- 无标题文档
查看论文信息

中文题名:

 酚醛泡沫炭基电极材料的制备及其电容性能研究    

姓名:

 王博    

学号:

 1049721700329    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080500    

学科名称:

 材料科学与工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 先进复合材料    

第一导师姓名:

 张超灿    

第一导师院系:

 武汉理工大学    

完成日期:

 2020-05-20    

答辩日期:

 2020-06-24    

中文关键词:

 酚醛泡沫炭 ; 氧化石墨烯 ; 水热法 ; 复合电极 ; 超级电容器    

中文摘要:

具有导电性和稳定性好、有效表面积大及原料丰富的酚醛泡沫炭是超级电容器电极中最常用的多孔炭材料,泡沫炭的孔隙结构和比表面积对电容器的离子储存容量和扩散速率有很大的影响。微孔和介孔可以显著提高多孔炭材料的表面积,有利于离子快速可逆地传输和电荷储存,增加电极的电容,然而炭材料中曲折的微孔和介孔会阻碍电解质离子向孔隙的扩散,导致在高电流密度下的倍率性能较差。大孔作为电解液的缓冲池,使离子扩散距离缩短,然而炭材料中存在过多的大孔会导致表面积变小,同时降低电容和能量密度。因此,制备微孔、中孔和大孔相结合的分级多孔泡沫炭,开发具有良好电化学性能的电极材料具有重要意义。本文以酚醛树脂为基础,制备出一系列酚醛泡沫炭,并将其分别与还原氧化石墨烯和NiS2形成复合材料,研究它们的电容性能与应用潜力。具体内容如下:

1、首先以苯酚和甲醛为原料,NaOH为碱催化剂,通过加成和缩聚反应合成酚醛树脂;以合成的树脂为前驱体,复配的DC-193、AES为乳化剂,磷酸、浓硫酸和苯磺酸为混合固化剂,石油醚为发泡剂,通过发泡法制备多孔泡沫炭作为超级电容器的电极材料,探讨了不同乳化剂和固化剂的配比对其电化学性能的影响,确定了DC-193∶AES = 7∶3的乳化剂配比和磷酸∶浓硫酸∶苯磺酸 = 7∶2∶1且稀释为80% 水溶液的固化剂体系制备的泡沫炭泡孔细腻孔径分布均匀,兼具大孔、介孔和微孔,电化学性能最优,在0.1 A·g-1电流密度下其电容值可达到204 F·g-1。接着在水热条件下加入氧化石墨烯(GO)分散液,利用水热过程还原的还原氧化石墨烯(RGO)对上述炭材料的电容性能进行改进,探讨了不同GO浓度对该复合电极材料电容性能的影响,确定了GO的浓度为4 mg·mL-1时,复合电极材料的电容性能得到最大程度的提升,在0.1 A·g-1电流密度下其电容值可达到253 F·g-1

2、在不添加粘接剂的情况下,通过水热法将NiS2沉积在分级多孔的泡沫炭上作为超级电容器的电极材料,并利用水热过程还原的RGO对该电极材料的电化学性能进行改进,探讨了不同GO浓度对该复合电极材料电容性能的影响,确定了GO的浓度为4 mg·mL-1时,沉积的NiS2呈纳米、微米级颗粒和棒状分布,且富含大量供电子或离子快速转移的孔道,表现出较大的电容值,在1 A·g-1电流密度下其电容值可达到1039 F·g-1

参考文献:

[1] Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future[J]. Energy & Environmental Science, 2011, 4(9): 3287.

[2] Liu C, Li F, Ma L P, et al. Advanced Materials for Energy Storage[J]. Advanced Materials, 2010, 22(8): E28-E62.

[3] Winter M, Brodd R J. What Are Batteries, Fuel Cells, and Supercapacitors?[J]. Cheminform, 2004, 104(10): 4245-4270.

[4] Xie K, Wei B. Materials and Structures for Stretchable Energy Storage and Conversion Devices[J]. Advanced Materials, 2014, 26(22): 3592-3617.

[5] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.

[6] Benzigar M R, Talapaneni S N, Joseph S, et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications[J]. Chemical Society Reviews, 2018, 47(8): 2680-2721.

[7] Zhang L, Hu X, Wang Z, et al. A review of supercapacitor modeling, estimation, and applications: A control/management perspective[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1868-1878.

[8] Mallakpour S, Khadem E. Carbon nanotube-metal oxide nanocomposites: fabrication, properties and applications[J]. Chemical Engineering Journal, 2016, 302: 344-367.

[9] 刘伟伟. 超级电容器碳复合电极材料的制备及性能研究[D]. 黑龙江省: 哈尔滨工业大学, 2011.

[10] Begum S, Kausar A, Ullah H, et al. Potential of polyvinylidene fluoride/carbon nanotube composite in energy, electronics and membrane technology: an overview[J]. Polymer-Plastics Technology and Engineering, 2016, 55(18): 1949-1970.

[11] Chen W, Lei T, Wu C, et al. Designing safe electrolyte systems for a high-stability lithium-sulfur battery[J]. Advanced Energy Materials, 2018, 8(10): 1702348.

[12] Zhong C, Deng Y, Hu W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539.

[13] Huang Y, Li Y, Gong Q, et al. Hierarchically mesostructured aluminum current collector for enhancing the performance of supercapacitors[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16572-16580.

[14] Sharma P, Bhatti T S. A review on electrochemical double-layer capacitors[J]. Energy Conversion and Management, 2010, 51(12): 2901-2912.

[15] Conway B E, Pell W G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices[J]. Journal of Solid State Electrochemistry, 2003, 7(9): 637-644.

[16] Choudhary N, Li C, Moore J, et al. Asymmetric Supercapacitor Electrodes and Devices[J]. Adv Mater, 2017, 29(21): 1605336.

[17] Miller E E, Hua Y, Tezel F H, et al. Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors[J]. Journal of Energy Storage, 2018, 20: 30-40.

[18] Bose S, Kuila T, Mishra A K, et al. Carbon-based nanostructured materials and their composites as supercapacitor electrodes[J]. Journal of Materials Chemistry, 2012, 22(3): 767-784.

[19] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38 (9): 2520-2531.

[20] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.

[21] Zhai Y, Dou Y, Zhao D, et al. Carbon Materials for Chemical Capacitive Energy Storage[J]. Advanced materials (Deerfield Beach, Fla.), 2011, 23(42): 4828-4850.

[22] Yu Z N, Tetard L, Zhai L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions[J]. Energy & Environmental Science, 2015, 8(3): 702-730.

[23] Kierzek K, Frackowiak E, Lota G, et al. Electrochemical capacitors based on highly porous carbons prepared by KOH activation[J]. Electrochimica Acta, 2004, 49(4): 515-523.

[24] Largeot C, Portet C, Chmiola J, et al. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor[J]. Journal of the American Chemical Society, 2008, 130(9): 2730-2731.

[25] Meyers C J, Shah S D, Patel S C, et al. Templated Synthesis of Carbon Materials from Zeolites (Y, Beta, and ZSM-5) and a Montmorillonite Clay (K10): Physical and Electrochemical Characterization[J]. The Journal of Physical Chemistry B, 2001, 105(11): 2143-2152.

[26] Duong B, Yu Z, Gangopadhyay P, et al. High Throughput Printing of Nanostructured Carbon Electrodes for Supercapacitors[J]. advanced materials interfaces, 2014, 1(1).

[27] Li W R, Chen D H, Li Z, et al. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor[J]. Electrochemistry Communications, 2007, 9(4): 569-573.

[28] Huang Y X, Candelaria S L, Li Y W, et al. Sulfurized activated carbon for high energy density supercapacitors[J]. Journal of Power Sources, 2014, 252: 90-97.

[29] Li H B, Yu M H, Wang F X, et al. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials[J]. Nature Communications, 2013, 4: 1894.

[30] Qie L, Chen W M, Wang Z H, et al. Nitrogen-Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability[J]. Advanced Materials, 2012, 24(15): 2047-2050.

[31] Niu C M, Sichel E K, Hoch R, et al. High power electrochemical capacitors based on carbon nanotube electrodes[J]. Applied Physics Letters, 1997, 70(11): 1480-1482.

[32] Pan H, Li J Y, Feng Y P. Carbon Nanotubes for Supercapacitor[J]. nanoscale research letters, 2010, 5(3): 654-668.

[33] Frackowiak E, Jurewicz K, Szostak K, et al. Nanotubular materials as electrodes for supercapacitors[J]. Fuel Processing Technology, 2002, 77(1): 213-219.

[34] Frackowiak E, Metenier K, Bertagna V, et al. Supercapacitor electrodes from multiwalled carbon nanotubes[J]. Applied Physics Letters, 2000, 77(15): 2421-2423.

[35] Zhang H, Cao G P, Yang Y S, et al. Comparison Between Electrochemical Properties of Aligned Carbon Nanotube Array and Entangled Carbon Nanotube Electrodes[J]. Journal of the Electrochemical Society, 2008, 155(2): K19-K22.

[36] Saghafi M, Mahboubi F, Mohajerzadeh S, et al. Preparation of vertically aligned carbon nanotubes and their electrochemical performance in supercapacitors[J]. Synthetic Metals, 2014, 195: 252-259.

[37] Kim B, Chung H, Kim W. High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes[J]. Nanotechnology, 2012, 23(15): 155401.

[38] Tao J Y, Liu N S, Ma W Z, et al. Olid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure[J]. Scientific Reports, 2013, 3.

[39] Su F H, Miao M H. Asymmetric carbon nanotube-MnO2 two-ply yarn supercapacitors for wearable electronics [J]. Nanotechnology, 2014, 25(13): 135401.

[40] El-Kady M F, Strong V, Dubin S, et al. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors[J]. Science, 2012, 335(6074): 1326-1330.

[41] Novoselov K S, Falko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

[42] Becerril H, Mao J, Liu Z, et al. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors[J]. Acs Nano, 2008, 2(3): 463-470.

[43] Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing of large-scale graphene[J]. Nature Nanotechnology, 2009, 4(1): 25-29.

[44] Gao H C, Xiao F, Ching C B, et al. High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2[J]. ACS Applied Materials & Interfaces, 2012, 4(5): 2801-2810.

[45] Cao X H, Yin Z Y, Zhang H. Three-dimensional graphene materials: preparation, structures and application in supercapacitors[J]. Energy & Environmental Science, 2014, 7(6): 1850-1865.

[46] Wang Y, Wu Y P, Huang Y, et al. Preventing Graphene Sheets from Restacking for High-Capacitance Performance[J]. The Journal of Physical Chemistry C, 2011, 115(46): 23192-23197.

[47] Park S, Ruoff RS. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224.

[48] Vickery JL, Patil AJ, Mann S. Fabrication of Graphene-Polymer Nanocomposites With Higher-Order Three-Dimensional Architectures[J]. Advanced Materials, 2009, 21(22): 2180-2184.

[49] Zhang L L, Zhao S Y, Tian X N, et al. Layered Graphene Oxide Nanostructures with Sandwiched Conducting Polymers as Supercapacitor Electrodes[J]. Langmuir, 2010, 26(22): 17624-17628.

[50] Wu X L, Wen T, Guo H L, et al. Biomass-Derived Sponge-like Carbonaceous Hydrogels and Aerogels for Supercapacitors[J]. ACS Nano, 2013, 7(4): 3589-3597.

[51] Fan X M, Yu C, Ling Z, et al. Hydrothermal Synthesis of Phosphate-Functionalized Carbon Nanotube-Containing Carbon Composites for Supercapacitors with Highly Stable Performance[J]. ACS Applied Materials & Interfaces, 2013, 5(6): 2104-2110.

[52] Kate R S, Khalate S A, Deokate R J, et al. Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review[J]. Journal of Alloys and Compounds, 2018, 734: 89-111.

[53] Zhi M, Xiang C, Li J, et al. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review[J]. Nanoscale, 2013, 5(1): 72-88.

[54] Zhang Y X, Huang M, Li F, et al. One-pot synthesis of hierarchical MnO2-modified diatomites for electrochemical capacitor electrodes[J]. Journal of Power Sources, 2014, 246: 449-456.

[55] Shao Y L, Wang H Z, Zhang Q H, et al. High-performance flexible asymmetric supercapacitors based on 3D porous graphene/MnO2 nanorod and graphene/Ag hybrid thin-film electrodes[J]. Journal of Materials Chemistry C, 2013, 1(6): 1245-1251.

[56] Wu Z S, Ren W C, Wang D W, et al. High-Energy MnO2 Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors[J]. Acs Nano, 2010, 4(10): 5835-5842.

[57] Choudhary N, Park J, Hwang J Y, et al. Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure[J]. Scientific Reports, 2016, 6: 25456.

[58] Jung Y, Zhou Y, Cha J J. Intercalation in Two-Dimensional Transition Metal Chalcogenides[J]. Inorganic Chemistyr Frontiers, 2016, 3(4): 452-463.

[59] Bissett MA, Kinloch IA, Dryfe RAW. Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors[J]. Acs Applied Materials & Interfaces, 2015, 7(31): 17388-17398.

[60] Acerce M, Voiry D, Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials[J]. Nature Nanotechnology, 2015, 10(4): 313-318.

[61] Zheng L, Ren C E, Zhao M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance[J]. Proceedings of The National Academy of Sciences of The United States of America, 2014, 111(47): 16676-16681.

[62] Ghidiu M, Lukatskaya M R, Zhao M Q, et al. Conductive two-dimensional titanium carbide clay with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-U171.

[63] Naguib M, Kurtoglu M, Presser V, et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253.

[64] Naguib M, Mashtalir O, Carle J, et al. Two-Dimensional Transition Metal Carbides[J]. ACS Nano, 2012, 6(2): 1322-1331.

[65] Mashtalir O, Naguib M, Mochalin V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013, 4: 1716.

[66] Levi M D, Lukatskaya M R, Sigalov S, et al. Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz-Crystal Admittance and In Situ Electronic Conductance Measurements[J]. Advanced Energy Materials, 2015, 5(1).

[67] Ramya R, Sivasubramanian R, Sangaranarayanan M V. Conducting polymers-based electrochemical supercapacitors—Progress and prospects[J]. Electrochimica Acta, 2013, 101: 109-129.

[68] Khomenko V, Frackowiak E, Beguin F. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations[J]. electrochimica acta, 2005, 50(12): 2499-2506.

[69] Benson J, Kovalenko I, Boukhalfa S, et al. Multifunctional CNT-Polymer Composites for Ultra-Tough Structural Supercapacitors and Desalination Devices[J]. Advanced Materials, 2013, 25(45): 6625-6632.

[70] Wang K, Zhao P, Zhou X M, et al. Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites[J]. Journal of Materials Chemistry, 2011, 21(41): 16373-16378.

[71] Duan C, Zhao J, Qin L, et al. Ternary Ni-Co-Mo oxy-hydroxide nanoflakes grown on carbon cloth for excellent supercapacitor electrodes[J]. Materials Letters, 2017, 208: 65-68.

[72] Fold W. Method of making cellular refractory thermal insulating material[P]. US: US5715560A, 1960-09-20.

[73] Hager J Q. Idealized ligament formation and geometry in open-celled foams[C]. Materials Research Society Symposium Proceedings, 1992, 270: 41-46.

[74] Roy S, Pruden B B, Adris A M, et al. Fluidized-bed steam methane reforming with oxygen input[J]. Chemical Engineering Science, 1999, 54(13-14): 2095-2102.

[75] 赵景飞, 李铁虎, 高长超, 等. 泡沫炭的最新研究进展[J]. 炭素技术, 2011, 30(5): 25-30.

[76] Zhu Y, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541.

[77] Zhou J, Zhu T, Xing W, et al. Activated polyaniline-based carbon nanoparticles for high performance supercapacitors[J]. Electrochimica Acta, 2015, 160: 152-159.

[78] Shi J, Chen G, Zeng G, et al. Hydrothermal synthesis of graphene wrapped Fe-doped TiO2 nanospheres with high photocatalysis performance[J]. Ceramics International, 2018, 44(7): 7473-7480.

[79] Zhao W, Gao H, Fan M, et al. Synthesis of novel monolithic activated carbons from phenol-urea-formaldehyde resin[J]. RSC Advances, 2015, 5(127): 104936-104942.

[80] Sui L, Wang Y, Ji W, et al. N-doped ordered mesoporous carbon/graphene composites with supercapacitor performances fabricated by evaporation induced self-assembly[J]. International Journal of Hydrogen Energy, 2017, 42(50): 29820-29829.

[81] Dong Y, Lin H, Zhou D, et al. Synthesis of mesoporous graphitic carbon fibers with high performance for supercapacitor[J]. Electrochimica Acta, 2015, 159: 116-123.

[82] Esmaili H, Sheibani S, Rashchi F, et al. Mechano-thermal synthesis and characterization of nano-structured Fe/FeS for application in photocatalysis[J]. Particuology, 2018, 37: 72-80.

[83] Qu Y, Lu C, Su Y, et al. Hierarchical-graphene-coupled polyaniline aerogels for electrochemical energy storage[J]. Carbon, 2018, 127: 77-84.

[84] Inagaki M, Qiu J, Guo Q, et al. Carbon foam: preparation and application[J]. Carbon, 2015, 87: 128-152.

[85] Wu X, Liu Y g, Fang M, et al. Preparation and characterization of carbon foams derived from aluminosilicate and phenolic resin[J]. Carbon, 2011, 49(5): 1782-1786.

[86] Hu X M, Zhao Y Y, Cheng W M. Effect of formaldehyde/phenol ratio (F/P) on the properties of phenolic resins and foams synthesized at room temperature[J]. Polymer Composites, 2015, 36(8): 1531-1540.

[87] Su H, Zhang C C, Li X, et al. Aggregation prevention: reduction of graphene oxide in mixed medium of alkylphenol polyoxyethylene (7) ether and 2-methoxyethanol[J]. RSC Advances, 2018, 8(68): 39140-39148.

[88] Cheng M, Duan S, Fan H, et al. From channeled to hollow CoO octahedra: controlled growth, structural evolution and energetic applications[J]. CrystEngComm, 2016, 18(36): 6849-6859.

[89] Sun G, Ma L, Ran J, et al. Incorporation of homogeneous Co3O4 within nitrogen-doped carbon aerogel via a facile in situ synthesis method: implications for high performances asymmetric supercapcitors[J]. Journal of Materials Chemistry A, 2016, 4(24): 9542-9554.

[90] Ruan Y J, Jiang J J, Wan H Z, et al. Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors[J]. Journal of Power Sources, 2016, 301: 122-130.

[91] Ruan Y, Jiang J, Wan H, et al. Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors[J]. Journal of Power Sources, 2016, 301: 122-130.

[92] Ni W, Wang B, Cheng J, et al. Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance[J]. Nanoscale, 2014, 6 (5): 2618-23.

中图分类号:

 TM53    

馆藏号:

 TM53/0329/2020    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式