- 无标题文档
查看论文信息

中文题名:

 应用DNA条形码及Taqman探针技术鉴定含麻黄碱药材    

姓名:

 张雅琴    

学号:

 1049721301020    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 100702    

学科名称:

 药剂学    

学生类型:

 硕士    

学位:

 医学硕士    

学校:

 武汉理工大学    

院系:

 化学化工与生命科学学院    

专业:

 药学    

研究方向:

 中药与中药制剂分析    

第一导师姓名:

 刘霞    

第一导师院系:

 武汉理工大学    

完成日期:

 2015-04-01    

答辩日期:

 2015-05-16    

中文关键词:

 麻黄碱 ; DNA条形码 ; ITS2 ; psbA-trnH ; Taqman qPCR    

中文摘要:

中文摘要

麻黄碱是麻黄属植物的特征性的化学成分之一,除麻黄属外,麻黄碱还见在于半夏,白背黄花稔等常见的药材中。含麻黄碱药材除有宣肺止咳,燥湿化痰、止吐,消炎、祛风除湿的药用价值外,其药材相关的其他草本产品,尤其是麻黄草,还大量滥用于食品补充剂、运动兴奋剂及毒品中,非法走私案件时有发生。为加强对含麻黄碱药材的管理,规范含麻黄碱药材的经营秩序,防止流入非法制毒渠道,本研究采用DNA条形码及Taqman探针技术鉴定含麻黄碱药材,为其合理监管、科学流通提供帮助。

本课题收集国内分布的常见的含麻黄碱药材共18个物种的201份样品,提取其总DNA,采用药用植物通用的条形码ITS2与psbA-trnH,并扩增ITS2序列及psbA-trnH序列,通过比较筛选适合鉴定含麻黄碱药材的候选条形码,并开展Taqman qPCR。得到如下结论:

1 采用经过改良的试剂盒法,成功从18个物种201份样品中提取到药材的DNA。获得ITS2序列及psbA-trnH序列数分别为175、136。Ephedra组、Araceae组、Sida组的ITS2序列数分别为113、53、9,psbA-trnH序列数分别为118、9、9。

2 通过比较候选条形码的扩增率,相似性搜索法及建树法的物种鉴定率,发现psbA-trnH序列在半夏等药材中的扩增率较低,而ITS2序列的扩增率、物种鉴定率均高于psbA-trnH序列,因此,ITS2序列适合作为含麻黄碱药材的候选条形码。而由于麻黄属Ephedra的psbA-trnH序列中存在碱基缺失,可用于Ephedra属的物种鉴定。

3 基于ITS2序列的差异,针对含麻黄碱药材的基原植物的分类设计出三组特异性强的引物及Taqman探针组合,其灵敏度可达0.00503 ng/μL,验证了Taqman qPCR技术具有特异性强,快速准确以及灵敏度高的优点。

综上所述,本课题基于ITS2序列的DNA条形码技术与Taqman qPCR技术可实现含实现快速、准确、灵敏地鉴定含麻黄碱类药材,旨在对麻黄碱类药材的合理市场流通与科学监管提供参考。

参考文献:

[1] Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors[J]. Proceedings of the National Academy of Sciences, 1977, 74(12): 5463-5467.

[2] Tautz D, Arctander P, Minelli A, et al. DNA points the way ahead in taxonomy[J]. Nature, 2002, 418(6897): 479-479.

[3] Tautz D, Arctander P, Minelli A, et al. A plea for DNA taxonomy[J]. Trends in Ecology & Evolution, 2003, 18(2): 70-74.

[4] Hebert P D, Cywinska A, Ball S L. Biological identifications through DNA barcodes[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2003, 270(1512): 313-321.

[5] Hebert P D, Ratnasingham S, De Waard J R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2003, 270(Suppl 1): S96-S99.

[6] 彭居俐, 王绪桢, 何舜平. DNA 条形码技术的研究进展及其应用[J]. 水生生物学报, 2008, 32(6): 916-919.

[7] Meyer C P, Paulay G. DNA barcoding: error rates based on comprehensive sampling[J]. PLoS biology, 2005, 3(12): e422.

[8] Kress W J, Erickson D L. DNA barcodes: genes, genomics, and bioinformatics[J]. Proceedings of the National Academy of Sciences, 2008, 105(8): 2761-2762.

[9] Kress W J, Wurdack K J, Zimmer E A, et al. Use of DNA barcodes to identify flowering plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(23): 8369-8374.

[10] Chase M W, Salamin N, Wilkinson M, et al. Land plants and DNA barcodes: short-term and long-term goals[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1462): 1889-1895.

[11] Hollingsworth M L, Andra Clark A, Forrest L L, et al. Selecting barcoding loci for plants: evaluation of seven candidate loci with species‐level sampling in three divergent groups of land plants[J]. Molecular Ecology Resources, 2009, 9(2): 439-457.

[12] Sass C, Little D P, Stevenson D W, et al. DNA barcoding in the cycadales: testing the potential of proposed barcoding markers for species identification of cycads[J]. PloS one, 2007, 2(11): e1154.

[13] Lahaye R, Van Der Bank M, Bogarin D, et al. DNA barcoding the floras of biodiversity hotspots[J]. Proceedings of the National Academy of Sciences, 2008, 105(8): 2923-2928.

[14] Newmaster S, Fazekas A, Ragupathy S. DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach[J]. Botany, 2006, 84(3): 335-341.

[15] Kress W J, Erickson D L. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region[J]. PLoS one, 2007, 2(6): e508.

[16] Newmaster S, Fazekas A, Steeves R, et al. Testing candidate plant barcode regions in the Myristicaceae[J]. Molecular ecology resources, 2008, 8(3): 480-490.

[17] Fazekas A J, Burgess K S, Kesanakurti P R, et al. Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well[J]. PLoS One, 2008, 3(7): e2802.

[18] Dasmahapatra K, Mallet J. Taxonomy: DNA barcodes: recent successes and future prospects[J]. Heredity, 2006, 97(4): 254-255.

[19] Goudsmit N, Coleman E, Seckinger R A, et al. A brief smell identification test discriminates between deficit and non-deficit schizophrenia[J]. Psychiatry research, 2003, 120(2): 155-164.

[20] Schultz J, Wolf M. ITS2 sequence–structure analysis in phylogenetics: a how-to manual for molecular systematics[J]. Molecular Phylogenetics and Evolution, 2009, 52(2): 520-523.

[21] Yao H, Song J, Liu C, et al. Use of ITS2 region as the universal DNA barcode for plants and animals[J]. PloS one, 2010, 5(10): e13102.

[22] Chen S, Yao H, Han J, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species[J]. PloS one, 2010, 5(1): e8613.

[23] Li D Z, Liu J Q, Chen Z D, et al. Plant DNA barcoding in China[J]. Journal of Systematics and Evolution, 2011, 49(3): 165-168.

[24] Hollingsworth P M, Forrest L L, Spouge J L, et al. A DNA barcode for land plants[J]. Proceedings of the National Academy of Sciences, 2009, 106(31): 12794-12797.

[25] Li D-Z, Gao L-M, Li H-T, et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants[J]. Proceedings of the National Academy of Sciences, 2011, 108(49): 19641-19646.

[26] 陈士林, 姚辉, 韩建萍,等. 中药材 DNA 条形码分子鉴定指导原则 [J]. 中国中药杂志, 2013, 38(2): 141-148.

[27] Gao T, Yao H, Song J, et al. Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2[J]. Journal of ethnopharmacology, 2010, 130(1): 116-121.

[28] Pang X, Song J, Zhu Y, et al. Applying plant DNA barcodes for Rosaceae species identification[J]. Cladistics, 2011, 27(2): 165-170.

[29] Luo K, Chen S, Chen K, et al. Assessment of candidate plant DNA barcodes using the Rutaceae family[J]. Science China Life Sciences, 2010, 53(6): 701-708.

[30] Liu Z, Chen K, Luo K, et al. [DNA barcoding in medicinal plants Caprifoliaceae][J]. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica, 2010, 35(19): 2527-2532.

[31] Zhu Y, Chen S, Yao H, et al. [DNA barcoding the medicinal plants of the genus Paris][J]. Yao xue xue bao= Acta pharmaceutica Sinica, 2010, 45(3): 376-382.

[32] Yao H, Song J-Y, Ma X-Y, et al. Identification of Dendrobium species by a candidate DNA barcode sequence: the chloroplast psbA-trnH intergenic region[J]. Planta medica, 2009, 75(6): 667-669.

[33] Xiang L, Song J, Xin T, et al. DNA barcoding the commercial Chinese caterpillar fungus[J]. FEMS microbiology letters, 2013, 347(2): 156-162.

[34] Sun Z, Gao T, Yao H, et al. Identification of Lonicera japonica and its related species using the DNA barcoding method[J]. Planta medica, 2011, 77(3): 301-306.

[35] Han J, Song J, Liu C, et al. Identification of Cistanche species (Orobanchaceae) based on sequences of the plastid psbA-trnH intergenic region[J]. Acta Pharm Sin, 2010, 45(1): 126-130.

[36] Chen X, Liao B, Song J, et al. A fast SNP identification and analysis of intraspecific variation in the medicinal Panax species based on DNA barcoding[J]. Gene, 2013, 530(1): 39-43.

[37] 王俊, 刘霞, 张雅琴, 等. 苍耳子药材及其混伪品 ITS2 序列鉴定研究[J]. 世界科学技术: 中医药现代化, 2014, (2): 329-334.

[38] 林韵涵, 刘霞, 胡志刚, 等. 基于 ITS2 序列鉴定桃仁及其近缘种[J]. 世界科学技术: 中医药现代化, 2013, 15(3): 429-434.

[39] 石林春, 陈俊, 向丽, 等. 基于 ITS2 条形码的中药材天南星及其混伪品 DNA 分子鉴定[J]. 中国中药杂志, 2014, 39(12): 2176-2176.

[40] 张雅琴, 宋明, 孙伟, 等. 中药材半夏及其混伪品的 DNA 条形码鉴定研究[J]. 世界科学技术: 中医药现代化, 2014, (8): 1725-1729.

[41] 凃媛, 熊超, 师玉华, 等. 细小种子类毒性药材天仙子的 DNA 条形码鉴定[J]. 世界科学技术 中医药现代化, 2014, (11).

[42] 张慧晔, 刘锋, 王德勤, 等. 溪黄草 DNA 条形码鉴定研究[J]. 世界科学技术 中医药现代化, 2014, (7).

[43] 师玉华, 孙伟, 方广宏, 等. 凉茶药材鸡蛋花及其混伪品的 DNA 条形码鉴定[J]. 中国中药杂志, 2014, 39(12): 2199-2199.

[44] 莫帮辉, 屈莉, 韩松, 等. DNA 条形码识别 Ⅰ. DNA 条形码研究进展及应用前景[J]. 四川动物,2008,(2):303-306

[45] Ratnasingham S, Hebert P D. BOLD: The Barcode of Life Data System (http://www. barcodinglife. org)[J]. Molecular ecology notes, 2007, 7(3): 355-364.

[46] Vanguilder H D, Vrana K E, Freeman W M. Twenty-five years of quantitative PCR for gene expression analysis[J]. Biotechniques, 2008, 44(5): 619.

[47] Morrison T B, Weis J J, Wittwer C T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification[J]. Biotechniques, 1998, 24(6): 954-8, 960, 962.

[48] Tyagi S, Kramer F R. Molecular beacons: probes that fluoresce upon hybridization[J]. Nature biotechnology, 1996, (14): 303-8.

[49] Marras S A, Kramer F R, Tyagi S. Multiplex detection of single-nucleotide variations using molecular beacons[J]. Genetic Analysis: Biomolecular Engineering, 1999, 14(5): 151-156.

[50] Bustin S A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. Journal of molecular endocrinology, 2000, 25(2): 169-193.

[51] Holland P M, Abramson R D, Watson R, et al. Detection of specific polymerase chain reaction product by utilizing the 5'----3'exonuclease activity of Thermus aquaticus DNA polymerase[J]. Proceedings of the National Academy of Sciences, 1991, 88(16): 7276-7280.

[52] Mcgoldrick A, Lowings J, Ibata G, et al. A novel approach to the detection of classical swine fever virus by RT-PCR with a fluorogenic probe (TaqMan)[J]. Journal of virological methods, 1998, 72(2): 125-135.

[53] Weller S, Elphinstone J, Smith N, et al. Detection of Ralstonia solanacearumStrains with a Quantitative, Multiplex, Real-Time, Fluorogenic PCR (TaqMan) Assay[J]. Applied and Environmental Microbiology, 2000, 66(7): 2853-2858.

[54] Reischer G H, Lemmens M, Farnleitner A, et al. Quantification of Fusarium graminearum in infected wheat by species specific real-time PCR applying a TaqMan Probe[J]. Journal of Microbiological Methods, 2004, 59(1): 141-146.

[55] Alasaad S, Soriguer R C, Abu-Madi M, et al. A TaqMan real-time PCR-based assay for the identification of Fasciola spp[J]. Veterinary parasitology, 2011, 179(1): 266-271.

[56] 周玲, 吴德康, 唐于平, 等. 麻黄中化学成分研究进展[J]. 南京中医药大学学报, 2008, 24(1): 71-72.

[57] Caveney S, Charlet D A, Freitag H, et al. New observations on the secondary chemistry of world Ephedra (Ephedraceae)[J]. American journal of botany, 2001, 88(7): 1199-1208.

[58] 刘芳, 王跃虎, 胡光万, 等. 天南星科植物生物碱成分研究进展[J]. 中国农学通报, 2012, 28(19): 90-96.

[59] Khatoon S, Srivastava M, Rawat A K, et al. HPTLC method for chemical standardization of Sida species and estimation of the alkaloid ephedrine[J]. JPC-Journal of Planar Chromatography-Modern TLC, 2005, 18(105): 364-367.

[60] 中国药典. 一部 [S][D]. 2010.

[61] 杨继荣, 王艳宏, 关枫. 麻黄本草考证概览[J]. 中医药学报, 2010, 38(2): 51-52.

[62] 陈晓城. 麻黄的药理作用研究进展[J]. 实用中医药杂志, 2005, 21(1).

[63] Bent S, Tiedt T N, Odden M C, et al. The relative safety of ephedra compared with other herbal products[J]. Annals of Internal Medicine, 2003, 138(6): 468-471.

[64] Samenuk D, Link M S, Homoud M K, et al. Adverse cardiovascular events temporally associated with ma huang, an herbal source of ephedrine[C]. Mayo Clinic Proceedings, 2002: 12-16.

[65] Haller C A, Benowitz N L. Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids[J]. New England journal of medicine, 2000, 343(25): 1833-1838.

[66] Logan B K. Amphetamines: an update on forensic issues[J]. Journal of analytical toxicology, 2001, 25(5): 400-404.

[67] Gonzales R, Mooney L, Rawson R A. The methamphetamine problem in the United States[J]. Annual review of public health, 2010, 31: 385-398.

[68] Mcketin R, Mcketin R, Kozel N, et al. The rise of methamphetamine in Southeast and East Asia[J]. Drug and alcohol review, 2008, 27(3): 220-228.

[69] Kulsudjarit K. Drug problem in southeast and southwest Asia[J]. Annals of the New York Academy of Sciences, 2004, 1025(1): 446-457.

[70] Chawla S U. World Drug Report 2010[J]. New York, NY: United Nations Publication, 2010.

[71] Applequist W. The identification of medicinal plants: a handbook of the morphology of botanicals in commerce[M]. Missouri Botanical Garden Press, 2006.

[72] 蔡秀巧. 黄花稔的性状与显微鉴定[J]. 中药材, 2009, 32(12): 1833-1835.

[73] 张思恒, 杜得平. 半夏及几种伪品的鉴别[J]. 内蒙古中医药, 2010, 29(16): 39-40.

[74] 张文海, 付兆柱, 姜金凤. 麻黄及其常见伪品性状鉴别[J]. 求医问药: 下半月刊, 2011, 9(4): 125-125.

[75] 马毅, 晋玲, 王振恒, 等. HPLC 测定不同产地麻黄中麻黄碱和伪麻黄碱的含量[J]. 西部中医药, 2012, 25(7): 14-16.

[76] 肖海英, 曾明, 肖荣, 等. 半夏与水半夏的对比研究[J]. 中国中医药现代远程教育, 2013, (19): 151-152.

[77] 辛宁, 刘莉丽, 银胜高, 等. 中药药性与有效化学成分, 生态因子的关联性研究[J]. 中药材, 2011, 34(2): 324-326.

[78] Sang T, Crawford D, Stuessy T. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae)[J]. American Journal of Botany, 1997, 84(8): 1120-1120.

[79] Keller A, Schleicher T, Schultz J, et al. 5.8 S-28S rRNA interaction and HMM-based ITS2 annotation[J]. Gene, 2009, 430(1): 50-57.

[80] Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular biology and evolution, 2013, 30(12): 2725-2729.

[81] 罗焜, 马培, 姚辉, 等. 中药 DNA 条形码鉴定中的 DNA 提取方法研究[J]. 世界科学技术: 中医药现代化, 2012, 14(2): 1433-1439.

[82] Zeng J, Zou Y-P, Bai J-Y, et al. Preparation of total DNA from ‘recalcitrant plant taxa’[J]. Acta Botanica Sinica, 2002, 44(6): 694-697.

[83] Taberlet P, Coissac E, Pompanon F, et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding[J]. Nucleic Acids Research, 2007, 35(3): e14-e14.

[84] Shaw J, Lickey E B, Schilling E E, et al. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III[J]. American journal of botany, 2007, 94(3): 275-288.

[85] 刘金香. 应用实时定量 PCR 的方法检测 BCR-ABL mRNA 水平的研究[D]. 吉林大学, 2005.

[86] Livak K J, Flood S, Marmaro J, et al. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization[J]. Genome Research, 1995, 4(6): 357-362.

[87] Saiki R K, Scharf S, Faloona F, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J]. Science, 1985, 230(4732): 1350-1354.

[88] Ai L, Dong S, Zhang W, et al. Specific PCR-based assays for the identification of Fasciola species: their development, evaluation and potential usefulness in prevalence surveys[J]. Annals of tropical medicine and parasitology, 2010, 104(1): 65-72.

[89] Techen N, Khan I A, Pan Z, et al. The use of polymerase chain reaction (PCR) for the identification of ephedra DNA in dietary supplements[J]. Planta medica, 2006, 72(3): 241-247.

[90] 王庆彪. 裸子植物的分子系统发育及麻黄碱类化学成分的进化起源[D]. 复旦大学, 2006.

中图分类号:

 R284.2    

馆藏号:

 R284.2/1020/2015    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式