- 无标题文档
查看论文信息

中文题名:

 

碱激发再生骨料透水混凝土的制备及性能研究

    

姓名:

 姚满园    

学号:

 1049732004641    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081402    

学科名称:

 工学 - 土木工程 - 结构工程    

学生类型:

 硕士    

学校:

 武汉理工大学    

院系:

 土木工程与建筑学院    

专业:

 结构工程    

研究方向:

 固废资源化利用、海绵城市    

第一导师姓名:

 彭自强    

第一导师院系:

 土木工程与建筑学院    

完成日期:

 2023-03-26    

答辩日期:

 2023-05-21    

中文关键词:

 

碱激发再生骨料透水混凝土 ; 制备工艺 ; 力学性能 ; 透水性能 ; 流变性能

  ;

    

中文摘要:

再生骨料透水混凝土(Recycled aggregate pervious concrete,RPC)作为一种绿色环保的路面铺装材料,在海绵城市建设和固废资源化利用等方面作用明显。然而,再生骨料品质多劣于天然骨料,力学性能较差,导致RPC难以达到设计要求。针对此问题,由于碱激发胶凝材料(Alkali-Activated Gelling Materials,AAM)具有快硬高强、粘结性能好等特点,采用矿粉(Slag)和粉煤灰(Fly Ash,FA)为原料、水玻璃作为激发剂,制备碱激发再生骨料透水混凝土(Alkali Activated Recycled Aggregate Pervious Concrete,AARPC),以提升RPC的力学性能,实现RPC力学性能-透水性能之间的理想平衡。

本文对碱激发矿粉/粉煤灰胶凝材料(Alkali-Activated Slag/Fly Ash Cementitious Material,AASFM)的基本力学性能和流变性能;AARPC的制备工艺;AARPC的力学性能、透水性能以及净水性能展开系统性研究,为促进AARPC在海绵城市建设中的实际应用提供一定的理论参考,具体研究内容以及取得的成果如下:

(1)研究了水玻璃模数、FA掺配率以及水胶比对AASFM力学性能和流变性能的影响规律。当水玻璃模数为1.0~1.6,FA掺配率<50%时,AASFM可达到52.5水泥的强度要求;使AARPC具有较好的成型效果对应的浆体基准流动度区间为120± 10mm;粉煤灰具有减水作用,当水玻璃模数为1.2时,三种FA掺配率下(0、25%、50%)的AASFM浆体达到基准流动度区间所对应的水胶比分别为0.33、0.30、0.28,所制备AASFM净浆强度由高到低依次为:75%Slag+25%FA>100%Slag>50%Slag+50%FA。

(2)研究了不同搅拌工艺、成型方式以及养护方式对AARPC新拌混凝土状态和硬化混凝土性能的影响。采用一次投料法、三阶段搅拌法、预拌净浆法搅拌AARPC均会出现成团的现象,采用先用净浆搅拌机将AASFM搅拌成净浆,再与再生骨料混合的搅拌工艺可以搅拌出和易性良好的AARPC;对比了手工插捣、手持平板振动器振动、手工插捣+手持平板振动器振动三种成型方式对AARPC力学性能和透水性能的影响,试验结果表明:采用手工插捣+手持平板振动器振动的成型方式制备的AARPC综合性能最佳,28d抗压强度达到25.5MPa,连续孔隙率和透水系数分别为16.8%和3.59mm/s;采用标准养护、水浴养护和保湿覆膜养护三种养护方式,其中保湿覆膜养护的AARPC各龄期强度都最高,标准养护的AARPC各龄期强度都最低。

(3)设计目标孔隙率为15%,运用控制变量法,研究了水玻璃模数、FA掺配率和水胶比对AARPC力学性能、透水性以及净水性能的影响规律。结果表明:随着水玻璃模数、FA掺配率、水胶比的变化,AASFM的流变性能发生规律性变化,进而对AARPC力学性能和透水性能产生影响。采用水玻璃模数为1.2时AASFM浆体流动度达到基准流动度区间所对应的水胶比,当水玻璃模数为1.0~1.4,AARPC的28d抗压强度普遍高于20MPa,且透水系数满足CJJ/T 135-2009的要求。在本试验较优的配合比下(FA掺配率25%,水胶比0.30,碱当量5%,水玻璃模数1.2),AARPC的28d抗压强度和弯拉强度分别达到33.4MPa和5.23MPa;连续孔隙率和透水系数分别为15.2%和2.0mm/s;经过10次净水试验对Pb2+、Cd2+、Cu2+、Cr3+吸附率分别为:19.0%、16.2%、15.0%、6.0%。

参考文献:

[1]俞孔坚,李迪华,傅微,等. “海绵城市”理论与实践[J]. 城市规划,2015,39(06):26-36.

[2]iaqi Chen, Renxin Chu, LanChun Zhang, et al. Alleviating urban heat island effect using high-conductivity permeable concrete pavement[J]. Journal of Cleaner Production,2019,237:117722.

[3]Thu Thuy Nguyen, Huu Hao Ngo, Wenshan Guo, et al. A new model framework for sponge city implementation: Emerging challenges and future developments[J]. Journal of Environmental Management,2020,253:109689.

[4]Dinkun Yin, Ye Chen, Haifeng Jia, et al. Sponge city practice in china a review of construction assessment operational and maintenance[J]. Journal of Cleaner Production,2021,280(02):124963.

[5]Yongjun Sun, Li Deng,Kaijal J.Shah, et al. Integration of green and gray infrastructures for sponge city: Water and energy nexus[J]. Water-Energy Nexus,2020(03):29-40.

[6]王俊岭,王雪明张,张玉玉,等. 基于“海绵城市”理念的透水铺装系统的研究进展[J]. 环境工程,2015,33(12):1-4,110.

[7]Ning Xie, Michelle Akin, Xianming Shi. Permeable concrete pavements: A review of environmental benefits and durability[J]. Journal of Cleaner Production,2019,210:1605-1621.

[8]高强,李翰弘,孙飞,等. 建筑垃圾的研究应用与发展状况[J]. 四川建材,2021,47(10):32-34.

[9]Tianyu Xie, Phillip Visimtin, Xinyu Zhao, et al. Mix design and mechanical properties of geopolymer and alkali activated concrete: Review of the state-of-the-art and the development of a new unified approach[J]. Construction and Building Materials,2020,256:119380.

[10]Ali Alsalman, Lateef N.Assi, Rahman S.Kareem, et al. Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete[J]. Cleaner Environmental Systems,2021,03:100047.

[11]A O Purdon. The action of alkalis on blast-furnace slag[J]. Journal of the Society of Chemical Industry,1940,59:191-202.

[12]Fernando Pacheco-Torgal, João Castro-Gomes, SaidJalali. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products[J]. Construction and Building Materials,2008,22:1305-1314.

[13]Della MRoya. Alkali-activated cements Opportunities and challenges[J]. Cement and Concrete Research,1999,29(01):249-254.

[14]董申. 碱激发多孔混凝土的制备及性能研究[D]. 北京建筑大学,2021.

[15]John L.Provis. Alkali-activated materials[J]. Cement and Concrete Research,2018.114:40-48.

[16]Kaijun Shi, A.FernándezJiménez, AngelPalomo. New cements for the 21st century: The pursuit of an alternative to Portland cement[J]. Cement and Concrete Research,2011,41(07):750-763.

[17]张志华. 偏高岭土基无机地质聚合物的性能及反应机理[D]. 南京工业大学,2010.

[18]Barbara Lothenbach, Karen Scrivener, R.D.Hooton. Supplementary cementitious materials[J]. Cement and Concrete Research,2011,41(12):1244-1256.

[19]J.M. Khatib. Sustainability of construction materials[M]. London: Woodhead Publishing series in Civil and Structural Engineering,2009.

[20]Aiguo Wang, YiZheng, ZuhuaZhang, et al. The Durability of Alkali-Activated Materials inComparison with Ordinary Portland Cements and Concretes: A Review[J]. Engineering,2020,6(6):695-706.

[21]F.G.Collins, J.G.Sanjayan. Workability and mechanical properties of alkali activated slag concrete[J]. Cement and Concrete Research,1999,29(3):455-458.

[22]Ali A.Aliabdo, Abd Elmoaty M.Abd Elmoaty, Mohammed A.Emam. Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete[J]. Construction and Building Materials,2019,197:339-355.

[23]郑文忠,陈伟宏,王英. 碱矿渣胶凝材料的耐高温性能[J]. 华中科技大学学报(自然科学版),2009,37(10):96-99.

[24]郑文忠,邹梦娜,王英. 碱激发胶凝材料研究进展[J]. 建筑材料学报,2019,40(01):28-39.

[25]张海燕,祁术亮,曹亮. 地聚物净浆、砂浆和混凝土高温后力学性能比较[J]. 防灾减灾工程学报,2015,35(01):11-16.

[26]AntoniaMartin, Jose Y.Pastor, Angel Palomo, et al. Mechanical behaviour at high temperature of alkali-activated aluminosilicates (geopolymers)[J]. Construction and Building Materials,2015,93:1188-1196.

[27]Prabir Kumar Sarker, Sean Kelly, ZhitongYao. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete[J]. Materials & Design,2014,63:584-592.

[28]Mantong Jin, Zidan Zheng, Ye Sun, et al. Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments[J]. Journal of Non-Crystalline Solids,2016,450:116-122.

[29]E.Rodríguez, S.Bernal, R.Mejía de Gutiérrez, et al. Alternative concrete based on alkali-activated slag[J]. Materiales De Construcción,2009,58(291):53-67.

[30]Caijun Shi, Della Roy, Pavel V.Krivenko. Alkali-activated Cements and Concretes[M]. London,U.K: Taylor & Francis,2006:298-319

[31]Faiz U.A. Shaikh. Effects of alkali solutions on corrosion durability of geopolymer concrete[J]. Advances in Concrete Construction,2014,2:109-123.

[32]Chandani Tennakoon, AhmadS hayan, Jay G Sanjayan, et al. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests[J]. Materials & Design,2017,116:287-299.

[33]Yawei Fu, Liangcai Cai, Yonggen Wu. Freeze–thaw cycle test and damage mechanics models of alkali-activated slag concrete[J]. Construction and Building Materials,2011,25(7):3144-3148.

[34]Louise K.Turner, Frank G.Collins. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete[J]. Construction and Building Materials,2013,43:125-130.

[35]Daniel A.Salas, Angel D.Ramirez, NestorUlloam, et al. Life cycle assessment of geopolymer concrete[J]. Construction and Building Materials,2018,190:170-177.

[36]Snežana Marinković, Jelena Dragaš, Ivan Ignjatović, et al. Environmental assessment of green concretes for structural use[J]. Journal of Cleaner Production,2017,154:633-649.

[37]Glukhovsky VD, Rostovskaja GS, Rumyna GV. High strength slag alkaline cements[C]. Proceedings of the seventh international congress on the chemistry of cement, 1980,3:164-168.

[38]Davitovits J. Geopolymer chemistry and properties[C]. Proceedings of the First European Conference on Soft Mineralogy. Compicgne,France: the Geopdymer Institute,1988:132-136.

[39]Divya Khale, Rubina Chaudhary. Mechanism of geopolymerization and factors influencing its development: a review[J]. Journal of Materials Science volume,2007,42:729-746.

[40]Davidovits J. The poly(sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry[J]. Proceedings of 2005 geopolymere conference, 2005,1:9-15.

[41]Fernández-Jiménez, A.Palomo, M.Criado. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement and Concrete Research,2005,35(6):1204-1209.

[42]郑文忠,朱晶. 碱矿渣胶凝材料结构工程应用基础[M]. 哈尔滨:哈尔滨工业大学出版社,2015:1-53.

[43]P. Duxson, A.Fernández-Jiménez, J.L.Provis, et al. Geopolymer technology: the current state of the art[J]. Advances in Geopolymer Science & Technology,2007,42:2917-2933.

[44]BeibeiSun, GuangYe, Geertde Schutter. A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials[J]. Construction and Building Materials,2022,326:126843.

[45]ChaoLi, Henghu Sun, Longtu Li. A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements[J]. Cement and Concrete Research,2010,40(9):1341-1349.

[46]X.Gao, Q.L.Yu, H.J.H.Brouwers. Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends[J]. Construction and Building Materials,2015,80:105-115.

[47]于霖. 碱激发矿渣胶凝材料的制备及其性能研究[D]. 郑州大学,2011.

[48]艾纯志,林军. 碱激发粉煤灰混凝土微观性能试验研究[J]. 混凝土,2022(04):78-80,85.

[49]Danial Nasr, Amir Hossein Pakshi, Hossein Ghayour. The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali activated slag (AAS) mortars[J]. Construction and Building Materials,2018,190:108-119.

[50]杨长辉,蒲心诚. 论碱矿渣水泥及混凝土的缓凝问题及缓凝方法[J]. 重庆建筑大学学报,1996,18(03):67-72.

[51]Tanakorn Phoo-ngernkham, Akihiro Maegawa, Naoki Mishima, et al. Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA–GBFS geopolymer[J]. Construction and Building Materials,2015,91:1-8.

[52]王聪. 碱激发胶凝材料的性能研究[D]. 哈尔滨工业大学,2006.

[53]B.Singh, M.R.Rahman, R.Paswan, et al. Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete[J]. Construction and Building Materials,2016,118:171-179.

[54]Ahmad B.Malkawi, Muhd Fadhil Nuruddin, Amir Fauzi, et al. Effects of Alkaline Solution on Properties of the HCFA Geopolymer Mortars[J]. Procedia Engineering,2016,148:710-717.

[55]Pradip Nath, Prabir Kumar Sarker. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition[J]. Construction and Building Materials,2014,66:163-171.

[56]F.Puertas, B.González-Fonteboa, I.González-Taboada, et al. Alkali-activated slag concrete: Fresh and hardened behaviour[J]. Cement and Concrete Composites,2018,85:22-31.

[57]Yasser Rifaai, Ammar Yahia, Ahmed Mostafa, et al. Rheology of fly ash-based geopolymer: Effect of NaOH concentration[J]. Construction and Building Materials,2019,223:583-594.

[58]Dawang Zhang, Kefei Zhao, Fuzhu Xie, et al. Rheology and agglomerate structure of fresh geopolymer pastes with different Ms ratio of waterglass[J]. Construction and Building Materials,2020,250:118881.

[59]徐干成,袁伟泽,关伟,等. 碱激发高强混凝土工作性及强度特性影响研究[J]. 工业建筑,2018,48(12):120-124.

[60]T.Bakharev, J.G.Sanjayan, Y.-B.Cheng. Effect of elevated temperature curing on properties of alkali-activated slag concrete[J]. Cement and Concrete Research,1999,29(10):1619-1625.

[61]Yamin Gu, Yonghao Fang, Chenhui zhu, et al. Properties and microstructure of alkali-activated slag cement cured at below- and about-normal temperature[J]. Construction and Building Materials,2015,79:1-8.

[62]Maochieh Chi. Effects of dosage of alkali-activated solution and curing conditions on the properties and durability of alkali-activated slag concrete[J]. Construction and Building Materials,2012,35:240-245.

[63]Zhuguo LI, Sha LI. Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete[J]. Construction and Building Materials,2018,163:668-680.

[64]W.Yodsudjai, P.Suwanvitaya, W.Pikulprayong, et al.Testing of geopolymer mortar properties for use as a repair material Design[J]. Development and Applications of Engineering Ceramics and Composites, 2010,215:325-334.

[65]Warid Wazien Ahmad Zailani, Aissa Bouaissi, Mohd Mustafa Al Bakri Abdullah, et al. Bonding Strength Characteristics of FA-Based Geopolymer Paste as a Repair Material When Applied on OPC Substrate[J]. Applied Sciences,2020,10(9):3321.

[66]朱红光,侯金良,石晶,等. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报,2022,36(16):142-146.

[67]P.Chindaprasirt, W.Chalee. Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site[J]. Construction and Building Materials,2014,63:303-310.

[68]D.V.Reddy, J.Edouard, K.Sobhan. Durability of fly ash-based geopolymer structural concrete in the marine environment[J]. Journal of Materials in Civil Engineering,2013,25:781-787.

[69]S.Kumar, K.Ramujee. Assessment of chloride ion penetration of alkali activated low calcium fly ash based geopolymer concrete[J]. Key Engineering Materials,2016,692:129-137.

[70]Shutong Yang, Jinjin Xu, Chaohui Zang, et al. Mechanical properties of alkali-activated slag concrete mixed by seawater and sea sand[J]. Construction and Building Materials,2019,196:395-410.

[71]Bai Zhang, Hong Zhu, Qiang Wang, et al. Design and properties of seawater coral aggregate alkali-activated concrete[J]. Journal of Sustainable Cement-Based Materials,2022,11(3):175-184.

[72]Zengqing Sun, Xiaochen Lin, Pengfei Liu, et al. Study of alkali activated slag as alternative pavement binder[J]. Construction and Building Materials,2018,186:626-634.

[73]Shriram Marathe, I.R.Mithanthaya, Rahul Yekkar Shenoy. Durability and microstructure studies on Slag-Fly Ash-Glass powder based alkali activated pavement quality concrete mixes[J]. Construction and Building Materials,2021,287:123047.

[74]Anmar Dulaimi, Hassan Al Nageim, Felicite Ruddock, et al. High performance cold asphalt concrete mixture for binder course using alkali-activated binary blended cementitious filler[J]. Construction and Building Materials,2017,141:160-170.

[75]肖建庄,张航华,唐宇翔,等. 废弃混凝土再生原理与再生混凝土基本问题[J]. 科学通报,2022,68(05):510-523.

[76]C.S Poon, Z.H Shui, L Lam. Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates[J]. Construction and Building Materials,2004,18(6):461-468.

[77]Vivian W.Y. Tam, X.F. Gao, C.M. Tam. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach[J]. Cement and Concrete Research,2005,35(6):1195-1203.

[78]肖庄建,刘琼,李文贵,等. 再生混凝土细微观结构和破坏机理研究[J]. 青岛理工大学学报,2009,30(04):24-30.

[79]Soon Poh Yap, Paul Zhao Chiat Chen, Yingxin Goh, et al. Characterization of pervious concrete with blended natural aggregate and recycled concrete aggregates[J]. Journal of Cleaner Production,2018,181:155-165.

[80]陈守开,常承艳,郭磊,等. 再生骨料掺量对透水混凝土性能的影响[J]. 应用基础与工程科学学报,2018,26(01):98-108.

[81]陈守开,刘新飞,郭磊,等. 再生骨料掺配比对再生透水混凝土性能的影响[J]. 复合材料学报,2018,35(06):1590-1598.

[82]许岳周,石建光. 再生骨料及再生骨料混凝土的性能分析与评价[J]. 混凝土,2006(07):41-46.

[83]佟钰,赵立,马鹏毅,等. 再生粗集料透水混凝土的力学强度与透水性能研究[J]. 混凝土,2017(09):61-63,68.

[84]黄志伟,薛志龙,郭磊,等. 骨料级配对再生透水混凝土性能的影响[J]. 人民黄河:1-5[2020-11-24].

[85]杨利香,宋兴福,陆美荣. 骨料级配对再生骨料透水混凝土性能的影响研究[J]. 混凝土,2021(12):12:83-88.

[86]陈守开,李炳林,蒋海峰,等. 水胶比对再生骨料透水混凝土性能的影响分析[J]. 水利发电,2019,45(10):122-128.

[87]薛如政,刘京红,苗建伟,等. 再生骨料透水混凝土性能的研究[J]. 河北农业大学学报,2017,40(04):128-133.

[88]Sungwoo Park, Suhawn Ju, Hyeong-Ki Kim, et al. Effect of the rheological properties of fresh binder on the compressive strength of pervious concrete[J]. Journal of Materials Research and Technology,2022,17:636-648.

[89]沈明明. RPC性能预测及冻融耐久性增强研究[D]. 哈尔滨工业大学,2019.

[90]唐海峰,崔皓楠,成梓煜,等. 成型方式对不同骨料透水混凝土性能影响试验研究[J]. 再生资源与循环经济,2022,15(03):33-36.

[91]张国强. 透水混凝土试验性能研究[D]. 广州大学,2019.

[92]王宇. 搅拌工艺对透水混凝土力学性能的影响[J]. 青海交通科技,2020,32(03):93-97.

[93]孙友宏. 基于正交试验法的透水混凝土配合比设计和试验研究[D]. 西南交通大学,2017.

[94]Vanchai Sata, Ampol Wongsa, Prinya Chindaprasirt. Properties of pervious geopolymer concrete using recycled aggregates[J]. Construction and Building Materials,2013,42:33-39.

[95]赵祥冉,张圣菊,薛洁,等. 利用垃圾废料制备透水混凝土试验研究[J]. 新型建筑材料,2020,47(05):13-16.

[96]Zengqing Sun, Xiaochen Lin, Anya Vollpracht. Pervious concrete made of alkali activated slag and geopolymers[J]. Construction and Building Materials,2018,189:797-803.

[97]Ominda Nanayakkara, Chamila Gunasekara, Malindu Sandanayake, et al. Alkali activated slag concrete incorporating recycled aggregate concrete: Long term performance and sustainability aspect[J]. Construction and Building Materials,2021,271:121512.

[98]Ahmer Ali Siyal, Muhammad Rashid Shamsuddin, Muhammad Irfan Kha, et al. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes[J]. Journal of Environmental Management,2018,224:327-339.

[99]贾军红,余越,郭育光,等. 净水功能型透水混凝土的组成设计研究[J]. 硅酸盐通报. 2021,40(08):2554-2563.

[100]丁崧,陈潇,夏飞跃,等. 净水型赤泥-矿渣基地聚合物透水混凝土的研究[J]. 建筑材料学报,2020,23(01):48-55.

[101]于函. 再生骨料透水混凝土性能及超声波波速与透水混凝土性能关系试验研究[D].吉林大学,2019.

[102]中华人民共和国国家标准. GB/T 17671—2021,水泥胶砂强度检验方法(ISO法)[S]. 北京:中国标准出版社,2021.

[103]中华人民共和国国家标准. GB/T 8077—2012,混凝土外加剂匀质性试验方法[S]. 北京:中国标准出版社,2012.

[104]中华人民共和国行业标准. CJJT 135—2009,透水水泥混凝土路面技术规程[S]. 北京:中国建筑工业出版社,2009.

[105]中华人民共和国城镇建设行业标准. CJ/T 544—2021,聚合物透水混凝土[S]. 北京:中国计划出版社,2021.

[106]Wanli Wang, Chengcheng Fan, Baomin Wang, et al. Workability, rheology, and geopolymerization of fly ash geopolymer: Role of alkali content, modulus, and water–binder ratio[J]. Construction and Building Materials,2023,367:130357.

[107]Xinyu Li,Yufei Zhao,Yong Hu, et al. Influence of Multiple Factors on the Workability and Early Strength Development of Alkali-Activated Fly Ash and Slag-Based Geopolymer-Stabilized Soil[J]. Materials,2022,15(7):2682.

[108]杜天玲,刘英于,咏妍,等. 水玻璃对粉煤灰矿渣地聚合物强度的影响及激发机理[J]. 公路交通科技,2021,38(01):41-49.

[109]孙跃东,肖建庄. 再生混凝土骨料[J].混凝土,2004(06):33-36.

[110]Cuifang Lu, Zuhua Zhang, Caijun Shi, et al. Rheology of alkali-activated materials: A review[J]. Cement and Concrete Composites,2021,121:104061.

[111]Peng Zhang, Shiyao Wei, Yuanxun Zheng, et al. Effect of Single and Synergistic Reinforcement of PVA Fiber and Na2O-SiO2 on Workability and Compressive Strength of Geopolymer Composites[J]. Polymers,2022,14(18):3765.

[112]中华人民共和国国家标准. GB 175—2007,通用硅酸盐水泥[S]. 北京:中国标准出版社,2020.

[113]Mohammed Fouad Alnahhal, Taehwan Kim, Ailar Hajimohammadi. Distinctive rheological and temporal viscoelastic behaviour of alkali-activated fly ash/slag pastes: A comparative study with cement paste[J]. Cement and Concrete Research,2021,144:105441.

[114]Gum Sung Ryu, Young Bok Lee, Kyung Taek Koh, et al. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators[J]. Construction and Building Materials,2013,47:409-418.

[115]Rasiah Sriravindrarajah, Neo Derek Huai Wang, Lai Jian Wen Ervin. Mix Design for Pervious Recycled Aggregate Concrete[J]. International Journal of Concrete Structures and Materials,2012,6:239-246.

[116]申明昊. 基于体积法的不同目标孔隙率下透水混凝土试验研究[D]. 兰州交通大学,2021.

[117]D. Lowke, P. Schiessl. Effect of mixing energy on fresh properties of SCC[C]. Chicago:proc 4th Int RILEM Symp Self-Compacting Concr, 2005.

[118]Aurélie Favier, Julie Hot, Guillaume Habert, et al. Flow properties of MK-based geopolymer pastes. A comparative study with standard Portland cement pastes[J]. Soft Matter,2014,10:1134-1141.

[119]黄显全,刘卫东,熊剑平,等. 透水混凝土搅拌与成型方式研究进展[J]. 公路,2021(04):11-17.

[120]马旺坤. 成型方法和配合比对透水混凝土性能的影响研究[D]. 哈尔滨工业大学,2020.

[121]徐仁崇,桂苗苗,龚明子,等. 不同成型方法对透水混凝土性能的影响研究[J].混凝土,2011(11):129-131.

[122]周梅,张璐,钟琪,等. 制备工艺对自燃煤矸石-矿渣-粉煤灰地质聚合物强度的影响[J]. 公路交通科技,2014,31(11):16-21.

[123]Provision J L, Bernal S A. Geopolymer and related alkliactivated materials[J]. Annual Review of Materials Research,2014,44:299-327.

[124]Sujitra Onutai, Takaomi Kobayashi, Parjaree Thavorniti, et al. Porous fly ash-based geopolymer composite fiber as an adsorbent for removal of heavy metal ions from wastewater[J]. Materials Letters,2019,236:30-33.

[125]姜骞,刘建忠,周华新,等. 浆体新拌性能与透水混凝土硬化性能的相关性[J]. 建筑材料学报,2018,21(01):20-25.

[126]史迅,王亚萍,焦凯,等. 净浆特性对透水混凝土拌和物及硬化后孔隙分布的影响[J]. 硅酸盐通报,2020,39(10):3126-3130,3142.

[127]张岩. 再生骨料透水混凝土制备与透水性能衰减研究[D]. 武汉理工大学,2018.

[128]赵洪,杨永民,李方贤,等. 骨料包裹层厚度的研究及其对多孔混凝土性能的影响[J]. 混凝土,2014(02):29-32.

[129]陈潇,王杰,韩裕山,等. 浆体流变特性对透水混凝土性能的影响[J]. 中国公路学报,2019,32(04):177-186.

中图分类号:

 TU528.2    

条码号:

 002000068037    

馆藏号:

 TD10056026    

馆藏位置:

 403    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式