- 无标题文档
查看论文信息

中文题名:

 手性修饰的氧化石墨烯对多肽聚集的影响研究    

姓名:

 赵仕龙    

学号:

 1049721200406    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 材料学    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料学    

研究方向:

 仿生界面材料    

第一导师姓名:

 孙涛垒    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-04-10    

答辩日期:

 2015-05-19    

中文关键词:

 淀粉样变性 ; 手性 ; 界面 ; 氧化石墨烯 ; 蛋白质    

中文摘要:

蛋白质错误折叠形成淀粉样聚集体是许多神经退行性疾病的主要诱因。体内蛋白质的纤维化与分子表面尤其是生物膜表面有重要关联。研究生物膜表面的性质如何影响蛋白质的纤维化对理解神经退行性疾病的发病机理非常重要。手性作为生物膜表面的主要性质,其如何影响蛋白质纤维化目前仍不清楚。我们从仿生的角度出发,采用不同手性的半胱氨酸修饰的氧化石墨烯(R(S)-Cys-GO)作为模型来研究表面的手性对淀粉样肽(Aβ_40)纤维化的影响。

我们通过EDC/NHS缩合的方法,将不同手性的半胱氨酸分子接枝到羧基化的GO上,然后通过原子力显微镜、拉曼、X-射线光电子能谱、X-射线能量色散谱、紫外可见光谱等测试表征手段对修饰后的GO进行表征。

我们采用ThT荧光标记法、原子力显微镜、石英质量微天平等方法研究了不同手性的半胱氨酸修饰的GO与Aβ_40的相互作用。结果表明R-Cys-GO能够抑制Aβ_40在表面的吸附、成核以及随后的增长过程,而S-Cys-GO却会促进这些过程。我们通过圆二色谱等方法测定了不同手性的半胱氨酸修饰的GO对Aβ_40纤维化过程中构象转变的影响。结果表明,表面手性能够显著影响Aβ_40纤维化过程中的α-螺旋构象到β-折叠构象的转变。

为了研究表面手性差异性的起源,我们分别将GO表面的半胱氨酸分子的羧基或者巯基保护起来,研究这些不同手性的半胱氨酸衍生物修饰的GO对Aβ_40纤维化的影响。结果表明,羧基的保护会减弱不同手性的GO衍生物在影响Aβ_40纤维化中的差异性;而巯基被保护后,相应的GO衍生物对Aβ_40纤维化的影响几乎没有差异。这表明这些基团参与了与Aβ_40的相互作用。荧光滴定和核磁共振的结果表明手性分子与多肽之间的立体相互作用可能是这种手性差异性的起源。进一步实验表明,表面的存在能够将手性分子与多肽之间的相互作用的差异性体现出来。GO表面与手性分子之间的距离也会影响这种手性差异性的体现,只有两者之间的距离足够近时,表面才能参与到手性分子和多肽的相互作用中使这种手性差异性体现出来。

这些结果揭示了生物膜表面的手性在蛋白质纤维化中的重要作用,为理解蛋白质的纤维化提供了新的启示。

参考文献:

[1] Dobson C M. Protein Folding and Misfolding.[J]. Nature, 2003, 426: 884-890.

[2] Thomas P J, Qu B-H, Pedersen P L. Defective Protein Folding as a Basis of Human Disease[J]. Trends in Biochemical Sciences, 1995, 20(11): 456-459.

[3] Dobson C M. The Structural Basis of Protein Folding and Its Links with Human Disease[J]. Philosophical Transactions of the Royal Society of London B Biological Sciences, 2001, 356(1406): 133-145.

[4] Horwich A. Protein Aggregation in Disease: A Role for Folding Intermediates Forming Specific Multimeric Interactions[J]. The Journal of Clinical Investigation, 2002, 110(9): 1221-1232.

[5] Aisenbrey C, Borowik T, Bystr?m R, et al. How Is Protein Aggregation in Amyloidogenic Diseases Modulated by Biological Membranes?[J]. European Biophysics Journal, 2008, 37: 247-255.

[6] Kayed R, Head E, Thompson J L, et al. Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis.[J]. Science, 2003, 300: 486-489.

[7] Abbott A. Dementia: A Problem for Our Age.[J]. Nature, 2011, 475: S2-S4.

[8] Wimo A, Prince M. World Alzheimer Report 2010: The Global Economic Impact of Dementia [R]. Alzheimer Disease International, London. 2010: 1-52.

[9] Kawas C H. Early Alzheimer's Disease[J]. New England Journal of Medicine, 2003, 349(11): 1056-1063.

[10] Shankar G, Walsh D. Alzheimer's Disease: Synaptic Dysfunction and Abeta[J]. Molecular Neurodegeneration, 2009, 4(1): 48.

[11] Moller H J, Graeber M B. The Case Described by Alois Alzheimer in 1911. Historical and Conceptual Perspectives Based on the Clinical Record and Neurohistological Sections[J]. European Archives of Psychiatry and Clinical Neuroscience, 1998, 248(3): 111-122.

[12] Blennow K, de Leon M J, Zetterberg H. Alzheimer's Disease[J]. The Lancet, 368(9533): 387-403.

[13] Cleary J P, Walsh D M, Hofmeister J J, et al. Natural Oligomers of the Amyloid-[Beta] Protein Specifically Disrupt Cognitive Function[J]. Nature Neuroscience, 2005, 8(1): 79-84.

[14] Walsh D M, Selkoe D J. Aβ Oligomers – A Decade of Discovery[J]. Journal of Neurochemistry, 2007, 101(5): 1172-1184.

[15] Santos A N, Ewers M, Minthon L, et al. Amyloid-β Oligomers in Cerebrospinal Fluid Are Associated with Cognitive Decline in Patients with Alzheimer's Disease[J]. Journal of Alzheimer's Disease, 2012, 29(1): 171-176.

[16] Lesne S E, Sherman M A, Grant M, et al. Brain Amyloid-Beta Oligomers in Ageing and Alzheimer's Disease[J]. Brain, 2013, 136(Pt 5): 1383-1398.

[17] Golde T E, Eckman C B, Younkin S G. Biochemical Detection of Aβ Isoforms: Implications for Pathogenesis, Diagnosis, and Treatment of Alzheimer’s Disease[J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2000, 1502(1): 172-187.

[18] Danielsson J, Jarvet J, Damberg P, et al. The Alzheimer β-Peptide Shows Temperature-Dependent Transitions between Left-Handed 31-Helix, β-Strand and Random Coil Secondary Structures[J]. FEBS Journal, 2005, 272(15): 3938-3949.

[19] Hellstrand E, Boland B, Walsh D M, et al. Amyloid Β-Protein Aggregation Produces Highly Reproducible Kinetic Data and Occurs by a Two-Phase Process.[J]. ACS Chemical Neuroscience, 2010, 1: 13-18.

[20] Greenwald J, Riek R. Biology of Amyloid: Structure, Function, and Regulation [M]. Structure. 2010: 1244-1260.

[21] LeVine H. Thioflavine T Interaction with Synthetic Alzheimer's Disease Beta-Amyloid Peptides: Detection of Amyloid Aggregation in Solution.[J]. Protein Science, 1993, 2: 404-410.

[22] Fezoui Y, Hartley D M, Harper J D, et al. An Improved Method of Preparing the Amyloid Beta-Protein for Fibrillogenesis and Neurotoxicity Experiments.[J]. Amyloid, 2000, 7: 166-178.

[23] Tycko R. Solid-State Nmr Studies of Amyloid Fibril Structure.[J]. Annual Review of Physical Chemistry, 2011, 62: 279-299.

[24] Paravastu A K, Leapman R D, Yau W-M, et al. Molecular Structural Basis for Polymorphism in Alzheimer's Beta-Amyloid Fibrils.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 18349-18354.

[25] Lu J-X, Qiang W, Yau W-M, et al. Molecular Structure of β-Amyloid Fibrils in Alzheimer's Disease Brain Tissue.[J]. Cell, 2013, 154: 1257-1268.

[26] Lee J, Culyba E K, Powers E T, et al. Amyloid-β Forms Fibrils by Nucleated Conformational Conversion of Oligomers.[J]. Nature Chemical Biology, 2011, 7: 602-609.

[27] Andreasen N, Vanmechelen E, Van de Voorde A, et al. Cerebrospinal Fluid Tau Protein as a Biochemical Marker for Alzheimer's Disease: A Community Based Follow up Study[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 1998, 64(3): 298-305.

[28] Shen L, Adachi T, Vanden Bout D, et al. A Mobile Precursor Determines Amyloid-β Peptide Fibril Formation at Interfaces[J]. Journal of the American Chemical Society, 2012, 134: 14172-14178.

[29] Okada T, Wakabayashi M, Ikeda K, et al. Formation of Toxic Fibrils of Alzheimer’s Amyloid β-Protein-(1–40) by Monosialoganglioside Gm1, a Neuronal Membrane Component[J]. Journal of Molecular Biology, 2007, 371(2): 481-489.

[30] Luckey M. Membrane Structural Biology: With Biochemical and Biophysical Foundations [M]. Canada: Cambridge University Press, 2008.

[31] Chi E Y, Ege C, Winans A, et al. Lipid Membrane Templates the Ordering and Induces the Fibrillogenesis of Alzheimer's Disease Amyloid-Beta Peptide[J]. Proteins: Structure, Function, and Genetics, 2008, 72: 1-24.

[32] Giacomelli C E, Norde W. Conformational Changes of the Amyloid β-Peptide (1-40) Adsorbed on Solid Surfaces[J]. Macromolecular Bioscience, 2005, 5: 401-407.

[33] Kowalewski T, Holtzman D M. In Situ Atomic Force Microscopy Study of Alzheimer's Beta-Amyloid Peptide on Different Substrates: New Insights into Mechanism of Beta-Sheet Formation.[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 3688-3693.

[34] Yu X, Wang Q, Lin Y, et al. Structure, Orientation, and Surface Interaction of Alzheimer Amyloid-β Peptides on the Graphite[J]. Langmuir, 2012, 28: 6595-6605.

[35] Moores B, Drolle E, Attwood S J, et al. Effect of Surfaces on Amyloid Fibril Formation.[J]. PLoS One, 2011, 6: e25954.

[36] Zhang M, Qing G, Sun T. Chiral Biointerface Materials[J]. Chemical Society Reviews, 2012, 41(5): 1972-1984.

[37] Sun T, Qing G, Su B, et al. Functional Biointerface Materials Inspired from Nature[J]. Chemical Society Reviews, 2011, 40(5): 2909-2921.

[38] Sun T, Han D, Rhemann K, et al. Stereospecific Interaction between Immune Cells and Chiral Surfaces[J]. Journal of the American Chemical Society, 2007, 129: 1496-1497.

[39] Yi Q, Wen X, Li L, et al. The Chiral Effects on the Responses of Osteoblastic Cells to the Polymeric Substrates[J]. European Polymer Journal, 2009, 45(7): 1970-1978.

[40] Li Y, Zhou Y, Wang H-Y, et al. Chirality of Glutathione Surface Coating Affects the Cytotoxicity of Quantum Dots[J]. Angewandte Chemie International Edition, 2011, 50(26): 5860-5864.

[41] Tang K, Gan H, Li Y, et al. Stereoselective Interaction between DNA and Chiral Surfaces[J]. Journal of the American Chemical Society, 2008, 130(34): 11284-11285.

[42] Gan H, Tang K, Sun T, et al. Selective Adsorption of DNA on Chiral Surfaces: Supercoiled or Relaxed Conformation[J]. Angewandte Chemie International Edition, 2009, 48(29): 5282-5286.

[43] Geva M, Frolow F, Eisenstein M, et al. Antibody Recognition of Chiral Surfaces. Enantiomorphous Crystals of Leucine-Leucine-Tyrosine.[J]. Journal of the American Chemical Society, 2003, 125: 696-704.

[44] Wang Q H, Hersam M C. Room-Temperature Molecular-Resolution Characterization of Self-Assembled Organic Monolayers on Epitaxial Graphene[J]. Nature Chemistry, 2009, 1(3): 206-211.

[45] Geim A K, Novoselov K S. The Rise of Graphene[J]. Nature Materials, 2007, 6(3): 183-191.

[46] Dreyer D R, Park S, Bielawski C W, et al. The Chemistry of Graphene Oxide.[J]. Chemical Society Reviews, 2010, 39: 228-240.

[47] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696): 666-669.

[48] Brodie B C. On the Atomic Weight of Graphite[J]. Philosophical Transactions of the Royal Society of London, 1859, 149: 249-259.

[49] Sheshmani S, Fashapoyeh M A. Suitable Chemical Methods for Preparation of Graphene Oxide, Graphene and Surface Functionalized Graphene Nanosheets[J]. Acta Chimica Slovenica, 2013, 60(4): 813-825.

[50] Hummers W S, Offeman R E. Preparation of Graphitic Oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.

[51] Peng L, Xu Z, Liu Z, et al. An Iron-Based Green Approach to 1-H Production of Single-Layer Graphene Oxide[J]. Nature Communications, 2015, 6: 1-9.

[52] He H, Riedl T, Lerf A, et al. Solid-State Nmr Studies of the Structure of Graphite Oxide[J]. The Journal of Physical Chemistry, 1996, 100: 19954-19958.

[53] Lerf A, He H, Forster M, et al. Structure of Graphite Oxide Revisited[J]. Journal of Physical Chemistry B, 1998, 102: 4477-4482.

[54] Erickson K, Erni R, Lee Z, et al. Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide[J]. Advanced Materials, 2010, 22: 4467-4472.

[55] Niyogi S, Bekyarova E, Itkis M E, et al. Solution Properties of Graphite and Graphene[J]. Journal of the American Chemical Society, 2006, 128: 7720-7721.

[56] Zhang X, Huang Y, Wang Y, et al. Synthesis and Characterization of a Graphene-C60 Hybrid Material [M]. Carbon. Elsevier Ltd. 2009: 334-337.

[57] Liu Z, Robinson J T, Sun X, et al. Pegylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs[J]. Journal of the American Chemical Society, 2008, 130: 10876-10877.

[58] Veca L M, Lu F, Meziani M J, et al. Polymer Functionalization and Solubilization of Carbon Nanosheets.[J]. Chemical Communications, 2009: 2565-2567.

[59] Mohanty N, Berry V. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents[J]. Nano Letters, 2008, 8: 4469-4476.

[60] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets[J]. Carbon, 2006, 44: 3342-3347.

[61] Lee S H, Dreyer D R, An J, et al. Polymer Brushes Via Controlled, Surface-Initiated Atom Transfer Radical Polymerization (Atrp) from Graphene Oxide[J]. Macromolecular Rapid Communications, 2010, 31: 281-288.

[62] He H, Gao C. General Approach to Individually Dispersed, Highly Soluble, and Conductive Graphene Nanosheets Functionalized by Nitrene Chemistry[J]. Chemistry of Materials, 2010, 22: 5054-5064.

[63] Chai N N, Zeng J, Zhou K G, et al. Free-Radical-Promoted Conversion of Graphite Oxide into Chemically Modified Graphene[J]. Chemistry -- A European Journal, 2013, 19: 5948-5954.

[64] Cote L J, Kim J, Tung V C, et al. Graphene Oxide as Surfactant Sheets[J]. Pure and Applied Chemistry, 2010, 83: 95-110.

[65] Kim J, Cote L J, Kim F, et al. Graphene Oxide Sheets at Interfaces.[J]. Journal of the American Chemical Society, 2010, 132: 8180-8186.

[66] Konios D, Stylianakis M M, Stratakis E, et al. Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide[J]. Journal of Colloid and Interface Science, 2014, 430(0): 108-112.

[67] Novoselov K S, Fal′ko V I, Colombo L, et al. A Roadmap for Graphene [M]. Nature. Nature Publishing Group. 2012: 192-200.

[68] Li M, Yang X, Ren J, et al. Using Graphene Oxide High near-Infrared Absorbance for Photothermal Treatment of Alzheimer's Disease[J]. Advanced Materials, 2012, 24: 1722-1728.

[69] Akhavan O. Graphene Nanomesh by Zno Nanorod Photocatalysts[J]. ACS Nano, 2010, 4: 4174-4180.

[70] Luo Z, Lu Y, Somers L A, et al. High Yield Preparation of Macroscopic Graphene Oxide Membranes[J]. Journal of the American Chemical Society, 2009, 131(3): 898-899.

[71] Cuong T V, Pham V H, Tran Q T, et al. Photoluminescence and Raman Studies of Graphene Thin Films Prepared by Reduction of Graphene Oxide[J]. Materials Letters, 2010, 64(3): 399-401.

[72] Sievers S A, Karanicolas J, Chang H W, et al. Structure-Based Design of Non-Natural Amino-Acid Inhibitors of Amyloid Fibril Formation.[J]. Nature, 2011, 475: 96-100.

[73] Kumar S, Walter J. Phosphorylation of Amyloid Beta (Aβ) Peptides–a Trigger for Formation of Toxic Aggregates in Alzheimer's Disease[J]. Aging, 2011, 3: 803-812.

[74] Dahlgren K N, Manelli A M, Stine W B, et al. Oligomeric and Fibrillar Species of Amyloid-β Peptides Differentially Affect Neuronal Viability[J]. Journal of Biological Chemistry, 2002, 277(35): 32046-32053.

[75] Ding H, Wong P T, Lee E L, et al. Determination of the Oligomer Size of Amyloidogenic Protein β-Amyloid(1–40) by Single-Molecule Spectroscopy[J]. Biophysical Journal, 2009, 97(3): 912-921.

[76] Barrow C J, Yasuda A, Kenny P T M, et al. Solution Conformations and Aggregational Properties of Synthetic Amyloid β-Peptides of Alzheimer's Disease: Analysis of Circular Dichroism Spectra[J]. Journal of Molecular Biology, 1992, 225(4): 1075-1093.

[77] Choo-Smith L-P i, Surewicz W K. The Interaction between Alzheimer Amyloid Beta(1–40) Peptide and Ganglioside Gm1-Containing Membranes[J]. FEBS Letters, 1997, 402(2–3): 95-98.

中图分类号:

 TB383    

馆藏号:

 TB383/0406/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式