., et al. Adsorption of metal ions onto moroccan stevensite: kinetic and isotherm studies [J]. Journal of Colloid and Interface Science, 2005, 282(2): 320-326.

[58] Kumar S., Nair R. R., Pillai P. B., et al. Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water [J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17426-17436.

[59] Musico Y. L. F., Santos C. M., Dalida M. L. P., et al. Improved removal of lead(ii) from water using a polymer-based graphene oxide nanocomposite [J]. Journal of Materials Chemistry A, 2013, 1(11): 3789-3796.

[60] Rao M. M., Ramana D. K., Seshaiah K., et al. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls [J]. Journal of Hazardous Materials, 2009, 166(2-3): 1006-1013.

[61] Huang Z. H., Zheng X., Lv W., et al. Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets [J]. Langmuir, 2011, 27(12): 7558-7562.

[62] Zhang C., Sui J., Li J., et al. Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes [J]. Chemical Engineering Journal, 2012, 210: 45-52.

[63] Sangvanich T., Morry J., Fox C., et al. Novel oral detoxification of mercury, cadmium, and lead with thiol-modified nanoporous silica [J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5483-5493.

[64] Hakami O., Zhang Y., Banks C. J.. Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water [J]. Water Research, 2012, 46(12): 3913-3922.

[65] Li G., Zhao Z., Liu J., et al. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica [J]. Journal of Hazardous Materials, 2011, 192(1): 277-283.

[66] Thu P. T. T., Thanh T. T., Phi H. N., et al. Adsorption of lead from water by thiol-functionalized SBA-15 silicas [J]. Journal of materials science, 2010, 45(11): 2952-2957.

[67] Quirarte-Escalante C. A., Soto V., de la Cruz W., et al. Synthesis of hybrid adsorbents combining sol-gel processing and molecular imprinting applied to lead removal from aqueous streams [J]. Chemistry of Materials, 2009, 21(8): 1439-1450.

[68] Liang X., Xu Y., Sun G., et al. Preparation, characterization of thiol-functionalized silica and application for sorption of Pb2+ and Cd2+ [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 349(1-3): 61-68.

[69] Lagadic I. L., Mitchell M. K., Payne B. D.. Highly effective adsorption of heavy metal ions by a thiol-functionalized magnesium phyllosilicate clay [J]. Environmental science & technology, 2001, 35(5): 984-990.

[70] Shin Y., Fryxell G. E., Um W., et al. Sulfur-functionalized mesoporous carbon [J]. Advanced Functional Materials, 2007, 17(15): 2897-2901.

[71] Liang X., Xu Y., Wang L., et al. Sorption of Pb2+ on mercapto functionalized sepiolite [J]. Chemosphere, 2013, 90(2): 548-555.

[72] 吴志敏. 巯基改性纤维素对多糖体系中铅的净化研究 [D]. 大连理工大学, 2012.

[73] Fang Q. R., Yuan D. Q., Sculley J., et al. Functional mesoporous metal-organic frameworks for the capture of heavy metal ions and size-selective catalysis [J]. Inorganic Chemistry, 2010, 49(24): 11637-11642.

[74] Li B., Zhang Y., Ma D., et al. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution [J]. Nature Communications, 2014, 5(5537): 1-7.

[75] Zou B., Chen K., Wang Y., et al. Amino-functionalized magnetic magnesium silicate double-shelled hollow microspheres for enhanced removal of lead ions [J]. RSC Advances, 2015, 5(29): 22973-22979.

[76] Zhang J., Zhai S., Li S., et al. Pb(II) removal of Fe3O4@SiO2-NH2 core-shell nanomaterials prepared via a controllable sol–gel process [J]. Chemical Engineering Journal, 2013, 215-216: 461-471.

[77] Zeng G., Pang Y., Zeng Z., et al. Removal and recovery of Zn2+ and Pb2+ by imine-functionalized magnetic nanoparticles with tunable selectivity [J]. Langmuir, 2012, 28(1): 468-473.

[78] Vukovi? G. D., Marinkovi? A. D., ?kapin S. D., et al. Removal of lead from water by amino modified multi-walled carbon nanotubes [J]. Chemical Engineering Journal, 2011, 173(3): 855-865.

[79] Boehm H.. Surface oxides on carbon and their analysis: a critical assessment [J]. Carbon, 2002, 40(2): 145-149.

[80] van der Lee M. K., van Dillen J., Bitter J. H., et al. Deposition precipitation for the preparation of carbon nanofiber supported nickel catalysts [J]. Journal of the American Chemical Society, 2005, 127(39): 13573-13582.

[81] Zhao L., Ma H., Guan J.. Influence of polyether segment length on mechanical properties of cured epoxy resins based on amino-terminated poly (ethylene glycol) and diglycidyl ether of bisphenol [J]. Chemical Journal of Chinese Universities, 2009, 7(30): 1454-1458.

[82] 段君元. 金属氧化物分级纳米结构的液相制备方法与光催化活性 [D]. 武汉理工大学, 2013.

[83] Gorgulho H. F., Mesquita J. P., Gon?alves F., et al. Characterization of the surface chemistry of carbon materials by potentiometric titrations and temperature-programmed desorption [J]. Carbon, 2008, 46(12): 1544-1555.

[84] Toebes M. L., van Heeswijk J. M. P., Bitter J. H., et al. The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers [J]. Carbon, 2004, 42(2): 307-315.

[85] Zhou Y., Huang R., Ding F., et al. Sulfonic acid-functionalized alpha-zirconium phosphate single-layer nanosheets as a strong solid acid for heterogeneous catalysis applications [J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7417-7425.

[86] Jackson D. H. K., Wang D., Gallo J. M. R., et al. Amine catalyzed atomic layer deposition of (3-Mercaptopropyl)trimethoxysilane for the production of heterogeneous sulfonic acid catalysts [J]. Chemistry of Materials, 2013, 25(19): 3844-3851.

[87] Bauer F., Ernst H., Hirsch D., et al. Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting onto nanoparticles, 5 [J]. Macromolecular Chemistry and Physics, 2004, 205(12): 1587-1593.

[88] Bressy C., Ngo V. G., Ziarelli F., et al. New insights into the adsorption of 3-(trimethoxysilyl)propylmethacrylate on hydroxylated ZnO nanopowders [J]. Langmuir, 2012, 28(6): 3290-3297.

[89] Ho T-L. Hard soft acids bases (HSAB) principle and organic chemistry [J]. Chemical Reviews, 1975, 75(1): 1-20.

[90] SelegArd L., Khranovskyy V., Soderlind F., et al. Biotinylation of ZnO nanoparticles and thin films: a two-step surface functionalization study [J]. ACS Applied Materials & Interfaces, 2010, 2(7): 2128-2135.

[91] Li H., Wang R., Hu H., et al. Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent [J]. Applied Surface Science, 2008, 255(5): 1894-1900.

[92] Paredes J., Villar-Rodil S., Martinez-Alonso A., et al. Graphene oxide dispersions in organic solvents [J]. Langmuir, 2008, 24(19): 10560-10564.

[93] Silva F. A., Pissetti F. L.. Adsorption of cadmium ions on thiol or sulfonic-functionalized poly(dimethylsiloxane) networks [J]. Journal of Colloid and Interface Science, 2014, 416: 95-100.

[94] Meeks N. D., Davis E., Jain M., et al. Mercury removal by thiol-functionalized metal oxide-carbon black sorbent and mixed-matrix membranes [J]. Environmental Progress & Sustainable Energy, 2013, 32(3): 705-714.

[95] He F., Wang W., Moon J. W., et al. Rapid removal of Hg(II) from aqueous solutions using thiol-functionalized Zn-doped biomagnetite particles [J]. ACS Applied Materials & Interfaces, 2012, 4(8): 4373-4379.

[96] Ek S., Iiskola E. I., Niinist? L., et al. Atomic layer deposition of a high-density aminopropylsiloxane network on silica through sequential reactions of γ-aminopropyltrialkoxysilanes and water [J]. Langmuir, 2003, 19(25): 10601-10609.

[97] Pasricha R., Gupta S., Srivastava A. K.. A facile and novel synthesis of Ag-graphene-based nanocomposites [J]. Small, 2009, 5(20): 2253-2259.

[98] Nassar N. N.. Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents [J]. Journal of Hazardous Materials, 2010, 184(1-3): 538-546.

[99] Peng Q., Guo J., Zhang Q., et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide [J]. Journal of the American Chemical Society, 2014, 136(11): 4113-4116.

[100] Sing K. S, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure and applied chemistry, 1985, 57(4): 603-619.

[101] Mou F., Guan J., Ma H., et al. Magnetic iron oxide chestnutlike hierarchical nanostructures: preparation and their excellent arsenic removal capabilities [J]. ACS Applied Materials & Interfaces, 2012, 4(8): 3987-3993.

[102] Guo B., Deng F., Zhao Y., et al. Magnetic ion-imprinted and -SH functionalized polymer for selective removal of Pb(II) from aqueous samples [J]. Applied Surface Science, 2014, 292: 438-446.

中图分类号:

 TB339    

馆藏号:

 TB339/0450/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式