- 无标题文档
查看论文信息

中文题名:

 低聚倍半硅氧烷为碳源制备有序分级孔碳及电容性能研究    

姓名:

 程钢    

学号:

 1049721201922    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070304    

学科名称:

 物理化学(含∶化学物理)    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 武汉理工大学    

院系:

 化学化工与生命科学学院    

专业:

 化学    

研究方向:

 多孔材料    

第一导师姓名:

 刘丹    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-04-10    

答辩日期:

 2015-05-19    

中文关键词:

 倍半硅氧烷 ; 介孔材料 ; 自组装 ; 碳材料 ; 超级电容器    

中文摘要:

       碳基超级电容器具有充放电时间短、使用温度范围宽、循环寿命长、安全性能好等诸多优点,是最具应用前景的新型储能装置之一。但是,与二次电池相比,其能量密度较低。在保持碳基超级电容器高比功率的前提下,通过调控多孔碳电极材料的孔隙结构来提高其能量密度是该领域的研究重点。研究表明,孔径与净电解液离子尺寸相当的超微孔碳拥有大比容量储能特性,但介/大孔尺度的离子传输通道的缺乏影响其大倍率充放电性能。本文提出以具有分子内有机/无机杂化特点的多面体低聚倍半硅氧烷(POSS)作为碳源和产生均匀微孔的自模板,嵌段共聚物聚集体或者胶态晶体为产生有序介孔的软、硬模板,合成出有序微/介分级孔碳。具体内容如下:

       1. 提出一种基于POSS与两亲性Pluronic型三嵌段共聚物PEO-PPO-PEO间自组装合成分级多孔碳的新方法。由于POSS分子中硅氧笼的分子尺度模板效应以及嵌段共聚物和所用的胺基功能化POSS化合物(笼型八胺苯基倍半硅氧烷,OAPS)间良好的组装适应性,所得碳既拥有十分均匀的微孔(尺寸~1 nm),也拥有高度有序的介孔(尺寸~4 nm),同时,还具有超过2000 m2 g−1的高比表面积和超过1.19 cm3 g−1的大孔容。通过简单地采用具有不同PEO/PPO比的嵌段共聚物,材料的介观对称性可以为二维六方(p6m)和体心立方()。另外,因为OAPS为富含氮元素的碳源前驱体,氮官能团也能自发掺杂到碳材料中。由于该类分级孔碳具有孔径接近电解液离子尺寸的均匀微孔,其在净离子液体电解液中最大比容量达~163 F g−1,在1.0 M H2SO4水系电解液中达~216 F g−1。由于能够显著减小电荷传递阻力,该类分级孔碳与纯微孔碳相比表现出良好的倍率性能。当电流密度从0.25增至10 A g−1,最优试样在净离子液体和1.0 M H2SO4电解液中容量保持率分别可达94%和97%。

       2. 由于商品化的Pluronic型三嵌段共聚物种类相对有限且分子量较低(通常Mw < 15000),由其胶束模板产生的有序介孔尺寸一般难以超过5 nm。为了研究介孔孔径对分级孔碳电容性能的影响,我们进一步以氧化硅胶态晶体为模板,笼型八胺苯基倍半硅氧烷(OAPS)为碳源,制备出含三维有序介孔、介孔孔径在14~40 nm范围内精确可调的有序微/介分级孔碳。结果表明,在净离子液体电解液中,随着介孔孔径增加,所得分级孔碳的倍率性能呈下降趋势。这可能是因为介孔孔径的增大也伴随着孔壁的明显变厚,反而增大了电解液向孔壁微孔内迁移、扩散的阻力。具有最小介孔孔径(~14 nm)的碳试样在电流密度为0.25 A g−1时比容量达172 F g−1,在电流密度增大至20 A g−1时仍有148 F g−1,容量保持率为86%,表现出良好的倍率性能。

参考文献:

[1] Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves Via Template-Mediated Structural Transformation[J]. J Phys Chem B, 1999, 103(37): 7743-7746.

[2] Simon P, Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat Mater, 2008, 7(11): 845-54.

[3] Lu A H, Schuth F. Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials[J]. Adv Mater, 2006, 18(14): 1793-1805.

[4] Petkovich N D, Stein A. Controlling Macro- and Mesostructures with Hierarchical Porosity through Combined Hard and Soft Templating[J]. Chem Soc Rev, 2013, 42(9): 3721-39.

[5] Thomas A, Goettmann F, Antonietti M. Hard Templates for Soft Materials: Creating Nanostructured Organic Materials[J]. Chem Mater, 2008, 20(3): 738-755.

[6] Vu A, Li X Y, Phillips J, et al. Three-Dimensionally Ordered Mesoporous (3DOm) Carbon Materials as Electrodes for Electrochemical Double-Layer Capacitors with Ionic Liquid Electrolytes[J]. Chem Mater, 2013, 25(21): 4137-4148.

[7] Wan Y, Shi Y F, Zhao D Y. Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons[J]. Chem Mater, 2008, 20(3): 932-945.

[8] Moriguchi I, Ozono A, Mikuriya K, et al. Micelle-Templated Mesophases of Phenol-Formaldehyde Polymer[J]. Chem Lett, 1999, 28(11): 1171-1172.

[9] Kosonen H, Ruokolainen J, Nyholm P, et al. Self-Organized Thermosets:? Blends of Hexamethyltetramine Cured Novolac with Poly(2-Vinylpyridine)-Block-Poly(Isoprene)[J]. Macromolecules, 2001, 34(9): 3046-3049.

[10] Valkama S, Ruotsalainen T, Nyk?nen A, et al. Self-Assembled Structures in Diblock Copolymers with Hydrogen-Bonded Amphiphilic Plasticizing Compounds[J]. Macromolecules, 2006, 39(26): 9327-9336.

[11] Liang C D, Hong K L, Guiochon G A, et al. Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers[J]. Angew Chem Int Ed, 2004, 43(43): 5785-5789.

[12] Liang C D, Dai S. Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction[J]. J Am Chem Soc, 2006, 128(16): 5316-5317.

[13] Wang X Q, Liang C D, Dai S. Facile Synthesis of Ordered Mesoporous Carbons with High Thermal Stability by Self-Assembly of Resorcinol-Formaldehyde and Block Copolymers under Highly Acidic Conditions[J]. Langmuir, 2008, 24(14): 7500-7505.

[14] Meng Y, Gu D, Zhang F Q, et al. Ordered Mesoporous Polymers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation[J]. Angew Chem Int Ed, 2005, 44(43): 7053-7059.

[15] Meng Y, Gu D, Zhang F Q, et al. A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic-Organic Self-Assembly[J]. Chem Mater, 2006, 18(18): 4447-4464.

[16] Lee K T, Oh S M. Novel Synthesis of Porous Carbons with Tunable Pore Size by Surfactant-Templated Sol-Gel Process and Carbonisation[J]. Chem Commun, 2002, (22): 2722-2723.

[17] Tanaka S, Nishiyama N, Egashira Y, et al. Synthesis of Ordered Mesoporous Carbons with Channel Structure from an Organic-Organic Nanocomposite[J]. Chem Commun, 2005, (16): 2125-2127.

[18] Zhang F Q, Meng Y, Gu D, et al. An Aqueous Cooperative Assembly Route to Synthesize Ordered Mesoporous Carbons with Controlled Structures and Morphology[J]. Chem Mater, 2006, 18(22): 5279-5288.

[19] Zhang F Q, Meng Y, Gu D, et al. A Facile Aqueous Route to Synthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks with Ia(3)over-Bard Bicontinuous Cubic Structure[J]. J Am Chem Soc, 2005, 127(39): 13508-13509.

[20] Liu D, Lei J H, Guo L P, et al. One-Pot Aqueous Route to Synthesize Highly Ordered Cubic and Hexagonal Mesoporous Carbons from Resorcinol and Hexamine[J]. Carbon, 2012, 50(2): 476-487.

[21] Liu D, Lei J H, Guo L P, et al. Simple Hydrothermal Synthesis of Ordered Mesoporous Carbons from Resorcinol and Hexamine[J]. Carbon, 2011, 49(6): 2113-2119.

[22] Liu D, Xia L J, Qu D Y, et al. Synthesis of Hierarchical Fiberlike Ordered Mesoporous Carbons with Excellent Electrochemical Capacitance Performance by a Strongly Acidic Aqueous Cooperative Assembly Route[J]. J Mater Chem A, 2013, 1(48): 15447-15458.

[23] Xie M J, Dong H H, Zhang D D, et al. Simple Synthesis of Highly Ordered Mesoporous Carbon by Self-Assembly of Phenol-Formaldehyde and Block Copolymers under Designed Aqueous Basic/Acidic Conditions[J]. Carbon, 2011, 49(7): 2459-2464.

[24] Lu A H, Spliethoff B, Schuth F. Aqueous Synthesis of Ordered Mesoporous Carbon Via Self-Assembly Catalyzed by Amino Acid[J]. Chem Mater, 2008, 20(16): 5314-5319.

[25] Liu R, Shi Y, Wan Y, et al. Triconstituent Co-Assembly to Ordered Mesostructured Polymer?Silica and Carbon?Silica Nanocomposites and Large-Pore Mesoporous Carbons with High Surface Areas[J]. J Am Chem Soc, 2006, 128(35): 11652-11662.

[26] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer[J]. Science, 2006, 313(5794): 1760-1763.

[27] Largeot C, Portet C, Chmiola J, et al. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor[J]. J Am Chem Soc, 2008, 130(9): 2730-2731.

[28] Kondrat S, Georgi N, Fedorov M V, et al. A Superionic State in Nano-Porous Double-Layer Capacitors: Insights from Monte Carlo Simulations[J]. Phys Chem Chem Phys, 2011, 13(23): 11359-11366.

[29] Kondrat S, Perez C R, Presser V, et al. Effect of Pore Size and Its Dispersity on the Energy Storage in Nanoporous Supercapacitors[J]. Energy Environ Sci, 2012, 5(4): 6474-6479.

[30] Yang L, Fishbine B H, Migliori A, et al. Molecular Simulation of Electric Double-Layer Capacitors Based on Carbon Nanotube Forests[J]. J Am Chem Soc, 2009, 131(34): 12373-12376.

[31] Jiang D E, Jin Z H, Wu J Z. Oscillation of Capacitance inside Nanopores[J]. Nano Letters, 2011, 11(12): 5373-5377.

[32] Perez C R, Yeon S H, Segalini J, et al. Structure and Electrochemical Performance of Carbide-Derived Carbon Nanopowders[J]. Adv Funct Mater, 2013, 23(8): 1081-1089.

[33] Xing W, Qiao S Z, Ding R G, et al. Superior Electric Double Layer Capacitors Using Ordered Mesoporous Carbons[J]. Carbon, 2006, 44(2): 216-224.

[34] Kim B, Chung H, Kim W. Supergrowth of Aligned Carbon Nanotubes Directly on Carbon Papers and Their Properties as Supercapacitors[J]. J Phys Chem C, 2010, 114(35): 15223-15227.

[35] Zhang L L, Li S, Zhang J T, et al. Enhancement of Electrochemical Performance of Macroporous Carbon by Surface Coating of Polyaniline[J]. Chem Mater, 2010, 22(3): 1195-1202.

[36] Korenblit Y, Rose M, Kockrick E, et al. High-Rate Electrochemical Capacitors Based on Ordered Mesoporous Silicon Carbide-Derived Carbon[J]. Acs Nano, 2010, 4(3): 1337-1344.

[37] Rose M, Korenblit Y, Kockrick E, et al. Hierarchical Micro- and Mesoporous Carbide-Derived Carbon as a High-Performance Electrode Material in Supercapacitors[J]. Small, 2011, 7(8): 1108-1117.

[38] Enterria M, Castro-Muniz A, Suarez-Garcia F, et al. Effects of the Mesostructural Order on the Electrochemical Performance of Hierarchical Micro-Mesoporous Carbons[J]. J Mater Chem A, 2014, 2(30): 12023-12030.

[39] Hao G P, Li W C, Qian D, et al. Rapid Synthesis of Nitrogen-Doped Porous Carbon Monolith for Co2 Capture[J]. Adv Mater, 2010, 22(7): 853-857.

[40] Mane G P, Talapaneni S N, Anand C, et al. Preparation of Highly Ordered Nitrogen-Containing Mesoporous Carbon from a Gelatin Biomolecule and Its Excellent Sensing of Acetic Acid[J]. Adv Funct Mater, 2012, 22(17): 3596-3604.

[41] Dutta S, Bhaumik A, Wu K C W. Hierarchically Porous Carbon Derived from Polymers and Biomass: Effect of Interconnected Pores on Energy Applications[J]. Energy Environ Sci, 2014, 7(11): 3574-3592.

[42] Figueiredo J L. Functionalization of Porous Carbons for Catalytic Applications[J]. J Mater Chem A, 2013, 1(33): 9351-9364.

[43] Frackowiak E. Carbon Materials for Supercapacitor Application[J]. Phys Chem Chem Phys, 2007, 9(15): 1774-1785.

[44] Zhang L L, Zhao X S. Carbon-Based Materials as Supercapacitor Electrodes[J]. Chem Soc Rev, 2009, 38(9): 2520-2531.

[45] Beguin F, Frackowiak E, Supercapacitors: Materials, Systems and Applications. Wiley-VCH: Weinheim, Germany, 2013.

[46] Huang J, Sumpter B G, Meunier V. Theoretical Model for Nanoporous Carbon Supercapacitors[J]. Angew Chem Int Ed, 2008, 47(3): 520-524.

[47] Simon P, Gogotsi Y. Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems[J]. Accounts Chem Res, 2013, 46(5): 1094-1103.

[48] Feng G, Li S, Presser V, et al. Molecular Insights into Carbon Supercapacitors Based on Room-Temperature Ionic Liquids[J]. J Phys Chem Lett, 2013, 4(19): 3367-3376.

[49] Nishihara H, Kyotani T. Templated Nanocarbons for Energy Storage[J]. Adv Mater, 2012, 24(33): 4473-4498.

[50] Zhai Y, Dou Y, Zhao D, et al. Carbon Materials for Chemical Capacitive Energy Storage[J]. Adv Mater, 2011, 23(42): 4828-4850.

[51] Liang C D, Li Z J, Dai S. Mesoporous Carbon Materials: Synthesis and Modification[J]. Angew Chem Int Ed, 2008, 47(20): 3696-3717.

[52] Beguin F, Presser V, Balducci A, et al. Carbons and Electrolytes for Advanced Supercapacitors[J]. Adv Mater, 2014, 26(14): 2219-2251.

[53] Portet C, Yushin G, Gogotsi Y. Effect of Carbon Particle Size on Electrochemical Performance of EDLC[J]. J Electrochem Soc, 2008, 155(7): A531-A536.

[54] Wang D-W, Li F, Liu M, et al. 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage[J]. Angew Chem Int Ed, 2008, 47(2): 373-376.

[55] Yuan C Z, Gao B, Shen L F, et al. Hierarchically Structured Carbon-Based Composites: Design, Synthesis and Their Application in Electrochemical Capacitors[J]. Nanoscale, 2011, 3(2): 529-545.

[56] Ghosh A, Lee Y H. Carbon-Based Electrochemical Capacitors[J]. Chemsuschem, 2012, 5(3): 480-499.

[57] Jiang H, Lee P S, Li C. 3D Carbon Based Nanostructures for Advanced Supercapacitors[J]. Energy Environ Sci, 2013, 6(1): 41-53.

[58] Zhang L L, Gu Y, Zhao X S. Advanced Porous Carbon Electrodes for Electrochemical Capacitors[J]. J Mater Chem A, 2013, 1(33): 9395-9408.

[59] Chen S, Xing W, Duan J, et al. Nanostructured Morphology Control for Efficient Supercapacitor Electrodes[J]. J Mater Chem A, 2013, 1(9): 2941-2954.

[60] Wang Y, Xia Y. Recent Progress in Supercapacitors: From Materials Design to System Construction[J]. Adv Mater, 2013, 25(37): 5336-5342.

[61] Yan J, Wang Q, Wei T, et al. Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities[J]. Adv Energy Mater, 2014, 4(4).

[62] Borchardt L, Oschatz M, Kaskel S. Tailoring Porosity in Carbon Materials for Supercapacitor Applications[J]. Mater Horiz, 2014, 1(2): 157-168.

[63] Sevilla M, Mokaya R. Energy Storage Applications of Activated Carbons: Supercapacitors and Hydrogen Storage[J]. Energy Environ Sci, 2014, 7(4): 1250-1280.

[64] Liu H J, Wang J, Wang C X, et al. Ordered Hierarchical Mesoporous/Microporous Carbon Derived from Mesoporous Titanium-Carbide/Carbon Composites and Its Electrochemical Performance in Supercapacitor[J]. Adv Energy Mater, 2011, 1(6): 1101-1108.

[65] Stein A, Wang Z, Fierke M A. Functionalization of Porous Carbon Materials with Designed Pore Architecture[J]. Adv Mater, 2009, 21(3): 265-293.

[66] Inagaki M, Konno H, Tanaike O. Carbon Materials for Electrochemical Capacitors[J]. J Power Sources, 2010, 195(24): 7880-7903.

[67] Lota G, Fic K, Frackowiak E. Carbon Nanotubes and Their Composites in Electrochemical Applications[J]. Energy Environ Sci, 2011, 4(5): 1592-1605.

[68] Cordes D B, Lickiss P D, Rataboul F. Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes[J]. Chem Rev, 2010, 110(4): 2081-2173.

[69] Kuo S-W, Chang F-C. Poss Related Polymer Nanocomposites[J]. Prog Polym Sci, 2011, 36(12): 1649-1696.

[70] Morris R E. Modular Materials from Zeolite-Like Building Blocks[J]. J Mater Chem, 2005, 15(9): 931-938.

[71] Laine R M, Roll M F. Polyhedral Phenylsilsesquioxanes[J]. Macromolecules, 2011, 44(5): 1073-1109.

[72] Wang F K, Lu X H, He C B. Some Recent Developments of Polyhedral Oligomeric Silsesquioxane (Poss)-Based Polymeric Materials[J]. J Mater Chem, 2011, 21(9): 2775-2782.

[73] Tanaka K, Chujo Y. Advanced Functional Materials Based on Polyhedral Oligomeric Silsesquioxane (Poss)[J]. J Mater Chem, 2012, 22(5): 1733-1746.

[74] Brown J F, Vogt L H, Prescott P I. Preparation and Characterization of the Lower Equilibrated Phenylsilsesquioxanes[J]. J Am Chem Soc, 1964, 86(6): 1120-1125.

[75] Tamaki R, Tanaka Y, Asuncion M Z, et al. Octa(Aminophenyl)Silsesquioxane as a Nanoconstruction Site[J]. J Am Chem Soc, 2001, 123(49): 12416-12417.

[76] Lowell S, Shields J E, Thomas M A, et al., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer: Dordrecht, The Netherlands, 2006.

[77] Zhu Y W, Murali S, Stoller M D, et al. Carbon-Based Supercapacitors Produced by Activation of Graphene[J]. Science, 2011, 332(6037): 1537-1541.

[78] Zhang L, Abbenhuis H C L, Yang Q H, et al. Mesoporous Organic-Inorganic Hybrid Materials Built Using Polyhedral Oligomeric Silsesquioxane Blocks[J]. Angew Chem Int Ed, 2007, 46(26): 5003-5006.

[79] Zhang L, Yang Q, Yang H, et al. Super-Microporous Organosilicas Synthesized from Well-Defined Nanobuilding Units[J]. J Mater Chem, 2008, 18(4): 450-457.

[80] Shimojima A, Goto R, Atsumi N, et al. Self-Assembly of Alkyl-Substituted Cubic Siloxane Cages into Ordered Hybrid Materials[J]. Chem-Eur J, 2008, 14(28): 8500-8506.

[81] Liu L, Hu Y A, Song L, et al. Mesoporous Hybrid from Anionic Polyhedral Oligomeric Silsesquioxanes (Poss) and Cationic Surfactant by Hydrothermal Approach[J]. Micropor Mesopor Mater, 2010, 132(3): 567-571.

[82] Shimojima A, Kuge H, Kuroda K. Synthesis of Mesostructured Silica from Monoalkyl-Substituted Double Five-Ring Units[J]. J Sol-gel Sci Techn, 2011, 57(3): 263-268.

[83] Daga V K, Anderson E R, Gido S P, et al. Hydrogen Bond Assisted Assembly of Well-Ordered Polyhedral Oligomeric Silsesquioxane-Block Copolymer Composites[J]. Macromolecules, 2011, 44(17): 6793-6799.

[84] Sarkar B, Ayandele E, Venugopal V, et al. Polyhedral Oligosilsesquioxane (POSS) Nanoparticle Localization in Ordered Structures Formed by Solvated Block Copolymers[J]. Macromol Chem Phys, 2013, 214(23): 2716-2724.

[85] Gandhi S, Kumar P, Thandavan K, et al. Synthesis of a Novel Hierarchical Mesoporous Organic-Inorganic Nanohybrid Using Polyhedral Oligomericsilsesquioxane Bricks[J]. New J Chem, 2014, 38(7): 2766-2769.

[86] Kanamori K, Nakanishi K. Controlled Pore Formation in Organotrialkoxysilane-Derived Hybrids: From Aerogels to Hierarchically Porous Monoliths[J]. Chem Soc Rev, 2011, 40(2): 754-770.

[87] Kuroda K, Shimojima A, Kawahara K, et al. Utilization of Alkoxysilyl Groups for the Creation of Structurally Controlled Siloxane-Based Nanomaterials[J]. Chem Mater, 2014, 26(1): 211-220.

[88] Li Z H, Wu D C, Liang Y R, et al. Synthesis of Well-Defined Microporous Carbons by Molecular-Scale Templating with Polyhedral Oligomeric Silsesquioxane Moieties[J]. J Am Chem Soc, 2014, 136(13): 4805-4808.

[89] Rodriguez A T, Li X F, Wang J, et al. Facile Synthesis of Nanostructured Carbon through Self-Assembly between Block Copolymers and Carbohydrates[J]. Adv Funct Mater, 2007, 17(15): 2710-2716.

[90] Kubo S, White R J, Yoshizawa N, et al. Ordered Carbohydrate-Derived Porous Carbons[J]. Chem Mater, 2011, 23(22): 4882-4885.

[91] Schlienger S, Graff A L, Celzard A, et al. Direct Synthesis of Ordered Mesoporous Polymer and Carbon Materials by a Biosourced Precursor[J]. Green Chem, 2012, 14(2): 313-316.

[92] Ma T Y, Liu L, Yuan Z Y. Direct Synthesis of Ordered Mesoporous Carbons[J]. Chem Soc Rev, 2013, 42(9): 3977-4003.

[93] Saha D, Payzant E A, Kumbhar A S, et al. Sustainable Mesoporous Carbons as Storage and Controlled-Delivery Media for Functional Molecules[J]. ACS Appl Mater Interfaces, 2013, 5(12): 5868-5874.

[94] Zhang Y D, Lee S H, Yoonessi M, et al. Phenolic Resin/Octa(aminophenyl)-T8-Polyhedral Oligomeric Silsesquioxane (POSS) Hybrid Nanocomposites: Synthesis, Morphology, Thermal and Mechanical Properties[J]. J Inorg Organomet Polym Mater, 2007, 17(1): 159-171.

[95] Poljansek I, Krajnc M. Characterization of Phenol-Formaldehyde Prepolymer Resins by in Line Ft-Ir Spectroscopy[J]. Acta Chim Slov, 2005, 52(3): 238-244.

[96] Qin Y C, Ren H B, Zhu F H, et al. Preparation of Poss-Based Organic-Inorganic Hybrid Mesoporous Materials Networks through Schiff Base Chemistry[J]. Eur Polym J, 2011, 47(5): 853-860.

[97] Grund S, Kempe P, Baumann G, et al. Nanocomposites Prepared by Twin Polymerization of a Single-Source Monomer[J]. Angew Chem Int Ed, 2007, 46(4): 628-632.

[98] Burns G T, Taylor R B, Xu Y, et al. High-Temperature Chemistry of the Conversion of Siloxanes to Silicon Carbide[J]. Chem Mater, 1992, 4(6): 1313-1323.

[99] Mantz R A, Jones P F, Chaffee K P, et al. Thermolysis of Polyhedral Oligomeric Silsesquioxane (POSS) Macromers and POSS-Siloxane Copolymers[J]. Chem Mater, 1996, 8(6): 1250-1259.

[100] Kruk M, Jaroniec M. Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials[J]. Chem Mater, 2001, 13(10): 3169-3183.

[101] Matsuoka K, Yamagishi Y, Yamazaki T, et al. Extremely High Microporosity and Sharp Pore Size Distribution of a Large Surface Area Carbon Prepared in the Nanochannels of Zeolite Y[J]. Carbon, 2005, 43(4): 876-879.

[102] Parmentier J, Gaslain F O M, Ersen O, et al. Structure and Sorption Properties of a Zeolite-Templated Carbon with the Emt Structure Type[J]. Langmuir, 2014, 30(1): 297-307.

[103] Zhao D, Huo Q, Feng J, et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures[J]. J Am Chem Soc, 1998, 120(24): 6024-6036.

[104] Lv Y Y, Zhang F, Dou Y Q, et al. A Comprehensive Study on Koh Activation of Ordered Mesoporous Carbons and Their Supercapacitor Application[J]. J Mater Chem, 2012, 22(1): 93-99.

[105] Finnefrock A C, Ulrich R, Du Chesne A, et al. Metal Oxide Containing Mesoporous Silica with Bicontinuous "Plumber's Nightmare" Morphology from a Block Copolymer-Hybrid Mesophase[J]. Angew Chem Int Ed, 2001, 40(7): 1207-1211.

[106] Sadezky A, Muckenhuber H, Grothe H, et al. Raman Micro Spectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis and Structural Information[J]. Carbon, 2005, 43(8): 1731-1742.

[107] Tuinstra F, Koenig J L. Raman Spectrum of Graphite[J]. J Chem Phys, 1970, 53(3): 1126.

[108] Li M, Xue J M. Integrated Synthesis of Nitrogen-Doped Mesoporous Carbon from Melamine Resins with Superior Performance in Supercapacitors[J]. J Phys Chem C, 2014, 118(5): 2507-2517.

[109] Beguin F, Szostak K, Lota G, et al. A Self-Supporting Electrode for Supercapacitors Prepared by One-Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends[J]. Adv Mater, 2005, 17(19): 2380-2384.

[110] Presser V, Heon M, Gogotsi Y. Carbide-Derived Carbons - from Porous Networks to Nanotubes and Graphene[J]. Adv Funct Mater, 2011, 21(5): 810-833.

[111] Stoller M D, Ruoff R S. Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors[J]. Energy Environ Sci, 2010, 3(9): 1294-1301.

[112] Jin J, Tanaka S, Egashira Y, et al. Koh Activation of Ordered Mesoporous Carbons Prepared by a Soft-Templating Method and Their Enhanced Electrochemical Properties[J]. Carbon, 2010, 48(7): 1985-1989.

[113] Zhao L, Fan L-Z, Zhou M-Q, et al. Nitrogen-Containing Hydrothermal Carbons with Superior Performance in Supercapacitors[J]. Adv Mater, 2010, 22(45): 5202-5206.

[114] Watanabe R, Yokoi T, Kobayashi E, et al. Extension of Size of Monodisperse Silica Nanospheres and Their Well-Ordered Assembly[J]. J Colloid Interf Sci, 2011, 360(1): 1-7.

中图分类号:

 TM532    

馆藏号:

 TM532/1922/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式